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Abstract The forward position kinematics (FPK) of a parallel manipulator with new architecture
supposed to be used as a moving mechanism in a flight simulator project is discussed in this paper.
The closed form solution for the FPK problem of the manipulator is first determined. It has, then,
been shown that there are at most 24 solutions for FPK problem. This result has been verified by
using other techniques such as geometric approach and a numerical method known as polynomial
continuation. Numerical examples are performed to display all possible solutions available for the
devised manipulator.
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INTRODUCTION

Serial manipulators usually have some merits such
as large workspace, dexterity for maneuvering in
small spaces, ability for accessing to points at large
distances and design simplicity. However, lack of
rigidity because of cantilever structure, small
payload capacity, operating inaccuracy and poor
dynamical performance at high-speed operations
are some drawbacks of serial manipulators. To
overcome these drawbacks, an alternate type of
manipulator, comprising kinematics loops, known
as parallel manipulator has been proposed. The
main advantages of parallel manipulators, as
compared with their counterparts, are greater
rigidity causing higher natural frequencies,
homogeneous distribution of inertia, higher
accuracy and higher load-carrying capacity [1].
The most important types of parallel manipulators
are those with moving and fixed platforms
connected by means of parallel legs [1-4]. Figure 1
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shows two examples of these types of parallel
manipulators.

One of the main problems in the kinematics of
parallel manipulators is analysis of forward
position kinematics (FPK). The FPK solution
comprises a system of nonlinear equations with
many variables, which is a time consuming
problem. The closed form solution for the problem
and the upper limit of the number of solutions are

Figure 1. Two examples of parallel manipulators.
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the main important issues in the analysis of FPK.
The closed form solution is usually a linear
polynomial equation in terms of one unknown and
can be defined as given input values for the
devised manipulator, i.e., the leg lengths and its
geometry, determine all possible configurations of
the moving platform. There are other issues in
kinematics analysis besides those mentioned
investigations above, which are the subject of many
[5-8].

The closed form solution for the problem at
hand has some advantages such as better insight to
kinematic behavior of the system, determination of
all possible configurations of moving platform for
a given input and effect of input errors on output
ones.

In this paper, the FPK of a parallel manipulator
with a new architecture, which is supposed to be
used as a moving mechanism in a flight simulator
project, is determined first by using closed form
solution. Up to here, dialytic elimination is used
for FPK solution. By using this method, the
kinematic constraint equations for the system at
hand are written and then at each step, one of the
unknowns is eliminated from the system of
nonlinear equations to obtain the final polynomial
equation with one unknown. Thereafter, solving
this equation and back substituting to former
system of equations, it is possible to determine all
unknowns [2,10]. A numerical example is also
performed by using dialytic elimination. The
results are verified by using other methods such as
geometry approach and a numerical method known
as polynomial continuation. The kinematics of the
manipulator is also studied at position, velocity and
acceleration level without deriving the analytical
solution of FPK of the system at hand [8].

CLOSED FORM SOLUTION

The parallel manipulator devised is composed of
moving platform (MP) and based platform (BP)
that are connected to each other by means of four
legs, as depicted in Figure 2.

Each leg contains two links coupled by a
prismatic joint. The central leg is connected to MP
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by universal joint and fixed to BP. The system has
three degrees of freedom (DOF) and three linear
actuators are connected to three circumferential
legs. It may be noted that the central leg is an idle
leg. More details about geometry of the
manipulator and its merits as compared with
conventional type like Stewart platform has been
explained in References 8 and 9. The three
independent DOF for the MP are heave h, i.e.,
vertical displacement along Z axis; roll ¢, i.e.,
rotation of MP about x axis and pitch v, i.e.,
rotation of MP about y axis, as shown in Figure 2.
The kinematic constraint equations can be
written to determine the closed form solution for
the FPK of this manipulator. These equations can
be expressed in terms of Cartesian space variables,
ie, h, @ and W with respect to joint space
variables, i.e., the leg lengths g, for i=1,2,3. With
reference to Figure 2, the position vector of the
upper endpoint of each leg with respect to lower
endpoint can be expressed in reference frame
attached to BP at its centroid O, i.e., X,¥,Z, as

where u; is position vector of a; with respect to
O, e; is the unit vector along a,4; and r; is

position vector of A; with respect to M.

