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Abstract   Up to now most of the existing water supply network analyses have been based on 
demand-driven simulation models. These models assume that nodal outflows are fixed and are always 
available. However, this method of simulation neglects the pressure-dependent nature of demand that 
is characterized by changes in actual nodal outflows particularly during critical events like major 
mechanical or hydraulic failures including local excessive demands. A novel approach is presented 
herein for head-driven simulation of water distribution networks. The methodology is based on the 
Newton-Raphson method and incorporates, directly, the relationship between nodal outflows and 
pressures. Through several examples, the applicability and advantages of this new formulation are 
demonstrated including accuracy and computational efficiency. 
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 مبتني بر تقاضا استفاده     شينمايند از رو   هاي آبرساني را تحليل مي      كه شبكه  مدلهاييدر حال حاضر اكثر        چكيده
اين روش شبيه   . باشد ها هميشه ثابت و قابل دسترس مي        شود كه تقاضا در گره      در اين مدلها فرض مي     . كنند مي

 جريان خروجي در گره ها بخصوص در حين           سازي، وابستگي مصرف با فشار كه از عوامل مؤثر تغيير ميزان             
 تو متعلقا مكانيكي اجزاء   ) شكست(شرايط بحراني در مواقع خرابي       . گيرد  را در نظر نمي     استشرايط بحراني   

  باعث افت فشار و آشفتگي هيدروليكي در شبكه               ود  وش ميشبكه و يا افزايش موضعي تقاضا ايجاد              

ي منطقي بين جريان خروجي و فشار در گره ها، روش جديدي براي               ا هاين مقاله با در نظر گرفتن رابط        .گردد مي
 در گره ها به     ردبي فشا در اين روش رابطه     . نمايد تحليل هيدروليكي مبتني بر فشار در شبكه هاي آبرساني ارايه مي          

  در معادلات حاكم وارد گرديده و دسته معادلات هيدروليكي به روش نيوتن رافسون حل                          مطور مستقي 

 ارائه مي ) همچون دقت و كفايت محاسباتي    (سپس از طريق چند مثال، واقعي بودن و فوايد روش جديد            . وندش مي
 اين روش بخوبي قادر است اثرات ناشي از شرايط بحراني كه باعث كاهش فشار               ،براساس نتايج بدست آمده   . گردد

 كه در عالم واقع بدست مصرف كننده        گردد را منعكس نموده و ميزان واقعي جريان خروجي گره ها            در گره ها مي   
 .رسد را مشخص كند مي
 
 

INTRODUCTION 

In the recent past, several papers have appeared on 
the subject of analysis and optimal design of water 
supply networks consisting of a number of 
sources, pipes, valves, pumps and reservoirs. These 
analyses usually have as their objective the need for an 
efficient technique to compute the pressure and 
flows in a defined network at defined levels of 

computational accuracy, given the characteristics 
of the network such as the pipe lengths, diameters and 
friction factors as well as the hydraulic characteristics 
of all ancillary plant such as pumps and valves. 
       Most network simulation models used in current 
engineering practice are based on the conventional 
Demand Driven Simulation Method (DDSM). They 
assume that nodal outflows are fixed and are satisfied 
regardless of network pressures. The assumption 
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simplifies the mathematical solution of the problem 
but is not always appropriate because it is clear that 
the amount of outflow at nodal outlets depends on 
network pressures. If the pressure falls below a 
minimum required level (due to some critical 
events such as mechanical and hydraulic failures 
or excess demand), the flow will be significantly 
reduced. Although some nodes may be able to satisfy 
their demands, others may meet the demand partially 
while the rest may fail and may not provide any water 
at all. The assumption of fixed nodal consumptions 
is therefore valid only under normal conditions when 
the pressures can be expected to be adequate to satisfy 
the stipulated demands. If the operation of the system 
is simulated under pressure-critical conditions, the 
relationship between pressure and outflow should, 
therefore, be taken into account if the simulation 
results are to be realistic [1-7]. This kind of analysis 
in which the relationship between nodal outflow 
and pressure is explicitly considered is referred to 
herein as Head Driven Simulation Method (HDSM). 
     The terms 'outflow' and 'demand' should be clearly 
distinguished. Demand is the quantity of water required 
at the nodal outlet but outflow is the quantity, 
which the network actually yields, this is influenced 
by the hydraulic characteristics of the network as a 
whole including the outflows at other nodes [5-8]. 
     From the early 1980s different researchers have 
referred to the importance and necessity of considering 
the pressure dependency of nodal consumption in 
water distribution systems modeling from different 
points of view [2-4,6,9,11]. For example, [12] stated 
that reduced service (i.e. 0 < nodal outflow < demand) 
should be recognized and accounted for somehow 
and any shortfall in flow should be reflected by 
network reliability measures. Also, [13] pointed 
out that in some developing countries where the 
water distribution systems operate intermittently, 
the lack of adequate pressure leads to substantially 
less discharge than the requirement (demand) and 
very short duration of supply. It is, therefore, 
necessary to develop a network analysis methodology 
that automatically takes into account the variation 
of nodal outflows with pressure.  
     Some researchers have previously looked for an 
explicit relationship between nodal head and outflow 
[1,4,5,9,14-20], but this paper does not delve into 
the issue. Rather, the aim of this paper is to present 
an analysis algorithm in which a realistic pressure-

