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Abstract   The capability of multilevel input ring-TCM coding scheme for generating high-rate 
codes with improved symbol Hamming and squared Euclidean distances is demonstrated. The 
existence of uniform codes and the decoder complexity are also considered. 
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هاي متفاوتي از اعداد     عناصر حلقه كد  هاي ورودي و خروجي       حلقوي وقتي سمبل   TCMار  گذ كد...دهچكي
هاي با نرخ بالا با        باشند داراي خواص جالبي است كه يكي از آنها قابليت توليد كد                 Zqو Zp لا ث صحيح م 
ذار مناسب براي توليد كد با نرخ       گطراحي كد   چگونگي  در اين مقاله    . باشد  محاسباتي قابل قبول مي    پيچيدگي

ـي كه به اين    يها كد. مقايسه شده است  دوتايي   با كد هاي مشابه       محاسباتي كد بردار   پيچيدگيـه و   ئدلخواه ارا 
 محاسباتي كمتري دارند، مشخصات بهتري را براي كاربرد در           پيچيدگيشوند علاوه بر اينكه      روش طراحي مي  

 .دهند  نشان ميگوسي و فيدينگكانالهاي 
 

INTRODUCTION 
Modulo-p input, modulo-q output ring-TCM codes, 
where p and q are powers of two, were originally 
proposed by the author as an efficient coding 
scheme for fading channels [1,2]. In this scheme 
by selecting p, q, and v (the number of memory 
cells) for a given k and n, the condition of avoiding 
parallel trellis transitions is satisfied. Then, by a 
computer search program, the best codes with 
maximum diversity factor, L, and maximum product 
squared Euclidean distance, PSED, which are the 
most important parameters for designing codes for 
fading channels applications [3], are found. In this 
paper we show the capability of a special version 
of these codes for generating high-rate codes with 
reasonable decoder complexity. 

 
 

HIGH-RATE TRELLIS CODES 

High-rate, or low-redundancy convolutional codes 
are of interest for bandwidth-constrained applications. 
The trellis diagram corresponding to such an 
encoder would have a lot of branches departing 
and entering each state and a complex Viterbi 
decoder. High-rate binary convolutional codes are 
tailored by puncturing a low-rate code, called the 

parent code [4-6]. High-rate TCM codes are obtained 
by adding uncoded bits to a low-rate good code [7] 
as shown in Figure 1. This results in parallel trellis 
transitions which reduces L and d2

free, the symbol 
Hamming and squared Euclidean distances, respectively. 
This paper introduces an alternative approach to 
these methods. 

 

Figure 1. Obtaining rate 3/4 and 5/6 TCM codes from a lower 
rate code. 
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Figure 2. Modulo-p input, modulo-q output encoder. 

 
MULTILEVEL INPUT, Q-ARY OUTPUT 

CODES 

Consider the multilevel systematic convolutional 
encoder (MCE) shown in Figure 2, where input 
and output symbols are elements of modulo-p and 
modulo-q rings of integers, respectively, and 
additions and multiplications are performed in Zq. 
     Non-systematic codes do not require p to be a 
power of two or even a non-prime integer. Also for 
k > 1 it is not necessary that all input symbols 
belong to the same set of integers. An example is 
designed in Figure 3, where symbols from GF(3) 
and GF(5) are encoded to generate two symbols 
from Z16. 
     The rate of this code is Rc = (log1615)/2 = 0.488 
and the system is capable of transmitting (log23 + 
log25) Rc = 1.908 bits per symbol. The closest 
uncoded scheme to be compared with is QPSK, 
which transmits 2 bits per symbol. The number of 
branches entering or leaving any node in its 16-
state trellis diagram is 31 x 51 = 15. In Figure 4 
dashed lines indicate the absence of one transition 
from each state. The shortest error event path is 
S0S7S3S0 with d2

free = 5.854 and L = 5. Denoting 
the set of 15 vectors corresponding to states S0, S1, 
and S2, by ϕ0 , ϕ1 , and ϕ2 , respectively, it is seen 
that all sets corresponding to other states are their 
cossets. Therefore, existence of uniform codes 
from this class may be assessed. 
     To obtain codes with larger L and PSED, it 
is customary to expand space the state of a  

 
Figure 3. A non-systematic encoder with inputs from different 
sets of integers. 
 
