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Abstract The problem of optimal economic operation of hydrothermal electric power systems
is solved using powerful continuation method. While in conventional approach, fixed generation
voltages are used to avoid convergence problems, in the proposed algorithm, they are treated as
variables so that better solutions can be obtained. The algorithm is tested for a typical 5-bus and
17-bus New Zealand networks. Its capabilities and promising results are assessed.
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INTRODUCTION

Optimal Power Flow (OPF) in electric power
systems sceks the power [low solution which
optimizes a performance function such as fuel
costs, while simultaneously enforcing the
foading limits imposed by the system equipment
ratings and various constraints. In a mixed
hydrothermal power system, the solution is
obtained while utmost use of free (or almost no
cost) hydropower Is guaranteed.

Hydro Thermal Optimal Power Flow
(HTOPF) has received attention in power
system literature [1-6]. Due to a large number
ol time intervals, solution convergence is more
ditficult in comparison with all-thermal power
systems |S]. That is why in published literature,
HTOPF problem 1s solved, normally by
considering tixed generation voltages. In this
case, cven il the optimization problem is
properly and fully formulated, a suboptimal
solution is obtained.
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To overcome the difficulty, a new algorithm
is proposed in this papcr. HTOPF is solved
using powerlul continuation method (CM) [7,8].
This method has already been applied to some
enginecering problems [9]. In 1994, the method
was used to solve all-thermal OPF problem [7].
The method is extended in this work to account
for hydro-thermal system.

The structure of the paper is as tollows. First
the tormulation of the problem is described.
Then, continuation method is briefly reviewed.
The proposed algorithm is subscquently
discussed. Test results on a small 5-bus typical
power system and a real 17-bus power system of
New Zealand [10] are demonstrated. Some
concluding remarks are finally provided.

PROBLEM FORMULATION

A hydro-thermal electric power system
consisting of N buses with Ng thermal and Ny
hydro stations (totally Ny stations) is
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considered. The period ol the study may be, say.

24 hours with Ny solution intervals, cach ol

whichis T hours tong. The objective function
o be minimized is the fuel cost ol the thermal

units during the period as tollows:

NN,
S Yy
[ A

. { . . . PN
where F (P ) s the fuel cost ol unit 1 as:

/'vi [/)Alf) S ﬁf’D.in Y [PJ" ] .J
= 1N, (2)

The network is modeled completely with its

power low cquations as follows:

R N

|
Ce= LN o= 1N (3)
O, +Q, -0, =0
(= l...N =N (-h

where Po(Qp) Py (O and P, (Q, ) are
mjected. demand and oc neration active
(reactive) powers. respectively. [For load busces.
P, and Q are set to zero,

Fora hydro unit, hydrogencration (P and

water How through turbine () are related by:

G, =d + P
t= 1N 1= TNy ()

The incquality constraints to be satistied
include:
STotal water accessible during the period:
N,

Z"/T" h = 1N (0)

i i

where bois the upper bound or the water

accessible to unit 1

Upper and Tower bounds on active power

CCNCT OGN

niln 1 18X

O = = 1N (7
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-Upper and lower bounds on reactive power
generations:

Jnin 1 Jax

Q < Q, = Q = LN

ul i gl

-Upper and lower bounds on reservoir volume:

min | nax . .
<y, = 1= l...N

1 i 1 IN

{9

-Upper and fower bounds on bus voltaee
magnitudes:

nin { IRTHRN

vV < V., =V

1 1 i

The optimization problem. thus formed. will
be solved using continuation method. The

theoretical background is presented next.

CONTINUATION METHOD

Basic Principles  Ncwton mothod s @
powcrlul technique for solving nonlincar
cquations. The method. however may farl o
perform satistactorily as shown i Frgure 1.

The aim s o lind the sotution ol
f[(N) =0 (11

As seen i the Figure Tomitial choee of Ao
and A, would not resullt in convergence o
solution O, although all of them are chosen on
[eft-hand side ol the solution. The choice ol A
will result in solution convergence.

In continuation method, a new funcuon is

formed as Tollows:

FXa) = (X)) - (1-aleX,)) =0 (12
E’\ 4 B2
AN . .
DA ,,Hlj/'"
| . \ A _/r"
. \ P

o) N : 02
Bl

Figure 1 Fhe performance of N-Ron zore fnding
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initial solution. The final solution is Tor the case
where =1, As shown in Figure 20 & s initially
taken to be zero for the initial choice ol Ay Tts
vialuce is gradually increased to 1. In this case.
the algorithm converges to solution O althoush
Newton method does not. In tact, o
cortinuation method, the soluticy o fEx s = A
is Loond Tor difierent vaducs of oy dirna the
trajectory. These solutions e cohier diocily
subscquently employed in the probics solation
process or indirectly employed ascocprapricie
inttial solution pornts.