outflow relationship is incorporated directly into 
the main set of non-linear constitutive equations. 
Through a number of examples, the accuracy of the 
results and the computational efficiency of the new 
methodology are discussed. The results suggest that 
the proposed HDSM can simulate networks with 
insufficient pressure in a realistic way (unlike DDSM) 
without any significant loss of computational 
efficiency (compared to DDSM). Furthermore, 
unlike the cumbersome nature of previous HDSM 
methods [10,21] the present formulation is easy to 
implement. 

NODAL PRESSURE-OUTFLOW 
RELATIONSHIPS 

During the last decade, several formulas have been 
suggested to describe the pressure dependency of nodal 
consumption (outflow). A comprehensive comparison 
of these relationships can be seen in [6]. He 
concluded that a parabolic relationship (no flow at 
minimum head to required flow at desirable head) 
was sufficiently representative of the hydraulic 
performance of networks. In this section, first, the 
parabolic head-outflow relationship is presented. Then 
more recently published relationships are discussed. 
     The parabolic head-outflow relationship is 
shown graphically in Figure 1 and can be 
expressed as [6,8,13,20]: 

H  H  if   ; Q = Q des
jj

req
j

avl
j ≥  (1a) 

 

Figure 1. Head-outflow relationship [4]. 
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H  H  H if   ; )
H - H
H - H( Q = Q des

jj
min
j

)
n
1

(

min
j

des
j

min
jjreq

j
avl
j pp  (1b) 

H  H  if   ; 0 = Q min
jj

avl
j ≤  (1c) 

where Qj
avl and Qj

req are available outflow and demand 
at node j, respectively. Hj

des is the desired head 
/pressure to satisfy the demand. Hj is the available 
head and Hj

min the minimum head at node j. n is an 
exponent usually between about 1.5 and 2 
[6,8,13,20,21]. Herein a value of 2 is applied for n. 
     The minimum head (Hj

min) below which no flow 
can be discharged may be taken as the minimum 
outlet level in the locality served by the node. In 
the absence of field data it may be set equal to 
ground elevation. The desired head (Hj

des) below 
which the nodal demand cannot be totally satisfied 
might typically be about 14 to 15 m or more 
[22,23]. Under certain circumstances, the absolute 
minimum desired pressure is suggested to be 7 m 
[24,25]. The desired head can also be calculated 
through the following equation [8,21] 

)Q( K + H = H
nreq

jj
min
j

des
j  (2) 

in which Kj is an empirical resistance factor for 
node j. 
   Considering the required and absolute minimum 
pressures as 14 and 7 m, respectively, [15] used a 
fuzzy relationship between the nodal availability 
(equivalent to Qj

avl/Qj
req) and head similar to the 

cumulative normal distribution to represent the 
variation of available outflow for residual pressures 
below the desired value. However, their lower 
limit of nodal availability seems to be questionable 
because when pressure reaches the absolute minimum 
value, 50% of demand is still available. This would 
appear to be because of their consideration of an 
absolute minimum pressure required for proper system 
operation, which results from hydraulic constraints 
on the operation of fire fighting equipment [6]. 
However, as fire-fighting operations would be 
infrequent, their formulation would appear to be a 
special case, which, consequently, overestimates the 
values of available outflow. (Also see [23]). 
    Later, [16] proposed an expected served demand 
concept, which took into account both insufficient 
heads and flows at individual nodes in the 

network. The relative effectiveness of nodal head 
(equivalent to Qj

avl/Qj
req), termed nodal hydraulic 

availability therein, was defined as a non-
decreasing smooth function of head, taking values 
between zero and one, the values being zero below 
minimum head level and one above the desired 
head level. Their approach, therefore, further 
refined the availability concept in that at Hj

min 
availability was zero and at Hj

des, one. Furthermore, 
the nodal hydraulic availability during reduced 
service mode in which Hj is not fully satisfactory 
was defined as a differentiable function of head, H, as 
follows 

