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Abstract   The forward position kinematics (FPK) of a parallel manipulator with new architecture 
supposed to be used as a moving mechanism in a flight simulator project is discussed in this paper. 
The closed form solution for the FPK problem of the manipulator is first determined. It has, then, 
been shown that there are at most 24 solutions for FPK problem. This result has been verified by 
using other techniques such as geometric approach and a numerical method known as polynomial 
continuation. Numerical examples are performed to display all possible solutions available for the 
devised manipulator. 
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سينماتيك مستقيم موقعيت يك ربات موازي با طراحي جديد كه قرار است به عنوان مكانيزم متحرك                 چكيده      
ابتدا حل بسته براي سينماتيك     . ستشده ا  در اين مقاله بررسي    يك سيمولاتور پرواز مورد استفاده قرار گيرد       

اب براي حل مساله     جو بيست و چهار  ر  داكث كه ح  همستقم موقعيت اين ربات استخراج گرديده و نشان داده شد         
سپس صحت نتايج با روشهاي ديگر نظير روش هندسي و            . ردسينماتيك مستقيم موقعيت اين ربات وجود دا       

در انتها با اجراي مثالهاي عددي      . تته اس روش عددي معروف به ادامه چند جمله اي نيز مورد تاييد قرار گرف              
 .ه است موقعيت اين ربات نشان داده شدتمام جوابهاي ممكن براي حل سينماتيك مستقيم

 
 

INTRODUCTION 

Serial manipulators usually have some merits such 
as large workspace, dexterity for maneuvering in 
small spaces, ability for accessing to points at large 
distances and design simplicity. However, lack of 
rigidity because of cantilever structure, small 
payload capacity, operating inaccuracy and poor 
dynamical performance at high-speed operations 
are some drawbacks of serial manipulators. To 
overcome these drawbacks, an alternate type of 
manipulator, comprising kinematics loops, known 
as parallel manipulator has been proposed. The 
main advantages of parallel manipulators, as 
compared with their counterparts, are greater 
rigidity causing higher natural frequencies, 
homogeneous distribution of inertia, higher 
accuracy and higher load-carrying capacity [1]. 
The most important types of parallel manipulators 
are those with moving and fixed platforms 
connected by means of parallel legs [1-4]. Figure 1 

shows two examples of these types of parallel 
manipulators. 
     One of the main problems in the kinematics of 
parallel manipulators is analysis of forward 
position kinematics (FPK). The FPK solution 
comprises a system of nonlinear equations with 
many variables, which is a time consuming 
problem. The closed form solution for the problem 
and the upper limit of the number of solutions are 

 
Figure 1. Two examples of parallel manipulators. 
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the main important issues in the analysis of FPK. 
The closed form solution is usually a linear 
polynomial equation in terms of one unknown and 
can be defined as given input values for the 
devised manipulator, i.e., the leg lengths and its 
geometry, determine all possible configurations of 
the moving platform. There are other issues in 
kinematics analysis besides those mentioned 
investigations above, which are the subject of many 
[5-8]. 
     The closed form solution for the problem at 
hand has some advantages such as better insight to 
kinematic behavior of the system, determination of 
all possible configurations of moving platform for 
a given input and effect of input errors on output 
ones.  
     In this paper, the FPK of a parallel manipulator 
with a new architecture, which is supposed to be 
used as a moving mechanism in a flight simulator 
project, is determined first by using closed form 
solution. Up to here, dialytic elimination is used 
for FPK solution. By using this method, the 
kinematic constraint equations for the system at 
hand are written and then at each step, one of the 
unknowns is eliminated from the system of 
nonlinear equations to obtain the final polynomial 
equation with one unknown. Thereafter, solving 
this equation and back substituting to former 
system of equations, it is possible to determine all 
unknowns [2,10]. A numerical example is also 
performed by using dialytic elimination. The 
results are verified by using other methods such as 
geometry approach and a numerical method known 
as polynomial continuation. The kinematics of the 
manipulator is also studied at position, velocity and 
acceleration level without deriving the analytical 
solution of FPK of the system at hand [8]. 

