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Abstract Singular systems have been studied extensively during the last two decades due to
their many practical applications. Such systems possess numerous properties not shared by the
well-known state variable systems. This paper considers the linear tracking problem for the
continuous-time singular systems. The Hamilton-Jacobi theory is used in order to compute the
optimal control and associated trajectory. Two methods are presented for solving these
trajectories. The first method uses the concept of the Drazin inverse, and the second involves
the derivation and solution of a Riccati equation. Similar to the linear regulator problem,

necessary and sufficient conditions for existence and uniqueness of a solution are stated.
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INTRODUCTION

Consider the system of the form:

E X3(t) = A x(t) + Bu(t) x(tU) =X (D

where E, A and B are constant matrices. If VEV4
= 0 then the system described by Equation 1 is
called a singular system [1], degenerate system
[2], generalized state space system [3],
descriptor system [4], or semi-state system [5].
Systems which satisfy these properties can
consist of both static and dynamic equations and

need not be causal. These types of systems
appear in many practical applications such as
robotics, optimal control, electrical networks,
economics, large scale interconnected systems,
biology, power systems, neural delay systems,
and aircraft dynamics with algebraic constraints.
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It has taken considerable effort to extend the
theories available for state variables to singular
systems. The problem of deriving a
continuous-time singular system from some
initial state to a desired final state has been
discussed in [1,2,7,8]. In [9,10,24] the pole
placement of the singular systems has been
investigated. In the area of optimal control, the
linear singular regulator problem has been
consideredin [11,12] for the discrete-time case
and in [2,6,13-19] for the continuous-time case.
By using state feedback, the generalized Riccati
equation for both time-invariant and
time-varying cases has been obtained [20,21]. It
was shown that for the case YRY4UO0, the
Riccati equation is symmetric (where R is the
conventional quadratic weighting matrix), but
where YRY4=0, the Riccati matrix P will not be
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symmetric. Necessary and sufficient conditions
for the existence and uniqueness of a solution
have also been derived.

Our goal in this paper is to take some steps
towards generalization of linear regulator
problem, namely linear tracking problem for
singular systems. In this case, we wish to find
the control that causes the output to track a
desired output state, G(t). For this, we wish to
find the control which minimizes a performance
index, J. In section II we describe the
formulation ofthe linear tracking problem for
the singular systems. In addition, the
Hamilton-Jacobitheoryis applied in order to
compute the optimal control and associated
trajectory. Section III is devoted to the solution
of these trajectories by two methods (namely
direct and Riccatiapproaches). The condition
for existence and uniqueness of a solution is
also given.

FORMULATION OF THE PROBLEM

In this section, we extend the results obtained
for the linear regulator problem [6] to the
tracking problem; that is, the desired value of
the state vector is not the origin. Given that:
EX(t) = A x() + Bu®) + w()
(2a)

z(t) = C x(t)
where w(t) is a deterministic input or plant
noise, the matrix E is singular, with x erR",
ueR™ weR", zeR". Additionally, we assume
that the matrix (sE-A) has a non-zero
determinant for some value of s. This
conditions, ensures that for appropriate initial
conditions, Equation 2a possesses a unique
solution [1] (namely it is tractable).

We wish to find the control which minimises
the performance index,

J= % [G(t) - #(t)]" E' SE[G(t) - «(t)] + %
B[ GW -2+ Tum” i lde @b

where G(t) is the desired output state vector. S,
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Q, R are symmetric matrices and at least
positive semi-definite (p.s.d.). The final time t is
fixed, x(tf) is free and the states and controls are
not bounded. The Hamilton is as follows:

1 - 1

H[x(t), u(®), 1), t] = G(t) - Z(t) ~ 2Q+ -

u®) "+ 1O [AX® + Bu® + wo] G)

By using the calculus of variation and
following the same approach as we did for the
regulator problem [6], we obtain:

= 316 - 21" ET SEIG, - 20)] +
BY G(t) - 2(t) 2

Wt

~u(h) ; + 1'(t) [Ax(D)

»‘,U )
+ Bu(t) + w(t) - Ex’(t)] dt (4)
With some manipulation we have the
following:
AH _ T 1) + Ru() = 0 (5a)
Au
] /ZH ET % E" 1% = - " Qox) -
X
AT I + ¢ Q G (5b)
%ﬁi = ey Exd® = Ax(®) + Bu( +
w(t) (5¢)
or
£E00I3£ (t)DE A 0 BbP
U o o T T o]
no B’ onn I(t)g ,gc QC -A 0 o
Y0 0 0o¥ o ¥ 0 B"R @
£ x(t b £1 0 ob
g )I((t) n+n 0o c’ Og gw(t)g ®)]
g '® Q o ¥G(t) g
¥ u(t) ﬂ ‘¥ 0 0 09
With the initial and terminal condition,
x(t) = %, M) = C'E' SE [Cx(t) -
E(t)] (6)

SOLUTIONS

The above non-homogeneous equation can be
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solved by two methods.