H  H  H if   ; 
H)dH-H)(H-(H

H)dH-H)(H-(H
 = 

Q
Q des

jj
min
j

des
j

min
j

H

H

des
j

min
j

H

H

req
j

avl
j

des
j

min
j

j

min
j pp

∫

∫
 (3) 

Although the above equation can be applied to any 
network, it is not as straightforward as Equation 1b 
to use and more computational effort is needed for 
its evaluation. 
   Herein, Equation 1 is used to represent the head-
outflow relationship because it is a continuous function 
with realistic upper and lower bounds for outflow. 
Also, it can represent the behavior of the system 
reasonably. 

REVIEW OF ALGORITHMS FOR 
PRESSURE-DRIVEN NETWORK ANALYSIS 

In the review of algorithms to analyze the hydraulic 
equations of the system including pressure dependency 
of demand, different approaches can be seen in the 
literature [20,21] used a two-phase formulation. 
Thus, using a conventional demand-driven 
simulation the head value at each node was 
obtained. Then the head-outflow relationship of 
Equation 1 was used to calculate the outflows for 
those nodes with head value less than desired ones 
[20,21]. In addition, the iterative scheme of [21] 
repeats the above procedure until there would be 
no significant changes in nodal outflows or 
pressures between successive iterations. 
     Calculating nodal heads by DDSM, a corrected 
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nodal outflow was obtained in [13] by the Newton-
Raphson univariate iterative formula, i.e. 

) Q( nK

H - ) Q( K + H
 - Q = Q 1-navl

jj

j
navl

jj
min
javl

jj  (4) 

in which Qj is the updated outflow for nodes with 
less than fully satisfactory pressures, Hj, in the 
range Hj

min < Hj < Hj
des and Qj

avl represents the 
previous value of nodal outflow. Also, for nodes 
with Hj < Hj

min, Qj = 0 and for nodes with Hj > 
Hj

des, Qj = demand.  
     Although the analysis incorporated the pressure 
dependency of demand, it was also a two-phase 
approach. The disadvantage of the method is that 
there is an intermediate step between iterations in 
which nodal pressures are checked and modified 
outflows calculated. 
     The algorithm of [16] to calculate the available 
outflows at each node was based on an optimization 
procedure which maximized the sum of the available 
outflows over all demand nodes. The head-outflow 
relationship was approximated by means of the 
nodal hydraulic availability approach of Equation 3 
while the other hydraulic characteristics of the system 
were considered as constraints. The disadvantage 
of the approach is that it involves the solution of a 
difficult-to-solve non-linear programming problem, 
which is computationally expensive. 
     To improve the weaknesses of the above-
mentioned approaches, a fully integrated algorithm 
is clearly needed to carry out the pressure-
dependent network analysis. Such an algorithm is 
presented in the next section. 

STEADY STATE HEAD-DRIVEN ANALYSIS 
OF WATER SUPPLY NETWORKS 

     The governing equations for flow in water 
supply networks can be set up by considering the 
basic physical laws, i.e. the equations of continuity 
applied at each node and conservation of energy 
applied to each loop or path. 
     Different methods of computation have been 
developed (e.g. Hardy-Cross, Newton-Raphson 
and Linear Theory) and many computer programs 
have been produced to solve the conventional 
network analysis problem [17,26,28,29,30,31]. 

     In comparison with other solution methods, the 
Newton-Raphson method has good convergence 
characteristics [17,32,33]. Herein, a Newton-
Raphson-based method has been chosen and the 
pressure dependency of demand incorporated in 
the system of equations as shown shortly. 
     The continuity equation for each node j, j = 1, ..., 
NJ, may be written as 

QQQ avl
jij

H > H :i
ij

H< H :i
 =  - 

jiji
ΣΣ  (5) 

where Qij is the flow in pipe ij and NJ is the 
number of the nodes in the network. Using the 
Hazen-Williams equation for flow in a pipe, 
Equation 5 becomes 