Formoic details on continuation method,

see Reference |8

Parametric Optimization The continuation
mcethod may be celtectively emploved in
optimization problems as follows.

The optimization problem already described
may b stated as:

Min J(X) (13)
subject to:

g(X) =0 () (14

hX) <0 () (15)

where 4 and g are Lagrange multiplicrs for
cquality and mequality constraints, respectively.

et X, and A, be arbitrary initial gucsses for
X and A, respectively. To use continuation
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actual meq. feas. set

N

.
N

', -~ relaxed ineq. feas. set

<" relaxed eq. constr.

L actuai‘-:eq. constr.

Figure 3. Moditication ol feasible st in the C.M.

method, new Tormulation should be established.
The optimization problent may be restated as
17):

x\/!{in J(X.&) (16)
subject to:

i) (X1 X)) = 0 (A) (17)
Nex sy = hX)-(1-)Ah =0 () (18)

TNG ) = J(X) - (1) d X+ 12016y Wi -
Xy IF

(19)
YN S :
Jo=- ‘.VX ()) o (’xu)/*n (20)
JA
Ah, =0 it h(X,) <0 (21)
Ahy > (X)) i h(X, =0 (22)

and where ¢ is a parameter which should
assume values from zero to oso that at 1L the
final solution is obtained.

The optimization problem is so arranged
that:
-Arbitrary choice of X, would result in the
optimal sofution at & =0. It not only satisfics
(17) and (18). but also satislics the first and the
sccond order optimality conditions (sce next
scction). Figure 3 shows how the feasible set s
modilied by relaxation ol (14) and (15) to (17)
and (18). Wis a parameter so scelected that at
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Figure 4. Effect of W on mecting SOOC

initial trajectory point (¢ =0), the second order
optimality condition (SOOC) is met for X,
Figure 4 shows a sample objective function for
different values of ¢. The etfect of W on
mecting the SOOC is demonstrated for ¢ =0
and X=X,

-The parameter variation process progressively
returns the loads back to their original valucs at
¢=1 so that the problem formulated by (16) to
(22) returns back to the original problem
defined by (13) to (15). As a result, the solution
ate&=11is the minimum of the actual objective
function.

Optimality Conditions The parametric

Lagrangian is given by:

- .
[(XAug) = J(Xe) + A4 ,(Xe) + 4 \hy(Xe)
(23)

where index A carresponds to the index set ol

active incqualities for some value ol ¢. I1'1
represents the corresponding set of inactive
inequalities, we have:

h (X&) =0 (24)
h (X&) < 0 (25)
According to Kuhn-Tucker conditions given by:

uh(Xe) =0 (26)
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u, z0 (27)
practical conditions in the algorithm may be
restated as:

h(Xe) <0 (28)
Uy =0 (29)

For X to be the optimum solution of (16), two
optimality conditions should be met. The first
order optimality conditions are described as:

Vi=0 (30)

1
ol of (X . ‘)g ,1
_—= 2 X, =0
axX oxX X o Kot ( s

(31)

dl ~n

al =8X#)= G2)
0l

d‘u hy (X&) = (33)

To satisly the second order optimality condition,
the Hessian matrix should be at Icast
semi-positive definite for any value of €. A
sufficient large value of W coclficient in (19)
can satisly this condition at and ncar ¢ =0 since
it appears only as diagonal clcments in Hessian
matrix (sec Test Results).

“PROPOSED ALGORITHM

The hydrothermal optimal power flow problem
may be solved based on the theory developed.
For X as shown below:

t { t

X ={V, 0, Py Qg i=1....N.

i=2....N, k=1L.N, t=1..N
(34)

The flowchart of proposed algorithm is
shown in Figure 5. The steps may be brielly
described as follows:

{. Select initial valucs for X, and 4. sct ¢ =0
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Guess X0, A0

Y [ Solve Set of Eq

Set € =0
p Choose Suitable STEP
) 1 oo
[ Tune € and STEP J "r| £ =€+ STEP Tune € and STEPJ
T A
Y

uations with NR ]

Any Solution ?