CLOSED FORM SOLUTION 

The parallel manipulator devised is composed of 
moving platform (MP) and based platform (BP) 
that are connected to each other by means of four 
legs, as depicted in Figure 2. 
     Each leg contains two links coupled by a 
prismatic joint. The central leg is connected to MP 

by universal joint and fixed to BP. The system has 
three degrees of freedom  (DOF) and three linear 
actuators are connected to three circumferential 
legs. It may be noted that the central leg is an idle 
leg. More details about geometry of the 
manipulator and its merits as compared with 
conventional type like Stewart platform has been 
explained in References 8 and 9. The three 
independent DOF for the MP are heave h, i.e., 
vertical displacement along Z axis; roll φ , i.e., 
rotation of MP about x axis and pitch ψ , i.e., 
rotation of MP about y axis, as shown in Figure 2. 
     The kinematic constraint equations can be 
written to determine the closed form solution for 
the FPK of this manipulator. These equations can 
be expressed in terms of Cartesian space variables, 
i.e., h, φ  and ψ  with respect to joint space 
variables, i.e., the leg lengths iq  for i=1,2,3. With 
reference to Figure 2, the position vector of the 
upper endpoint of each leg with respect to lower 
endpoint can be expressed in reference frame 
attached to BP at its centroid O, i.e., 000 ZYX  as 
 

3,2,1==++−= iq iiiii eRrpul                 (1) 

where iu  is position vector of ia  with respect to 
O, ie  is the unit vector along ii Aa  and ir  is 
position vector of iA  with respect to M. 

 
 
Figure 2. Parallel manipulator with new architecture. 
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     The length of leg i, i.e., iq  can be obtained 
from Equation 1 as 
 

3,2,1)()(2 =++−++−== iq ii
T

iii
T
ii RrpuRrpull     (2) 

 
where R and p are the rotation matrix of MP with 
respect to BP and position vector of upper endpoint 
of central leg with respect to its lower endpoint, 
respectively. They are expressed in reference 
frame as 
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     Equation 2 contains three kinematics constraints 
written for legs one, two and three. For simplicity, 
it is assumed that the length of sides of MP and BP 
are blMP 32=  and alBP 32= , respectively. 
Here, a is one third of height of equilaterals 

321 aaa  and b is one third of that of 321 AAA . 
Moreover, it is noted that the endpoint 1A  of leg 1 
is moved on 00ZY  plane. Thus the position vectors 

iu  and ir  can be obtained as  
 

[ ] [ ]TT aaa 03020 21 −−== uu  

[ ]Taa 033 −=u                                         (4) 

[ ] [ ]TT bbb 03020 21 −−== rr  

[ ]Tbb 033 −=r                                          (5) 
 
where iu  is expressed in reference frame and ir  is 
expressed in frame xyz, i.e., moving coordinate 
frame attached to MP at its centroid M. 
     Substituting Equations 4 and 5 into Equation 2 
and expanding them, one obtains 
 

2
1

222 4sin4cos84 qbbhhaba =+++− φφ   (6) 
22 4cos2sinsin32cos64 babababa +−−− φψφψ  

2
2

2 sin2sincos32 qbhbhh =−++ φψφ       (7) 
22 4cos2sinsin32cos64 babababa +−+− φψφψ

2
3

2 sin2sincos32 qbhbhh =−−+ φψφ       (8) 

     Equations 6, 7 and 8 are three equations in 
terms of three unknowns h, φ  and ψ . It is readily 

known from above equations that if ∗h , ∗φ  and 
∗ψ  form a set of solution for the above equations 

then ∗− h , ∗−φ  and ∗−ψ  will also form a set of 
solution. This will be verified later in numerical 
example. Expressing the angle ψ  in terms of half 
angle ( )2tan ψ≡z , Equations 7 and 8 lead to  
 

02 =++ γβα zz  
                                                                        .    (9) 

02 =++ ξηλ zz  
 
     The coefficients of Equations 9 are functions of 
φ  and h and are defined in the Appendix. The 
resultant of these equations represents the 
condition under which the two equations have the 
same solution for z. This resultant can be 
determined under the condition that the 
determinant of Sylvester matrix of Equations 9 
vanishes, namely 

0det 1 =S                                                          (10) 
where 
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with the expansion of Equation 10, one leads to an 
equation that has unknowns φ  and h. Thus 
Equations 6 and 10 lead to two equations that are 
only functions of h and φ . Rearranging these two 
equations in terms of h and expanding the 
equations obtained, one can derive 

001
2

2 =++ δδδ hh                                         (11) 