0 = Q - )
K

H - H( - )
K

 H- H(  F avl
j

)
n
1

(

ij

ji

H > H :i

)
n
1

(

ij

ji

H < H :i
j

jiji
ΣΣ≡  (6) 

in which n = 1.852 and Fj represents the continuity 
equation for node j. Hi and Hj are piezometric 
heads at nodes i and j, respectively. Kij is a 
resistance coefficient for pipe ij and Qj

avl is the 
outflow of node j. The values of Kij can be 
obtained as follows 

D . CHW
L . 675.10

 = K 4.87
ij

1.852
ij

ij
ij  (7) 

where Lij is length of pipe ij (m), CHWij is the 
Hazen-Williams coefficient for pipe ij and Dij is 
diameter of pipe ij (m). 
     Other network components (e.g. pumps, valves, 
reservoirs, etc.) can be included in Equation 6 in a 
similar way. The head-flow relationships for some 
of these components are indicated briefly as follows. 

1) Pump   The head flow relationship of a pump 
may be typically approximated by a parabolic 
curve as follows 

C + BQ + AQ = H - H = H ij
2
ijijp  (8) 

in which A, B and C are constants (usually set by 
the manufacturer). Hp is the head lift of the pump 
and Qij is the flow delivered by pump. Hi and Hj 
are the heads at the upstream and downstream 
nodes of the pump, respectively. 
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2) Non-Return Valve (NRV)   The head-flow 
relationship for a pipe fitted with a non-return 
valve which allows flow in one direction only is 

H  H  if   ; )
K

H - H( = Q ji
)

n
1(

ij

ji
ij f  (9a) 

H  H  if   ; 0 = Q jiij ≤  (9b) 

in which Qij is the flow in the pipe having the 
NRV and n = 1.852 (see Equations 6-7). 

3) Flow Control Valve (FCV)   The head-flow 
relationship for a pipe having an FCV is 

)H - Hsgn( )
K

H - H
( K = Q ji

)
n
1(

ij

ji
vij  (10) 

where 0 ≤ Kv ≤ 1 is a continuous valve control 
parameter. 

4) Pressure Reducing Valve (PRV)   A pressure 
reducing valve produces a constant outlet pressure 
for a range of higher inlet pressures. For a PRV the 
head flow relationship is given as 

H  H  H   if   ; )
K

H - H( = Q iPRVj
)

n
1

(

ij

jPRV
ij ≤≤  (11a) 

H H  H   if   ; )
K

H - H( = Q PRVij
)

n
1

(

ij

ji
ij p≤  (11b) 

H  H   if   ; 0 = Q PRVjij ≥  (11c) 

in which HPRV is the pressure reducing valve 
setting corresponding to the constant outlet head. 

INCORPORATION OF PRESSURE 
DEPENDENT OUTFLOWS IN THE 

GOVERNING EQUATIONS 

As concluded earlier from the various head-
outflow relationships proposed in the literature, 
the approach [20] has been chosen as a good 
representation of the pressure dependency of nodal 
outflows. Because outflow is a function of head, it 
seems to be more reasonable that this dependency 
be accounted for in the main set of hydraulic 
equations throughout the analysis procedure. 
     The head-dependent outflow term can be added 

to the continuity equations of the system as 
follows, giving in general NJ equations with NJ 
unknowns. 

0 = )
H - H

H - H( Q + )H - H(sgn  )
K

H -H
(  F 0.5

min
j

des
j

min
jjreq

jji
0.54

ij

ji
NJ

1=i
j

j

Σ≡  (12) 

in which Hj
min ≤ Hj ≤ Hj

des, NJj  is the number of 
nodes directly connected to node j and 

H  H if   ; 1 = )H - H(sgn jiji f  (13a) 

H = H if   ; 0 = )H - H(sgn jiji  (13b) 

H  H if   ; 1- = )H - H(sgn jiji p  (13c) 

From Equations 1, the second term of Equation 12 
is equal to Qj

req, if  Hj = Hj
des and it is equal to zero 

when Hj = Hj
min. Based on the Newton-Raphson 

method and choosing the nodal piezometric heads 
as unknown parameters, Equation 12 would be 
solved by the following iterative scheme:  

) H( F = H J mmm ∆  (14a) 