Figure 2. Parallel manipulator with new architecture.
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The length of leg i, i.e., g; can be obtained
from Equation 1 as

g7 =11 =(—u; +p+Rr) (<u; +p+Rry) =123 (2)

where R and p are the rotation matrix of MP with
respect to BP and position vector of upper endpoint
of central leg with respect to its lower endpoint,
respectively. They are expressed in reference
frame as

cosy 0 siny
R =| sin¢gsiny cos¢ —sin¢cosy
—cos¢siny sing  cos@cosy
p=[0 o A 3)

Equation 2 contains three kinematics constraints
written for legs one, two and three. For simplicity,
it is assumed that the length of sides of MP and BP

are [p = 2+/3b and [ Bp = 2+/3a, respectively.
Here, a is one third of height of equilaterals
a,a,a, and b is one third of that of A4 ,4,A4;.

Moreover, it is noted that the endpoint 4, of leg 1
is moved on Y;Z, plane. Thus the position vectors

u; and r; can be obtained as

u =0 22 of u, = [—\/ga —-a O]T
u, = [\/ga —a O]r @)
r=[ 2 of =3 -b» of

r=W3 -b» of (5)

where u; is expressed in reference frame and r; is

expressed in frame xyz, i.e., moving coordinate
frame attached to MP at its centroid M.

Substituting Equations 4 and 5 into Equation 2
and expanding them, one obtains

4a* —8abcos + h* +4bhsin ¢ +4b* = gi (6)
4a* —6abcosw—2\/§absin¢sinl;/—2abcos¢+4b2

+h% +2/3bh cospsiny —2bhsing =q;  (7)
4a* —6abcosy + 2\/§absin¢ siny —2abcosp + 4b*
+h? = 2/3bh cos@siny —2bhsin¢g = q32 (8)
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Equations 6, 7 and 8 are three equations in
terms of three unknowns 4, ¢ and v . It is readily

known from above equations that if 4*, ¢~ and
v form a set of solution for the above equations

then —h", —¢" and —y~ will also form a set of

solution. This will be verified later in numerical
example. Expressing the angle ¥ in terms of half

angle z = tan(l// / 2), Equations 7 and 8 lead to

oz’ +Bz+y=0
)
Az? +nz+E=0

The coefficients of Equations 9 are functions of
¢ and & and are defined in the Appendix. The
resultant of these equations represents the
condition under which the two equations have the
same solution for z. This resultant can be
determined under the condition that the
determinant of Sylvester matrix of Equations 9
vanishes, namely

detS, =0 (10)
where
o B v 0]
0O oo B vy
S, =
A n &0
0 4 n &

with the expansion of Equation 10, one leads to an
equation that has unknowns ¢ and 4. Thus
Equations 6 and 10 lead to two equations that are
only functions of # and ¢ . Rearranging these two

equations in terms of h and expanding the
equations obtained, one can derive

8,h* +8,h+68,=0 (11)
‘uéh6 +.u5h5 +‘u4h4 +.u3h3 +.u2h2 +ih+u, =0
The coefficients are in terms of sin¢ and cos@®

and other known quantities that are defined in the
Appendix. Eliminating 4 from Equations 11, one
can also obtain an equation in terms of only one
unknown, namely, ¢ .