001
2

2
3

3
4

4
5

5
6

6 =++++++ µµµµµµµ hhhhhh  
The coefficients are in terms of sinφ  and cosφ  
and other known quantities that are defined in the 
Appendix. Eliminating h from Equations 11, one 
can also obtain an equation in terms of only one 
unknown, namely, φ . 
     The resultant of Equations 11 is obtained upon 
vanishing the determinant of Sylvester matrix of 
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two equations as 
0det =S                                                            (12) 

where S is defined as 
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     Expressing the angle φ  in terms of half angle 
φ /2, i.e., ( )2tan φ=y , and substituting into 
Equation 12, after expansion and simplification, a 
polynomial equation of order of 24 with respect to 
y will be obtained with at most 24 real or complex 
solutions for y. The angle φ  is bound to the 
interval πφπ ≤≤−  and thus it is uniquely 
obtained by ( )2tan φ=y . Moreover, after 
determining φ , Equations 11 will have two parts 
with one unknown, h, which can be determined by 
vanishing the first order greatest common divisor 
(GCD) of the equations. After substituting the 
values of φ  and h into Equations 9, these 
equations will be a set of two equations in terms of 
only one unknown z and they have only one 
common solution for z that can be determined upon 
vanishing the first order GCD of these equations. 
Thus, it is shown that for each value of y, there is 
only one unique solution for φ , h and ψ . It may 
be noted that the GCD of equations in each of the 
two above-mentioned steps is proved to be of the 
first order [9]. FPK problem of the manipulator 
devised has, therefore, at most 24 real and complex 
solutions. 
 
Numerical Example   In the manipulator 
devised, using inverse position kinematics for 
given values of h, φ  and ψ , with known 
geometry, it is possible to determine unique 
solution for 1q , 2q  and 3q . These values are used 

as input for FPK problem to obtain 24 set of 
solutions. The geometrical parameters for the 
manipulator are as follows: mlBP 2=  and 

mlMP 1=  which leads to ma
3

1=  and 

mb
32

1= . Moreover, using the following values 

for the Cartesian space variables: h=1m, 

rad
6
πφ −=  and rad

6
πψ −=  and solving the 

inverse position kinematics, one obtains 
 

mqmqmq 5420.1;1060.1;9667.0 321 ===  (13) 
     Now, having a and b as well as 1q , 2q  and 3q  
from above equation as input data for FPK and 
using the method explained in this section, it is 
possible to obtain th24  order polynomial equation. 
The solution of this equation leads to 24 sets of 
solutions; twelve sets of them are shown in Table 1 
and the other twelve sets are the negatives of the 
former. It may be noted that there are real and 
complex solutions which are depicted in Table 1. 
Each parenthesis in each column of Table 1 
consists of the real and imaginary  parts of the 
solution. 
 

DISCUSSION 
The following conclusions can be obtained from 
the results of the numerical examples described in 
the previous section: 
I- The th24  set of the solution that is negative of 
the first set is the same as the input for the 
problem. 
II- The solutions verify that if ∗h , ∗φ  and ∗ψ  is a 

set of solution, then ∗− h , ∗−φ  and ∗−ψ  is also 
a set of solution. Therefore, for 2m ( 12≤m ) real 
set of solutions, there are m configurations under 
which MP is above BP and the other m 
configurations are the ones that MP is under BP. In 
other words, the former is the mirror image of the 
latter. 
III- All solutions are verified by substituting into 
kinematics constraint equations, namely, Equations 
6, 7 and 8. Therefore, there are no spurious 
solutions. 
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TABLE 1. Twelve FPK Solutions of Numerical Example. 

 

No. h(m) ( )2tan φ=y  ( )2tan ψ=z  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

(-1.0000,0) 
(-0.8934,-1.1049) 
(-0.8934,1.1049) 
(-0.7575,0.8231) 
(-0.7575,-0.8231) 

(-0.7454,0) 
(-0.3597,-0.5887) 
(-0.3597,0.5887) 

(-0.6785,0) 
(-0.1567,0) 
(0,-1.2582) 
(0,-1.0882) 

 
 (0.2679,0) 

 (1.2952,-0.5902) 
 (1.2952,0.5902) 
 (1.1511,0.2327) 
 (1.1511,-0.2327) 

 (0.6823,0) 
 (-0.3222,0.4123) 
 (-0.3222,-0.4123) 

 (-0.07967,0) 
 (0.6190,0) 
 (0,5.1429) 
 (0,1.5123) 

 

 (0.2679,0) 
 (-0.3630,0.9320) 
 (-0.3623,-0.9320) 
 (0.4761,0.8092) 
 (0.4761,-0.8092) 

 (0.4193,0) 
 (-1.5896,4.1832) 
 (-1.5896,-4.1832) 

 (1.0669,0) 
 (1.1960,0) 
 (0,-5.6852) 
 (0,0.0694) 

 

  
Figure 3. Four configurations of manipulator. 