 

 

Figure. 4. Trellis diagram of the encoder shown in Figure. 3, 
only forbidden transitions are sketched. 

 
code by powers of two. One advantage of this 
method is the capability of increasing L without 
doubling the number of encoder’s state. Hence, 
there would be a wide range of possible trellis 
diagrams from one with parallel transitions to 
a fully connected one and from the latter to a 
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Figure 5. A semi-systematic encoder with inputs from 
different sets of integers. 

half-connected one. The next example is a 
semi-systematic code shown in Figure 5. 
      By selecting a2 from GF(3) instead of Z4, only 
12 branches would inter or leave any node in its 
16-state trellis diagram. In Figure 6 only 
transitions, which are deleted by this technique, 
are represented. This modification results in an 
improvement in the code parameters compared to 
the other 16-state codes with fully connected trellis 
or parallel transitions as summarized in Table 1. 
     Table 1 compares some possible ways to 
construct a 16-state encoder, where the number of 
branches, nbr,, is so designed as to be equal or 
less than the number of states, nst and r indicates 
 

Figure 6. Trellis diagram of ring code (12)(32)(11)/12;only 
deleted transitions from a fully connected trellis are plotted. 

the throughput of the system. 
     Ring-TCM codes are defined in this table by 
their corresponding coefficients as: 
g g g g g g g g g f f fk k k

ν ν ν ν ν ν ν ν
1 2

1
1

1
2

1 0
1

0
2

0 1 1K K K K K− − − −/ . Since the 
second and third codes have a fully connected 

  
TABLE 1. Some Possible Schemes for Constructing 16-State Codes. 

 

   No.       Code Scheme      Rc  nst nbr L d2
free  r PSED C 

    1   00 00 05 07 Ungerboeck [7] 0.75 16  8 1 1.628 2.25  8.25 

    2    (21)(13)/10 Z4 to Z16 0.5 16 16 4 6.15 2 8.9 8.55 

    3    (69)(13)/14 Z4 to Z16 0.5 16 16 6 5.4 2 3.58 8.55 

    4     (26)(14)/7 GF(2) & Z8 to Z16 0.5 16 16 4 5.08 2 5.89 8.55 

    5     (21)(54)/3 GF(3) & GF(5) to Z16 0488 16 15 5 5.854 1.9 5.4 8.46 

    6 (12)(32)(11)/12 GF(3) & Z4 to Z4 0.896 16 12 3 6.0 3.2 8.0 8.13 

    7 (23)(13)(22)/11 GF(3) to Z4 0.792 16 9 2 8.0 2.5 16.0 7.7 

+ + +

a GF2 3∈ ( )

a Z1 4∈ x Z1 4∈

x Z2 4∈
2 1 2 3 1 1
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13

14

15

{00, 10, 20, 30, 31, 11, 02, 12, 22, 32, 23, 03}

{23, 03, 00, 10, 20, 30, 31, 11, 02, 12, 22, 32}

{02, 12, 22, 32, 23, 03, 00, 10, 20, 30, 31, 11}

{31, 11, 02, 12, 22, 32, 23, 03, 00, 10, 20, 30}

{33, 03, 13, 23, 20, 00, 31, 01, 11, 21, 12, 32}

{12, 32, 33, 03, 13, 23, 20, 00, 31, 01, 11, 21}

{31, 01, 11, 21, 12, 32, 33, 03, 13, 23, 20, 00}

{20, 00, 31, 01, 11, 21, 12, 32, 33, 03, 13, 23}

{22, 32,02, 12, 13, 33, 20, 30, 00, 10, 01, 21}

{01, 21, 22, 32,02, 12, 13, 33, 20, 30, 00, 10}

{13, 33, 20, 30, 00, 10, 01, 21, 22, 32,02, 12}

{20, 30, 00, 10, 01, 21, 22, 32,02, 12, 13, 33}

{11, 21, 31, 01, 02, 22, 13, 23, 33, 03, 30, 10}

{30, 10, 11, 21, 31, 01, 02, 22, 13, 23, 33, 03}

{13, 23, 33, 03, 30, 10, 11, 21, 31, 01, 02, 22}

{02, 22, 13, 23, 33, 03, 30, 10, 11, 21, 31, 01}
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TABLE 2. Possible Solutions for m and n for Bit-to-Symbol Conversion. 
 