The resultant of Equations 11 is obtained upon
vanishing the determinant of Sylvester matrix of
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two equations as
detS=0 (12)
where S is defined as

— —

He Hs My My Hy M My O
0 Mg Hs My My My M Mg
5, 6 6, 0 0 0 0 O
g_|0 & & & 0 0 0 0
0 0 8, 86 8 0 0 0
0 0 0 & &8 6 0 0
0 0 0 0 & & & O
(0 0 0 0 0 5 & 6]

Expressing the angle ¢ in terms of half angle
¢/2, ie, y=tan(/2), and substituting into
Equation 12, after expansion and simplification, a
polynomial equation of order of 24 with respect to
y will be obtained with at most 24 real or complex
solutions for y. The angle ¢ is bound to the

interval —7w <¢ <m and thus it is uniquely

obtained by y =tan(¢/2). Moreover, after
determining ¢, Equations 11 will have two parts
with one unknown, 4, which can be determined by
vanishing the first order greatest common divisor
(GCD) of the equations. After substituting the
values of ¢ and % into Equations 9, these
equations will be a set of two equations in terms of
only one unknown z and they have only one
common solution for z that can be determined upon
vanishing the first order GCD of these equations.
Thus, it is shown that for each value of y, there is
only one unique solution for ¢, 4 and Y . It may
be noted that the GCD of equations in each of the
two above-mentioned steps is proved to be of the
first order [9]. FPK problem of the manipulator
devised has, therefore, at most 24 real and complex
solutions.

Numerical Example In the manipulator
devised, using inverse position kinematics for
given values of 4, ¢ and Y, with known
geometry, it is possible to determine unique
solution for g, g, and g5. These values are used
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as input for FPK problem to obtain 24 set of
solutions. The geometrical parameters for the

manipulator are as follows: [/, =2m and

1
lyp =lm which leads to a= ﬁm and
1 . .
b =——=m . Moreover, using the following values

243

for the Cartesian space variables: h=Im,

o= —%md and ¥ = —%rad and solving the

inverse position kinematics, one obtains

q, =0.9667m;q, =1.1060m;q, =1.5420m (13)

Now, having a and b as well as ¢q,, ¢, and ¢,

from above equation as input data for FPK and
using the method explained in this section, it is

possible to obtain 24™ order polynomial equation.
The solution of this equation leads to 24 sets of
solutions; twelve sets of them are shown in Table 1
and the other twelve sets are the negatives of the
former. It may be noted that there are real and
complex solutions which are depicted in Table 1.
Each parenthesis in each column of Table 1
consists of the real and imaginary parts of the
solution.

DISCUSSION

The following conclusions can be obtained from
the results of the numerical examples described in
the previous section:

I- The 24™ set of the solution that is negative of
the first set is the same as the input for the
problem.

II- The solutions verify thatif 4*, ¢* and " isa

set of solution, then —A", —¢" and —y" is also

a set of solution. Therefore, for 2m (m <12) real
set of solutions, there are m configurations under
which MP is above BP and the other m
configurations are the ones that MP is under BP. In
other words, the former is the mirror image of the
latter.

HI- All solutions are verified by substituting into
kinematics constraint equations, namely, Equations
6, 7 and 8. Therefore, there are no spurious
solutions.
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TABLE 1. Twelve FPK Solutions of Numerical Example.
No. h(m) y =tan(p/2) z =tan(y/2)

1 (-1.0000,0) (0.2679,0) (0.2679,0)

2 (-0.8934,-1.1049) (1.2952,-0.5902) (-0.3630,0.9320)
3 (-0.8934,1.1049) (1.2952,0.5902) (-0.3623,-0.9320)
4 (-0.7575,0.8231) (1.1511,0.2327) (0.4761,0.8092)

5 (-0.7575,-0.8231) (1.1511,-0.2327) (0.4761,-0.8092)
6 (-0.7454,0) (0.6823,0) (0.4193,0)

7 (-0.3597,-0.5887) (-0.3222,0.4123) (-1.5896,4.1832)
8 (-0.3597,0.5887) (-0.3222,-0.4123) (-1.5896,-4.1832)
9 (-0.6785,0) (-0.07967,0) (1.0669,0)

10 (-0.1567,0) (0.6190,0) (1.1960,0)

11 (0,-1.2582) (0,5.1429) (0,-5.6852)

12 (0,-1.0882) (0,1.5123) (0,0.0694)

Figure 3. Four configurations of manipulator.