IV- The number of real solutions for the given 
parameters in this example is eight, which is the 
number of different configurations of the 
manipulator. Four configurations where MP is 
above BP are depicted in Figure 3. It may be noted 
that it is possible to obtain up to 16 real solutions 
using different parameters. 

GEOMETRICAL APPROACH 

In this section, the maximum number of solutions 
for FPK of the manipulator devised is studied 
using synthetic geometry and the method explained 

 
Figure 4. A kinematics connection between frame f and 
moveable body m with feather of 24 and circularity of 12 
(with courtesy of Reference 6). 
 
in Reference 6. With reference to the manipulator 
shown in Figure 2, it is readily known that joint 1A  
is located always in 00ZY  plane. Thus, joint 1a  
can be considered revolute in equivalent mechanism. 
Now assume the manipulator is separated at point M, 
i.e., the endpoint of central leg and compare it with 
Figure 11(c) of Reference 6, which is depicted 
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again in Figure 4. 
     Comparing these two mechanisms, it is found 
that they are the same and thus the point M of MP 
develops a surface in reference frame with the 
order of 24 and circularity of 12. On the other 
hand, the endpoint of central leg M is moved on a 
vertical line of reference frame. This line is a first order 
curve with circularity zero. Therefore, regarding to 
continuity of the manipulator and referring to Bezout 
theorem illustrated in Reference 6, maximum number 
of common real point between the former curve 
and the latter surface is determined to be as 

2401221242 2121 =××−×=− ppnn         (14) 
where in  and ip  are the order and circularity of 
surface i, respectively. Thus, the feather of the 
manipulator is 24 and maximum number of different 
configurations for the system is determined to be 24. 

POLYNOMIAL CONTINUATION 

As it is shown in the previous section, the FPK 
problem leads to a system of nonlinear multivariable 
equations. Here, polynomial continuation, which is a 
numerical technique, is used to solve the FPK 
problem of the manipulator devised [7]. Then it is 
shown that there are at most 24 solutions for the 
FPK problem.  
     Assuming sinφ =x, cosφ =y, sinψ =m, and 
cosψ =n, the kinematics constraints, namely, 
Equations 6, 7 and 8 can be simplified in light of 
the two constraints dictated to the system because 
of the above relations as 
 

04484 2
1

222 =−+++− qbhxhbabya  

abyabxmbabna 232464 22 −−+−  

0232 2
2

2 =−−++ qbhxbhymh  

abyabxmbabna 232464 22 −++−           (15) 

0232 2
3

2 =−−−+ qbhxbhymh  

122 =+ yx  

122 =+ nm  
 
     Substituting 2h  from the first equation of set of 
Equations 15 into the second and third ones and 
rearranging the result thus obtained leads to 

04484 2
1

222 =−+++− qbhxhbabya  

hbxabyabxmabn 66326 −+−−  

032 2
2

2
1 =−++ qqbhym  

hbxabyabxmabn 66326 −++−                 (16) 

032 2
3

2
1 =−+− qqbhym  

122 =+ yx  
122 =+ nm  

 
Upper Limit for Number of Solutions   The 
first step is to obtain a distribution for variables of 
Equations 16 leading to a number, as small as 
possible, known as multihomogeneous Bezout 
number (MBN). The MBN is the upper bound on 
the number of finite solutions to the system of 
Equations 16. For obtaining MBN, variables are 
classified into three groups, namely, 

{ } { } { }nmIIIyxIIhI ,;,; ===      (17) 
     The order of each equation of the system of the 
Equations 16 versus the variables group, i.e., 
Equation 17 is shown in Table 2.  
     The MBN can be determined by forming a 
polynomial ( )∏ ∑= =

∗ =
pi qj jijda

,,1 ,,1L L
α  using 

the data given in Table 2. Here, p=5 and q=3 are 
the number of equations and number of variable 
groups for the system of equations of this 
manipulator, respectively. Moreover, ijd  is the 
rank of equation i in terms of variable group j that 
is obtained in the light of Table 2. The number of 

jα  is equal to q, i.e., the number of variable 

groups. Thus ∗a  can be obtained as  
( )( ) ( )( )32

2
32121 222 ααααααα +++=∗a        (18) 

 
The coefficient of the term ( )∏ = 3,2,1j

m
j

jα  in ∗a  

is MBN. Here, jm
jα  is a dummy variable as 

defined in ∗a  and jm  is the number of variables 

in group j. This term is obtained by expanding ∗a , 
in the light of Equation 18, which is equal to 

2
3

2
2124 ααα .  The coefficient of this term is 24 and 

thus the upper bound on the number of solution to 
the system of Equations 16 is 24.  
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TABLE 2. The Order of the System of Equations 16 Versus the Variables Group. 
 