Method 1 (direct approach) - Assuming %2R
1,00, we find that u(t) = -R'BTI(t). By
substituting for u(t) in (5), we obtain the
following:

£E 0 peltnp £ A BR'BTP

oo o] o] o]

IJIJ U o= Qg T T o]

¥0 E'g¥llg ¥-c'QC -AT @
£Ex(tp £1 0PE w(t) P
o] o] o] og o]

(7a)

o] o+ Q T je]e] o]
¥lH)g ¥0 C Qo¥G(t) o

Comparing with the regulator problem, we
also have a forcing part whereas we had a
homogeneous equation in the previous case.
The above equation can be written as follows:
EX ()= AX () + B ). (7b)

Assuming the function f(t) is k-times
continuouslydifferentiable around initial time,
t, we can state the necessary and sufficient
conditions for the existence and uniqueness of
solution for tracking problem in terms of the
solution of original singular system. Being
k-times differentiable is due to the solution of
the singular system which is:

I I Y
D D, iD
AN

x(t) = of Aty EAx(t-t)+ ek A0

t AN ; i/\ ’f/\ A ’f/\
Re AS'E'B f(s) ds-(I-EED)

il

k1, P ‘wDA

s (E A)AB fi(t) (8)
where

(*)= (1 E -A)" () for some I, k is the index
of Matrix E, (.)D is the Drazin inverse and f(t)
refers to the ith derivative.

Theorem 1 - Assuming f(t) is k-times
continuously differentiable around tg, with
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consistent initial condition, the
non-homogeneous Equation 7b is tractable
(regular) iffthe original singular Equation 1 is

tractable.

Proof - By some manipulation we can easily
obtain:

15T

sE-A  BR'B
— §(E+A) '8

T o T, o T
CQC WlisE +A

8SE-A8 . 81-BR'B' sE+A) T T Q C
(sE-A) '8 (9)

For simplicity let us write the above equation
as follows:
D=D D_D

123

Only if Part - It is easily seen that DUO (by
[1] it means Equation 7b has a unique solution)
implies DIUO, (that is Equation 1 has a unique
solution).

If Part- D UO 1rnp11es D UO and since
D Uo, therefore DUO, which glves the result.

Remark 1 - For the case YR%s= 0 we cannot
find u directly from Equation 5a. Thus we
should solve the non-homogeneous Equation 5
directly as a singular system (see [1]).

Method 2 (Riccati approach) -

Case 1 - YR Y%U 0: Forderiving Riccati
equation we assume

I(t) = P(t) Ex(t) - L(t) (10)
Then

't = PYt) Ex) + P ExYp) - L't (1)

and ] ]

ET %t =E T PYt) Ext) + ET Pty ExYt) - BT

LYo (12)
By a procedure similar to that of the singular

regulator problem, we obtain the following

equation:

E" Pl E+ ETP®) A+ cTQ C+ AT P(y)
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E+ E' P(t) BR™ B" P(t) E] x(t) +
E" Pt) BR' BT Lty + ET P(t) w(t) - ET Lt

“ATL@®) -CcTQGm] =0 (13)

Since Equation 13 holds for all non-zero x(t),
the term premultiplying x(t) and second term
must be zero. Therefore, we have the following
two sets of equations:

E"plty E+ ETPt) A+ ATP@®) E -E" P(t)
BR'BTPH E+ CTQC=0

P(t) E= C' E' SEC (14)
and

E" LYt + AT L) - ET pt) BR” B" L(t) - E”
P(t) w(t) + C' Q G(t) =

L(t)= C' E' SEG(t) (15)

Thus, we need to solve a generalized Riccati
Equation 14 for p(t) and singular Equation 15
for L(t) in order to compute lI(t). The optimum
control law is obtained from Equations 5a and
10. That is, we have:

ut) = R'BT 1) = R BT [P(t) Ex(t) - L))

In [6] different methods for solving similar
Riccati equations have been shown and
necessary and sufficient conditions for existence
and uniqueness ofa solution have been stated,
so details of the derivation are omitted.

Theorem 2 - The Riccati Equation 14 is
regular iff the system Equation 1 is regular.

Proof - The result is analogous to the
derivation of the regulator case in [6].

Theorem 3 - The system Equation 2 has a
unique solution if the generalized Riccati
Equation 14 and the singular system Equation
15 are regular.