IV- The number of real solutions for the given
parameters in this example is eight, which is the
number of different configurations of the
manipulator. Four configurations where MP is
above BP are depicted in Figure 3. It may be noted
that it is possible to obtain up to 16 real solutions
using different parameters.

GEOMETRICAL APPROACH

In this section, the maximum number of solutions
for FPK of the manipulator devised is studied
using synthetic geometry and the method explained
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Figure 4. A kinematics connection between frame f and
moveable body m with feather of 24 and circularity of 12
(with courtesy of Reference 6).

in Reference 6. With reference to the manipulator
shown in Figure 2, it is readily known that joint A4,
is located always in Y,Z, plane. Thus, joint a,

can be considered revolute in equivalent mechanism.
Now assume the manipulator is separated at point M,
i.e., the endpoint of central leg and compare it with
Figure 11(c) of Reference 6, which is depicted
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again in Figure 4.

Comparing these two mechanisms, it is found
that they are the same and thus the point M of MP
develops a surface in reference frame with the
order of 24 and circularity of 12. On the other
hand, the endpoint of central leg M is moved on a
vertical line of reference frame. This line is a first order
curve with circularity zero. Therefore, regarding to
continuity of the manipulator and referring to Bezout
theorem illustrated in Reference 6, maximum number
of common real point between the former curve
and the latter surface is determined to be as
mn, —2p,p, =24x1-2x12x0=24 (14)
where n; and p; are the order and circularity of
surface 1, respectively. Thus, the feather of the

manipulator is 24 and maximum number of different
configurations for the system is determined to be 24.

POLYNOMIAL CONTINUATION

As it is shown in the previous section, the FPK
problem leads to a system of nonlinear multivariable
equations. Here, polynomial continuation, which is a
numerical technique, is used to solve the FPK
problem of the manipulator devised [7]. Then it is
shown that there are at most 24 solutions for the
FPK problem.

Assuming sin@=x, cos@=y, siny/=m, and
cosy=n, the kinematics constraints, namely,

Equations 6, 7 and 8 can be simplified in light of
the two constraints dictated to the system because
of the above relations as

4a® —8aby +4b* + h? +4bhx—q12 =0
4a® — 6abn + 4b*> — 24/3abxm — 2aby
+h?+ 2\/§bhym —2bhx—q; =0
4a* — 6abn + 4b* + 2/3abxm — 2aby (15)
+h? = 23bhym — 2bhx — > =0
x? + y2 =1
m* +n* =1
Substituting h? from the first equation of set of

Equations 15 into the second and third ones and
rearranging the result thus obtained leads to
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4a* —8aby +4b* + h* +4bhx —qi =0
— 6abn — 2/3abxm + 6aby — 6hbx
+ 2\/§bhym +q; —q; =0

— 6abn + 2\/§abxm + 6aby — 6hbx (16)
—2\/§bhym+ql2 —q32 =0

x*+y* =1

m*+n’ =1

Upper Limit for Number of Solutions The
first step is to obtain a distribution for variables of
Equations 16 leading to a number, as small as
possible, known as multihomogeneous Bezout
number (MBN). The MBN is the upper bound on
the number of finite solutions to the system of
Equations 16. For obtaining MBN, variables are
classified into three groups, namely,
I=thy, =iy}  Hl={mn} (17

The order of each equation of the system of the
Equations 16 versus the variables group, i.c.,
Equation 17 is shown in Table 2.