H - H = H mm1+m ∆  (14b) 

in which H is the vector of unknown heads, the 
matrix J is the Jacobian of the set of equations, ∆H 
is the vector of the respective changes in nodal 
heads and F is the vector of the respective values 
of the nodal continuity expressions, i.e. Fj, j = 1, 
..., NJ. The iteration number is denoted by m. 
   The elements of the Jacobian matrix for each 
nodal equation are given by  

j  i :i j,   ; )
K

H-H
( 0.54 = 

H
F

0.54
ij

ji
-0.46

i

j ≠∀∀
∂
∂

 (15a) 

 + )
K

H - H
( 0.54 - = 

H
F

ij
0.54

ji
-0.46

NJ

ji,1=ij

j j

Σ
≠∂

∂

ji:i ,j   ; )
H - H

H - H
( 

)H - H(
Q 0.5 0.5-

min
J

des
j

min
jj

min
j

des
j

req
j ≠∀∀  (15b) 

The second term of Equation 15b would be 
applicable when Hj

min ≤ Hj ≤ Hj
des and it is zero 
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otherwise, since Qj
avl is zero when head drops 

below Hj
min and Qj

avl = demand (a constant) when 
the head exceeds Hj

des. 
   As can be seen, the incorporation of the 
pressure-dependent demand term in the main set of 
equations does not lead to any new equations or 
unknowns, so the basic structure of the Jacobian 
remains unchanged. It can, therefore, be expected 
that the computational characteristics of the 
solution methodology will not be highly affected.  
     To improve the computational efficiency (faster 
convergence), some modifications have been made 
in the Newton-Raphson method herein. First, 
instead of using Equation 14b, an approximation to 
the value of z*, i.e. the value of z which minimizes 
the single variable function f(Hm - z∆Hm) is found 
(see [34]). The new point in the sequence is now 
given by 

H 'z- H = H mm1+m ∆  (16) 

in which z' ≅ z*.  The above procedure ensures that 
Hm+1 is a better approximation to the solution than 
Hm. Second, to avoid head oscillations for some 
demand nodes, a modification is made by 
averaging the computed values of head obtained at 
the (m)th and (m-1)th iterations.  
     The proposed algorithm can be summarized as 
follows [6]. 
1) Guess initial heads, Hj

0 , for all nodes other than 
fixed head nodes. 
2) Solve the system of non-linear equations, 
Equations 12 - 13. 
3) Determine improved estimates of nodal heads 
using Equation 14 - 16. 
4) Repeat steps 2 and 3 until the convergence 
criteria is satisfied. 
5) Calculate available nodal outflows, Qj

avl. 
     A Fortran computer program has been 
developed based on the above algorithm. This has 
been implemented on a PC with a 75 MHz 
pentium processor and 8 Mbyte RAM. In addition 
to the normal operating condition, the program 
developed for HDSM is capable of simulating 
failure of any component. Using only the data for 
the fully connected network, the program can 
automatically simulate the consequences, in terms 
of available flow, of the failure of up to any two-

network components. The accuracy of the results 
and efficiency of the above methodology is 
illustrated by the following examples. The 
tolerances used in the examples were 0.001 m for 
nodal heads. 

 
 

BENCHMARK SOLUTIONS 

The first example is taken from [21] and the layout 
of the network is shown in Figure 2. The lengths 
and Hazen-Williams coefficients for all pipes are 
1000 m and 130, respectively. The diameters for 
pipes 1 through 4 are 400, 350, 300 and 300 mm, 
respectively. The node resistance coefficient, Kj, 
and available flow exponent, n, are equal to 360 
(s2/m5) and 2, respectively. The node data of the 
network along with the HDSM analysis results are 
presented in Table 1. The DDSM results are also 
shown for comparison. 
     It can be seen from the head-driven simulation 
(HDSM) results in Table 1 that the network is 
pressure deficient as the demand of node 4 of 3 
m3/min is only partially satisfied, the actual 
outflow being 0.381 m3/min. To check the 
accuracy of the results of the proposed formulation 
and to demonstrate the effects of variations in the 
source head on available outflows, the source head 
for this network has been varied from 85 to 110.89 
m, and the available outflow at each node based on 
HDSM can be observed in Table 2. As can be 
seen, these values are essentially the same as the 
results of [21] and, therefore, confirm the accuracy 
of the present formulation. The results in Table 2 
demonstrate the reliability of the model in terms of 

 
 
 

 
Figure 2. Simple network of Example 1 [11]. 
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its ability to produce the correct results where 
pressures/outflows are less than fully satisfactory. 
As expected, when pressures are fully satisfactory 
both HDSM and DDSM give identical results. 
     Example 2 considers the applicability of the 
HDSM to more complicated networks, including 
ancillary components (e.g. pumps, reservoirs, etc.). 