>1
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[ Modify h, ., h, ]
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Y

Dependency
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=|7 Results |:

Figure 5. I'low char

and choose an appropriate value for STEP in
¢=¢ + STEP (A value of 0.1 for STEP is
satislactory. In fact any value between 0 and 1
results in convergence but with different
number of iterations).
2. ¢=¢ + STEP
3. Solve (31) to (33), using Newton Raphson.
For the case of no convergence (detected by
|| AX]
tolerance), go to step 8.
4. Check (28) and (29):

- For no violation, go to step 5.

not to be less than a specitied

- For single violation of (29), go to step 6.
- For single violation of (28), go to step 7.
- For multiple violations, go to step 8.
5. Il ¢ =1, the solution is rcached, otherwise, go
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t ol continuation method.

to step 2.
6. Omit the corresponding inequality from h 4
and add to h;. Then go to step 3.
7. Omit the corresponding inequality from h,
and add to h, (il the new sct of active
constraints is independent): then go to step 3.
In the casc of dependency, go to step 9.
8. ¢ =¢-STEP; Reduce STEP and go to step2.
9. The problem has no solution.

The following points arc worth mentioning:
- The operations involved in steps 4, 6, 7 and 8
are called Binary Search. Based on that, ¢ is so
selected that proper solution is obtained.
- Reference [7] has shown that steps 6 and 7
would not create recycling.
- Steps 3, 4 and 8 can overcome convergence
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problems provided the difliculty is due to a
large STEP size.
- Il the problem has no solution, it will be
systematically detected in step 9. This 1s one of
the main advantages of the algorithm.
- As ull solution 1s obtained during cach step ol
the trajectory; at the end, several side problems
have been solved. These solutions may be
clfectively employed in rescheduling problems
for other loading conditions (sce scction Basic
Principles).

TEST RESULTS
Bascd on the model developed, a softwire

on a SUN

compatible workstation. The algorithm is [irst

. . -+
package is developed using ¢

tested on a small typical 3-bus network with two
thermal units (buses 1 and 2) and onc hydro
unit (bus 3). The time period of the study (24
hours) is divided into 10 intervals. The data is
provided in Appendix 1.

Initially HTOPF problem s solved
considering lixed generation voltages. The linal
solution is shown typically for two intervals in
Table I with corresponding Lagrange
multiplicrs. (; corresponds to the firstand ¢, to
the second time intervals, Negative values for
Lagrange multipliers assoctated with bus 3 show
that the linal solution is not optimal. Tablc 2
shows that Newton method is unable to solve
the cquations even alter 10 iterations.

The problem is subscquently solved using

[ar}

0 — ‘ — Step
1 12 23 34 45 56 67 78 89 100 111 122

Figure 6. Growth of & through trajectory (3-bus systemy.
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TABLE 1. Effect of Fixed Voltages.

v yu IAl | v 2 YA : IV
\V m . SUURS U S S _f ! - N —
O Ilgt‘ - e e LN |
| Magnitude 1.05 1.05 1.05 } 1.08 1.05 1.0 |
1.287 0.07 -0.857 J 0551 0.735 -1.466

! ) ) v val L )t |
[teration | ' 1 P4 v M.
!
[ 1.0435 1.035 .
3 245 2.45 211 208
3 3.43 341 302 SRIRI
L e i
10 204 196 104 oo
2
315
g EHya
M 1
x |
< |
g1 .
B Steam? |
5
(U]
0.5 @oteam| ‘
|
0

4 5 6
Time Interval

Figure 7. L'inal decision for generation (3-bus system).

continuation approach. Figure 6 shows how ¢ is
varicd during the solution process. The
variations involved arce duc to multiple
violations ol (28) and (29) so that ¢ is properi
reduced (see steps 4 and SO previous section).
Figure 7 shows the gencerations at the end ol
the trajectory. As expected, tor heavy Toad
periods, hydrogencration is more pronounced.
Figure 8 shows reservoir volumes at the end
ol TO time intervals. At the sccond and fourth
intervals, minimum volumes arce rcached,
Figure 9demonstrates some of the veltages
in some ol the intervals during ¢ trajectory. As
shown. in the 75th step, the 7th interval
voltages are simultancously violated. To prevent
possible convergence problem. the voltage of
bus ©is decided to be lixed by binary scarch
algorithm: other voltages remain within bounds.

In the 87th step, the dth interval voltages are
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Figure 8. Reservoir volume at & =1 (5-bus system).

11
08
36
§ 108
QL
=
o 102
g,
£ 01
S
0.9
0.96
0940 -
LT e S N Vo T o S e B ® AN B 0 ) N o= OV N M
—_ AN T T W W N Wy C'Z — r;j
5{(’/75
Figure 9. Behavior of some voltages during the
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Figure 10, The case of no solution.
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Figure 11. Growth ol & through trajectory (17-bus

System).
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Figure 12. Iinal decision for generation (17-bus system).
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Figure 14. Hydro units productions through trajectory.