The MBN can be determined by forming a

polynomial a* = Hi:l,‘_"p (ijl,m)q do, ) using

the data given in Table 2. Here, p=5 and =3 are
the number of equations and number of variable
groups for the system of equations of this

manipulator, respectively. Moreover, dij is the

rank of equation i in terms of variable group j that
is obtained in the light of Table 2. The number of

o; is equal to g, i.e., the number of variable

groups. Thus a” can be obtained as

a* =20 +o, Noy +o, +oi ) (20, N20)  (18)
. m/ . *

The coefficient of the term Hj=1,2,3 (Oc ; ) in a

is MBN. Here, O{;”’ is a dummy variable as
defined in a” and m ; 1s the number of variables

in group j. This term is obtained by expanding a",
in the light of Equation 18, which is equal to
240(106220632 . The coefficient of this term is 24 and

thus the upper bound on the number of solution to
the system of Equations 16 is 24.
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TABLE 2. The Order of the System of Equations 16 Versus the Variables Group.

Ist 2nd 3rd 4th Sth
Group . . . . .
equation equation equation equation equation
I 2 1 1 0 0
I 1 1 1 2 0
11 0 1 1 0 2

All Solutions A start system is introduced to
calculate all solutions for the system of Equations
16. The characteristics of the start system have
been mentioned in Reference 7. To begin solving
the system devised, let’s start with the following
equations:

(h=5-12i\h+1-4.3i)y-13-5i)=0
(h+10+7i\y+30+i)n—100+23i)=0
(h—0.4+3i)y—40+20i)n+2-9)=0 (19)
x*=1=0
m* —1=0

The above set of polynomial equations has the

same structure as the main system, i.e., Equations
16.

These equations have been chosen such that
their solutions are distinct and easy to obtain. The
numbers used in Equations 16 are selected
arbitrary such that these equations satisfy all
required conditions and have exactly 24 solutions
[9]. Next, using the homotopy as follows makes
the transformation of the coefficients of the start
system into main system:

H; (@) =A=0¢; (/D stare (D main 1= 15(20)
Where c¢; is arbitrary constants chosen as

¢, =20+3i, ¢, =-13+25i, ¢;=19+7i

¢, =22-11.1i, ¢y =-33-8.5i (21)

(f)siare ad (f)),um are the i equations of
start and main system, respectively.

International Journal of Engineering

Equation 20 is solved by using Newton's
Raphson method 24 times for each set of solution
of start system at t=0 while t is varied from zero to
one in the incremental steps. At each incremental
step, the solution of the first step is used as initial
condition for the next step. This method is leading
to the final solution of equations of the main
system, i.e. Equations 16. It is only sufficient to
show that there exists one set of input values in
which 24 distinct solutions are obtained by
executing the above algorithm.

To this end and to verify the results of the
previous section, a numerical example is also
performed in this section using the same input data
as in above-mentioned section. The results are 24
set of solutions that are in a very good agreement
with the ones in the previous section. Therefore,
the FPK problem is solved using polynomial
continuation and is verified that it has 24 solutions.

CONCLUSIONS

In this paper, the closed form solution for the
forward position kinematics of a parallel
manipulator with new architecture was derived
using dialytic elimination. Using the kinematics
constraints of the system and eliminating the
variables in two steps, a linear polynomial equation
in terms of one unknown, namely, closed form
solution was obtained. It was concluded from the
final equation that there were at most 24 solutions
for the FPK of the manipulator. One numerical
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example was also performed to show the above
procedure and to obtain all possible solutions as
well. The results obtained from this method were
verified using other method such as a numerical
method known as polynomial continuation. The
maximum number of solutions has been verified
using geometry approach.
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APPENDIX

The coefficients of Equations 9 are
a=-2abcos¢+h* +6ab+4b> —2bhsing+4a” —q;

B= —4\/§b(asin ¢ — hcos )

y=-2abcos¢+h* —6ab+4b> —2bhsing+4a* —q;
A==2abcosp+h* +6ab+4b> —2bhsing+4a* —q3
n= 4\/§b(a sing —hcos¢)

E=—2abcosp +h* —6ab+4b* —2bhsing +4a* —q;

The coefficients of first equation of Equations 11
are

S, =1

0, =4bsin¢

8, =4a”> +4b*> —8abcos¢ — g}

The second equation of set of Equations 11 is
given in Table 3 where k, = (a2 +b? )+ 6ab

and k, =4(a> +b?)-6ab .
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