 
 
 
 
 
 
trellis their trellis diagrams are not plotted. The 
encoder of the last code in this table is similar to 
Figure 5 with the exception that x1is obtained by 
combining a1 and a2. Now, 7 out of 16 branches 
are removed and results in a longer error event 
path. 
     Because the total number of branches in not 
always divisible by the number of states, the trellis 
diagram would be non-homogeneous in the sense 
of lacking some transitions in a stage. Notice that 
this differs from the case in which different number 
of branches leave or enter each state [8]. This 
virtue can cause a longer error event path, which is 
desirable. 
     Another advantage of this method is the 
possibility of constructing codes with any rate of 
interest; e.g., (log ) / , (log ) / ,2 26 3 9 4 L . The sixth 
and seventh codes of Table 1 are good competitors 
for the Ungerboeck code. Since the information 
sequence is normally a binary stream, this 
scheme requires a binary to multilevel 
conversion. When pi (i = 1, 2, ..., k) are not 
powers of two, the number of symbols generated 
by this converter does not match the number of 
bits in the data stream. Because all information 
bits should be converted to the ring symbols 
without any loss, the closest integers m and n to 
satisfy the inequality 2m

i
n

i

p≤ ∑  offer the 

conversion strategy. For the first example we 

have 2 3 5
15
2

3 9m n n m
n

≤ × ⇒ ≤ =
log
log

. . The nearest 

solutions for m and n are given it in Table 2. 

     By selecting n = 2 and m = 7 the converter is 
delivered blocks of 7 bits and generates 2 symbols 
belonging to GF(3) and 2 symbols belonging to 

GF(5) but only 27 = 128 out of these 32x52 = 225 
possible combinations are enough to convey the 
information and the remaining 97 are not used. Such 
a multilevel source is not uniform since the 
probability of generating symbols is not the same in 
all cases. As the length of the binary blocks is 
increased, the conversion will be more efficient. 
     The price of this accurate bit-to-symbol conversion 
is an increase in the memory of the converter. It is 
seen that binary blocks of length 39 can be 
converted into blocks consisting of ten GF(3) and 
ten GF(5) symbols, which can be sent with equal 
probability. 

DECODER COMPLEXITY 

When the Viterbi decoder is designed for ring-
TCM codes, the trellis branches are labeled by 
elements of a ring rather than bits. Also, the 
number of branches originating from each node of 
the trellis and therefore, the number of path 
metrics to be compared at each step will be 
increased by a factor of (p/2)k compared to a 
binary TCM with the same k and nst. 

     The computation consists of adding the accumulated 
metrics to the branch weight, comparing the 
resulting metrics, and selecting the lowest ones as 
the new state metrics. We use the complexity 
measure defined in [9] as: C = log2(CPBM + CACS), 
where CPBM and CACS are the complexities of 
computing the parallel branch metrics and add, 
compare, select units, respectively. The total 
number of branches at each stage is: nst.pk. Since 
each branch is labeled by n-tuple symbols, the 

n 1 2 3 4 5 6 7 8 9 10 
m 3 7 11 15 19 23 27 31 35 39 

m/n 3.0 3.5 3.67 3.75 3.8 3.83 3.857 3.875 3.889 3.9 
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number of additions and comparisons required to 
determine the branch metrics are nadd = n.nst.pk, 
and ncomp = nst(pk – 1). In order to compare the 
complexity of codes with different dimensions, the 
number of overall computations is normalized to 
two-dimensional case. Therefore, the normalized 
complexity of the decoder in the absence of 
parallel transitions is given by: C = log2CACS = 
log2{nst[(n + 1)pk – 1]/n}. The decoder 
complexities of sample codes are given in the last 
column of Table 1 for comparison. Not only the 
sixth and seventh codes obtain better parameters, 
they are also less complex than their binary 
counterpart. 

CONCLUSIONS 

h Multilevel input ring-TCM coding scheme, 
apart from advantages of modulo-p input, 
modulo-q output ring-TCM codes could 
generate high-rate codes with larger L and 
PSED. 

h Because of lacking parallel trellis transitions 
these codes are less complex than their 2-
dimensional TCM counterparts with parallel 
transitions. 

h Uniform codes from this class exist. 

LIST OF SYMBOLS AND ABBREVIATIONS 

TCM Trellis Coded Modulation 
GF(q) Field of integers modulo-q 
Zq Ring of integers modulo-q 
Rc = k/n Rate of a code with k input and n 

output symbols 
v Number of memory cells in a 

convolutional encoder 
L Diversity factor, the symbol 

Hamming distance 
PSED Product Squared Euclidean Distance 

d2
free Squared Euclidean distance 

MCE Multilevel Convolutional Encoder 
nst Number of state in a trellis code 
nbr Number of branches in a trellis 

code 
r Throughput, the number of 

information bits in a transmitted 
symbol 

C Computational complexity 
CPBM Complexity of Parallel Branch 

Metric unit in the Viterbi decoder 
CACS Complexity of Add, Compare, 

Select unit in the Viterbi decoder 
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