Figure 3 shows the layout of this sample network 
that is taken from [13]. The Hazen-Williams 
coefficient is 120 for all pipes and Hj

min = 25.908 
m for all nodes. The equation of each pump is 
represented by Hp = -3823.64 Qp

2 + 27.172 Qp + 
6.819, where Hp is the head provided by the pump. 
Other features of the network are given in Table 3. 

TABLE 1. Nodal Data and Results for the Network of Example 1 (Figure 2). 
 

 Input Data Output results 

  DDSM HDSM 

Node Hj
min  
 

(m) 

Hj
des  
 

(m) 

Qj
req  
 

(m3/min) 

Hj  
 

(m) 

Qj
avl  
 

(m3/min) 

Hj  
 

(m) 

Qj
avl  
 

(m3/min) 

1a  
2 
3 
4 
5 

- 
90.0 
88.0 
90.0 
85.0 

100.0b 
90.4 
88.4 
90.9 
86.6 

11.0 
-2.0 
-2.0 
-3.0 
-4.0 

100.000 
95.131 
88.698 
80.139 
77.103 

11.000 
-2.000 
-2.000 
-3.000 
-4.000 

100.000 
97.053 
93.647 
90.015 
86.982 

8.381 
-2.000 
-2.000 
-0.381 
-4.000 

a  Source b  Available Source Head 
 
 
 

TABLE 2. Available Nodal Outflows for Different Source Head Values in Example 1. 
 

 
Source Head 

(m) 

Available outflow (m3/min) at indicated node: Total Supply to the 
Network (m3/min) 

 2 
 

3 
 

4 
 

5 
 

 

85.00 
 

88.87 
 

90.88 
 

91.96 
 

92.33 
 

98.50 
 

98.84 
 

110.89 
 

-0.000 
(-0.000)a 
-0.000 

(-0.000) 
-0.000 

(-0.000) 
-1.621 

(-1.616) 
-2.000 

(-2.000) 
-2.000 

(-2.000) 
-2.000 

(-2.000) 
-2.000 

(-2.000) 

-0.000 
(-0.000) 
-0.000 

(-0.000) 
-1.790 

(-1.787) 
-2.000 

(-2.000) 
-2.000 

(-2.000) 
-2.000 

(-2.000) 
-2.000 

(-2.000) 
-2.000 

(-2.000) 

-0.000 
(-0.000) 
-0.000 

(-0.000) 
-0.000 

(-0.000) 
-0.000 

(-0.000) 
-0.000 

(-0.000) 
-0.000 

(-0.000) 
-0.000 

(-0.000) 
-3.000 

(-3.000) 

-0.000 
(-0.000) 
-2.424 

(-2.420) 
-2.560 

(-2.553) 
-2.592 

(-2.586) 
-2.645 

(-2.629) 
-4.000 

(-4.000) 
-4.000 

(-4.000) 
-4.000 

(-4.000) 

0.000 
(0.000) 
2.424 

(2.420) 
4.350 

(4.340) 
6.214 

(6.202) 
6.645 

(6.629) 
8.000 

(8.000) 
8.000 

(8.000) 
11.000 

(11.000) 

a  Indicates Results of [21] 
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     To assess the effects of component failures on 
the hydraulic performance of the system, the 
HDSM is used assuming that only one link 
(pipe/pump) fails in each case. Table 4 shows 
values of inflow from the three sources and 
available flow at the demand node. It can be seen 
that in all cases of pipe failure, demand node 1 is 
in reduced service mode with all available 
outflows being less than the required demand of 
0.0566 m3/s. It can, therefore, be seen that HDSM 
can simulate the effects of mechanical failures on 

the hydraulic performance of the system. 
     The last example, Example 3, shows the 
application of the HDSM to a small real-world 
network taken from [6]. Figure 4 and Table 5, 
respectively, show the layout and physical 
characteristics of this branched system. In this 
network, the values of the minimum nodal heads 

 
Figure 3. Layout of Example 2 [35]. 

TABLE 3. Pipe Data for Figure 3. 
 

Pipe 
 

Length  (m) Diameter  (mm) 

2-1 
3-2 

10-3 
4-2 
5-4 
9-5 
6-4 
8-7 
7-6 
6-1 

609.6 
304.8 
pump 
304.8 
304.8 
pump 
304.8 
pump 
304.8 
609.6 

203.2 
152.4 

- 
203.2 
152.4 

- 
152.4 

- 
203.2 
152.4 

 

TABLE 4. Actual Nodal Inflows and Outflow for the Network of Figure 3 (m3/sec). 
 