TABLE 3. Effect of W.

w S 8 10 12 20 50
Number of Steps 50 43 40 41 42 57
Number of Breakpoints 1 9 9 10 il 11

Number of Violated *
| Constraints at =1

6 6 6 6 6 6

again violated. Following search, the voltage of
bus 1 is fixed and others remain within bounds.

As stated carlier, it the problem has no
solution it will be systematically detected. This is
shown in Figure 10 where for a two-interval
problem, total generation can not meet the
required encergy demand. That is why at ¢ =
0.93, the algorithm has stopped. So, other

solutions such as unit recommitment, load
shedding, etc. should be checked.

The choice of suitable valucs for W
(Equation 19) is donc through trial and error as
shown in Table 3. It is evident that a value of 10
results in minimum number of steps.

To further show the capabilities of the
algorithm, 17-bus New Zcaland network with
four thermal units and two hydro units is
considered. The time period ol study is 6 hours
divided into 3 intervals. The data is provided in
Appendix 11
~ Similar to Figures 6 and 7, the results for this
system are shown in Figures 11 and 12. Also, in
Figure 13, variations of all units” productions
during the first interval are shown lor the
39-step trajectory (see Figurce 11). Figure 14,
shows the variations ol hydro units” productions
during all three intervals.

CONCLUSIONS

Hydrothermal OPF problem was solved using
continuation method. Besides its capabilitics in
solving problems which normal Newton method
can not, better solutions arc obtained as
generation voltages arc treated as variables (see
Table 2). The authors arc in the process ol
checking the algorithm for large-scale power
systems.

APPENDIX 1

Steam 1:

Fi(P) = 561 + 5.92 P, + .001 P2 280MY <Py < 800MY  -120MVA <, < 80QMVAT
Steam 2:

Fy(P,) = 600 + 6.2 P, + .001562 P! 240MY < P, < 720M¥ -400MYA <, < 80OMVA
Hydro :

q(Py) = 320 + 12.3 P, 0 <Py <320MY -BOMYAT < Q, < 320MVA

V0=10000"  Vfinal=10000™ Vmin=8000" Vmax = 22200

120 - Vol. 14, No. 2, May 2001
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T1

T2

T3

T4

TS5 T6 T7 T8 T9 T10
Interval Length (hr) 2 1 1 1 5 2 4 3 3 2
Unit Steam Unit 1 On On On On On On On On On On
Commitment | Steam Unit 2 On On Off Off Off On On On On On
Wintar Yoot
v ‘(‘r;, /hrs’“ Hydro 1500 | 1500 | 1500 | 1500 | 1500 | 1450 | 1500 | 1500 | 1500 | 1450
Node 1 320 | 240 88 80 60 140 208 260 | 288 | 204
Node 2 280 | 200 100 120 104 148 200 | 304 176 | 252
Load (MW) Node 3 280 | 220 96 100 56 128 120 | 280 | 212 168
Node 4 280 | 240 100 100 60 160 124 | 252 100 80
Node 5 200 140 60 140 60 140 180 | 280 | 220 180

Steam Unit 1:

APPENDIX 11 [10]

Fi(P) = 561 + 5.92 P, + .001 P,2

Steam Unit 2:

Fy(P;) = 600 + 6.2 P, + .001562 P,

Steam Unit 3:

Fy(P3) = 500 + 6.7 Py + .0001 P5’

Steam Unit 4:

Fi(Py) = 600 + 5.8 P, + .0012 P2

Hydro Unit 1:

q(Pm) =320+ 1.8 Ph]

VO, =8000™

Hydro Unit 2:

q(Pp2) =320 + 2.37 Py,

V0,=12000"™  Vfinal,= 12000 ™Vmin,=7400™ Vmax,=22200"

TL | T2 | T3

Interval Length (hr) 2 2 2
Steam Unit 1 On On On

Unit Steam Unit 2 { Op On | On
Commitment | Steam Unit3 | On | Off | On
Steam Unit4 { On | On | On
Water Input | Hydro Unit 1 | 1000 | 1000 | 1000
(m’/hr) Hydro Unit 2 | 1000 | 1000 | 1000
Load (MW) 1868 | 1876 | 2424

International Journal of Engineering

280MY <P, < 600M¥

Vfinal, = 10000 ™Vmin; =7800™ Vmax, =22222"3

-1 60MVAI’ < Ql < 520MVAI

240MY < P, < 720MY -200MYA < Q, < 600M VAT
280MY < P, < 800M¥ 200MYA" < Q, < 7604 VA"
120MY < p, < 600MY 200MYAT < Q< 600M VA
0< Py, <720M¥ 200MYA" < Q,, < 800MVA
0 < Py < 320MY -80MVA < Qyp < 320MVA

oo}
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