Group 1st 
equation 

2nd 
equation 

3rd 
equation 

4th 
equation 

5th 
equation 

 
I 
 

II 
 

III 
 

 
2 
 
1 
 
0 
 

1 
 
1 
 
1 

1 
 

1 
 

1 

0 
 

2 
 

0 

 
0 
 

0 
 

2 
 

 
 
All Solutions A start system is introduced to 
calculate all solutions for the system of Equations 
16. The characteristics of the start system have 
been mentioned in Reference 7. To begin solving 
the system devised, let’s start with the following 
equations: 
 
( )( )( ) 05133.41125 =−−−+−− iyihih  
( )( )( ) 02310030710 =+−++++ iniyih  
( )( )( ) 092204034.0 =−++−+− iniyih    (19) 

012 =−x  
012 =−m  

 
     The above set of polynomial equations has the 
same structure as the main system, i.e., Equations 
16.  
     These equations have been chosen such that 
their solutions are distinct and easy to obtain. The 
numbers used in Equations 16 are selected 
arbitrary such that these equations satisfy all 
required conditions and have exactly 24 solutions 
[9]. Next, using the homotopy as follows makes 
the transformation of the coefficients of the start 
system into main system: 
 

5,,1)()()1()( L=+−= iftfcttH mainistartiii (20) 
 
Where ic  is arbitrary constants chosen as 

icicic 719,2513,320 321 +=+−=+=  

icic 5.833,1.1122 54 −−=−=                   (21) 

startif )(  and mainif )(  are the thi  equations of 
start and main system, respectively. 

     Equation 20 is solved by using Newton's 
Raphson method 24 times for each set of solution 
of start system at t=0 while t is varied from zero to 
one in the incremental steps. At each incremental 
step, the solution of the first step is used as initial 
condition for the next step. This method is leading 
to the final solution of equations of the main 
system, i.e. Equations 16. It is only sufficient to 
show that there exists one set of input values in 
which 24 distinct solutions are obtained by 
executing the above algorithm. 
     To this end and to verify the results of the 
previous section, a numerical example is also 
performed in this section using the same input data 
as in above-mentioned section. The results are 24 
set of solutions that are in a very good agreement 
with the ones in the previous section. Therefore, 
the FPK problem is solved using polynomial 
continuation and is verified that it has 24 solutions. 

CONCLUSIONS 

In this paper, the closed form solution for the 
forward position kinematics of a parallel 
manipulator with new architecture was derived 
using dialytic elimination. Using the kinematics 
constraints of the system and eliminating the 
variables in two steps, a linear polynomial equation 
in terms of one unknown, namely, closed form 
solution was obtained.  It was concluded from the 
final equation that there were at most 24 solutions 
for the FPK of the manipulator. One numerical 
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example was also performed to show the above 
procedure and to obtain all possible solutions as 
well. The results obtained from this method were 
verified using other method such as a numerical 
method known as polynomial continuation. The 
maximum number of solutions has been verified 
using geometry approach. 
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APPENDIX 

The coefficients of Equations 9 are 
2
2

222 4sin246cos2 qabhbabhab −+−+++−= φφα
( )φφβ cossin34 hab −−=  

2
2

222 4sin246cos2 qabhbabhab −+−+−+−= φφγ
2
3

222 4sin246cos2 qabhbabhab −+−+++−= φφλ
( )φφη cossin34 hab −=  

2
3

222 4sin246cos2 qabhbabhab −+−+−+−= φφξ
The coefficients of first equation of Equations 11 
are 

12 =δ  
φδ sin41 b=  

2
1

22
0 cos844 qabba −−+= φδ  

The second equation of set of Equations 11 is 
given in Table 3 where ( ) abbak 64 22

1 ++=  

and ( ) abbak 64 22
1 −+= . 
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