 
Pipe failed 

Node 

 1b 8c 9c 10c 

None 
 

2-1 
6-1 
3-2 
4-2 

10-3a 
5-4 
6-4 
9-5a 
7-6 
8-7a 

-0.05660 
(-0.05663)d 
-0.02563 
-0.04331 
-0.04670 
-0.04689 
-0.04670 
-0.05302 
-0.05623 
-0.05202 
-0.04546 
-0.04546 

0.02373 
(0.02381) 
0.01481 
0.01354 
0.02874 
0.01945 
0.02874 
0.02766 
0.02033 
0.02766 
0.00000 
0.00000 

0.01127 
(0.01127) 
0.00000 
0.00850 
0.01796 
0.00000 
0.01796 
0.00000 
0.01339 
0.00000 
0.01938 
0.01938 

0.02160 
(0.02155) 
0.01082 
0.02127 
0.00000 
0.02744 
0.00000 
0.02436 
0.02251 
0.02436 
0.02608 
0.02608 

 Available nodal outflow/inflow (m3/sec) 
a  Indicates Pipe Including Pump         b  Demand Node         c  Source Node         d  Indicates Results of 
[35] 
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TABLE 5. Input Data for the Real Network of Figure 4. 
 

 

Link 
 

Diameter 
(mm) 

CHW 
 

Length 
(m) 

1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 

9-10 
9-13 
10-11 
10-12 
13-14 
13-15 
15-16 
15-18 
16-17 

76 
pump 
150 
180 
100 
125 
125 
100 
76 
125 
76 
76 
20 
125 
76 
125 
80 

100 
- 
140 
140 
43 
130 
130 
130 
100 
130 
100 
5 
50 
2 
100 
130 
120 

1 
- 
40 
455 
755 
65 
160 
10 
215 
155 
75 
150 
115 
655 
40 
390 
210 

 
are considered to be equal to the respective nodal 
ground levels and values of desired head are, 
somewhat optimistically, taken to be 7 m for each 
node. The hydraulic characteristics of the pump 
was represented by:  Hp = -11478.421Qp

2 - 
13822.773Qp + 51.647. For peak demand time 
(9:00 a.m.), the network was analysed by HDSM 
and the results are presented in Table 6. Values of 
available outflow at the nodes are identical to the 
respective demands except for nodes 2 and 14. It 
can be observed that the available head at node 2 is 
greater than the minimum but less than the desired 
head and so the demand is only partially satisfied. 
Also, at node 14 the available head is less than the 
assumed minimum head of 7 m and so the outflow 
is zero. This means that there could potentially be 
a shortfall in supply at nodes 2 and 14 during 
periods of high demand. These results suggest that 
any program based on DDSM cannot be relied 
upon to reproduce the real situation when available 
heads are not adequate. It can, therefore, be said 
that in comparison with DDSM, HDSM is better 
able to simulate the actual performance of the 
system and lead to more accurate and realistic 
results in terms of nodal head and flow. 
 
 

DISCUSSION 
 
The computational efficiency of the HDSM can be 

assessed in terms of the number of iterations 
required in the achievement of a solution to a 
chosen accuracy together with an overall accuracy 
measure for successive iterations. One such measure 
is the Euclidian norm defined as 

])H([ = _H 1/22
j

NJ

1=j
∆∆ Σ  (17) 

where   indicates the Euclidian norm. 
     Figure 5 illustrates the rapid convergence of the 
HDSM. Because the norm only measures the 
magnitude of the changes in head for all nodes, it 
may also be useful to examine the changes in head 
for successive iterations at some critical nodes. 
The critical node is taken as the node with the 
largest discrepancy between demand and available 
flow at the end of solution procedure. Figure 6 
represents the variations of available heads at 
critical nodes against number of iterations. It can 
be seen that convergence of the solution using 
HDSM is good, bearing in mind that Figure 6 
depicts conditions at the most pressure-critical 
nodes of the respective networks.  
     In Table 7 the number of iterations and computer 
run time for all the networks are presented. From 

 
Figure 4. Layout of Example 3 (a real world case study ). 
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the table it can be seen that in these particular 
examples with the same initial values of nodal 
heads, number of iterations and computational 
time of HDSM are close to the DDSM results. 
However, incorporation of the head-outflow 
relationship into the main set of non-linear 
equations may lead to a little increase in the 
number of iterations and computational time for 
the HDSM. Therefore, it can be said that, in 
general the HDSM represents the behavior of the 

physical system more realistically. Also, its 
computational efficiency is good, without 
significant difference with the DDSM. 
 