Proof - Having Riccati Equation 14 and
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Equation 15 regular we can calculate P(t) and
L(t). Therefore:

ut) = -R BT [P(t) Ex(t) - L(t)]
can be considered.

Example - Given the singular system described

by
gl Ogu(t) £1 ln( +§05 (t
Y0 0g Yo 25 W*g 50

z(t) = [1 0] x(t)

we would like to minimize the cost function
_ 1 T o b
= §G(tf) -ty E'SE 8G(t) - 2(t) o

1 tfﬁ

7 ¥ G(t) - z(t) + u(t)” 2B dt

rd
where q and r are scalars. For the case S=0, we
will have the following.

We first use Equation 14 to obtain Riccati
equation for the above system. So we have

R

P’ (®) - 2p, () - =0 p,()=0

p,,(®-2p () = p,t) =10

If we allow ¢ to become infinite (t = E) we
obtain the following solutions

_ q
p11—4r 1+E—4r
L
P ™ 5 Py

where P =i Py P
i&;n ;o B
Now, we use Equation 15 to obtain L(t). Thus
lm-lm-——uo+qém
Il(t) - 212(t) =

For t. being very large, we obtain
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Figure 1. Optimal control.
@) = ©OSOO q 6(y
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After determining P and L(t), the optimal
control will be as following:

T
w15 E L 9F0-to)

1 -We first consider G(t) to be a step function.
Figures 1 and 2 show the optimal control and
corresponding output where r=1 and q= 1000
and x(0)=0.

2 -Now, consider G(t) be a sinusoidal function.
Figures 3 and 4 show the optimal control and
corresponding output for =1 and q=10, which
in this case, the output of system does not
follow the desired trajectory. However by
choosingr= 0.1 and q= 1000, the output follow
the desired trajectory. Figures 5 and 6 show the
optimal control and associated output for this
choice.

Lemma 1 - The system Equation 2 has a
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Figure 3. Optimal control.

Figure 4. System output.
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Figure 5. Optimal control.

unique solution if singular systems 1, and 15 are
regular.

Proof - Combining theorems 2 and 3 gives the
result.

Assuming the matrix P is constant, the
following theorem is immediate.

Theorem 4 - System Equation 15 has a unique
solution iff there exists a scalar s such that the
following matrix is invertible:

sE"+ AT-ET PBR' B)) (16)

Proof - By [1], Equation 15 has a unique
solution subject to an appropriate initial
condition (regular) if vsE'+ AT-ET PBR"
B v Uo.

Case 2 - VuR V4= 0

In this case we cannot find u(t) in terms of I(t).
However, similar to the regulator case by
choosing:

u® = P I(t) + P_x(1) (17)
and substituting for u in processes of deriving
Riccati equation, we obtain the following

non-symmetric generalized Riccatiand singular
equations respectively.
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Figure 6. System output.

ETPlo) E+ ETP(t) A+ AT pt) E + ETP(t)

BP P(t) E+ E' P(t) BP + C'QC=0
(18)

and

'Yy + ATL@ + ETP@ BP L@ + €' Q
G(t) - ET P(t) w(t) = 0 (19)
The solution of the above equations can be

found in [6] and [1] following some
simplifications.

Remark 2 - Consider matrix E as constant.
All derivations in this paper could hold for time
varying cases. However, if matrix E is time
varying, we have some modification as follows
for the case ¥4R YU 0.

I(t) = P(t) E() x(t) - L(t)
o) = Plo) B x®) + P E®) o) Lo +
Pty EY0) x(t)

and

ET0 1t = - ") Q) c x®) - AT 1)
+ " Q 61 - M) It
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combining the above equations gives us the
following equations:

ET Pl E(t) + ET() p() [ACH) + EA0)] +

% + Ao1" po) E@) -

E'(H) P(t) B(t) R™(t) B p(t) E(t) + C'(t) Q(t)
C(t) = 0

and

E'® LYo + [aw + Elo1" Lo -

ET(t) P(t) B(t) R™'(t) B (t) L(t) - E"(t) P(t)
w(t) + CT() Q(t) G(t) = 0

It can easily be seen that by changing A(t) to
[A(t) + EU(t)] for the constant coefficient case
the new equations for the time varying case
have been obtained. This result can also be
achieved for the case

V4R Ya= 0.

Remark 3 Although these results have been
developed for continuous systems, they can
easily be extended for the discrete cases as well.

CONCLUSION

The linear singular optimal tracking problem
has been discussed and the Hamilton-Jacobi
theory is used in order to compute the optimal
control and associated trajectory. We have
shown that the singular tracking problem is
composed of two parts, a singular regulator
part, and a prefilter to determine the optimal
driving function from the desired value, G(t), of
the system output. We also have obtained the
generalized Riccati equation for both time
invariant and time varying cases.
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