 

SUMMARY AND CONCLUSIONS 
 
A new methodology for pressure-driven analysis 
of water supply networks has been developed and 
its capability examined through a number of 

TABLE 6. HDSM Results for the Network of Figure 4 with Peak Demands. 
 

Node Hj
min (m) Hj

des (m) Qj
req (l/s) Hj (m) Qj

avl (l/s) 

1 (Source) 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

84.3 
84.3 
84.3 
84.0 
72.0 
83.0 
82.8 
82.6 
82.6 
84.0 
87.0 
86.0 
83.5 
89.5 
63.9 
63.8 
61.6 
64.6 

86.0 
91.3 
91.3 
91.0 
79.0 
90.0 
89.8 
89.6 
89.6 
91.0 
94.0 
93.0 
90.5 
96.5 
70.9 
70.8 
68.6 
71.6 

2.130 
-0.020 
-0.000 
-0.020 
-0.320 
-0.000 
-0.280 
-0.100 
-0.140 
-0.070 
-0.200 
-0.210 
-0.320 
-0.340 
-0.110 
-0.000 
-0.000 
-0.000 

86.000 
85.992 
109.987 
109.976 
109.938 
102.779 
102.567 
101.431 
101.267 
97.785 
97.126 
94.299 
10.105 
41.113 
96.554 
96.554 
96.554 
96.554 

1.780 
-0.010 
-0.000 
-0.020 
-0.032 
-0.000 
-0.280 
-0.100 
-0.140 
-0.070 
-0.200 
-0.210 
-0.320 
-0.000 
-0.110 
-0.000 
-0.000 
-0.000 

 

 
 

 
 
Figure 5. Convergence histories for Examples 1-3 using 
HDSM.

 

 
 
Figure 6. Changes in available head at Critical Nodes for 
Examples 1-3 using HDSM.
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examples. It was observed that the HDSM works 
both for simple and realistic networks. However, 
unlike other formulations for pressure-driven 
simulation [13,21] the methodology presented herein 
does not require a separate step in which nodal 
outflows are adjusted at the end of each iteration. 
The proposed procedure explicitly incorporates 
a realistic head-outflow relationship in the continuity 
equations. 
     As observed by [6,21] the present method is 
equivalent to demand-driven simulation when flows 
and pressures are adequate such that designated 
demands are fully satisfied. In typical water supply 
applications this would usually be representative of 
normal operating conditions. However, under critical 
operating conditions e.g. pump failure, pressure-
driven analysis (HDSM) can simulate the partial 
flow delivery realistically, whilst DDSM can only 
indicate that a supply problem will arise.  
     Finally, regarding computational efficiency, it 
has been observed that convergence of the iterative 
solution using HDSM compares favorably to an 
efficient DDSM implemented herein both in terms 
of CPU time and number of iterations. It would 
appear, therefore, that the proposed methodology 
has the potential to produce hydraulically more 
realistic results without any significant loss of 
computational efficiency compared to DDSM. 

 
 

NOMENCLATURE 
 
A,B,C = pump characteristics curve coefficients 

CHWij = Hazen-Williams coefficient of pipe ij 
Dij = diameter of pipe ij 
Fj = continuity function for node j 
Hj = available pressure head at node j  
Hj

des = desired pressure head at node j 
Hj

min = minimum pressure head at node j 
Hp = lift head across pump 
HPRV = outlet head of pressure reducing valve 
J = Jacobian matrix 
Kij = resistance coefficient of pipe ij 
Kj = resistance coefficient of node j 
Kv = continuous valve control parameter 
Lij = length of pipe ij 
n = an exponent  
NJ = number of nodes 
NJj  = number of nodes directly feeding and fed 

   by node j 
Qij = flow in pipe ij 
Qj

avl = available outflow at node j 
Qj

req = required outflow (i.e. demand) at node j 
Qp = flow delivered by pump 
z = step size 
  = Euclidian norm 

Subscripts 
p = pump 
PRV = pressure reducing valve 
v = valve 

Superscripts 
* = optimum value 
avl = available 
des = desired 
min = minimum 
req = required 
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