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Abstract Reactive power dispatch for voltage profile modification has been of interest to
powerr utilities. Usually local bus voltages can be altered by changing generator voltages,
reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control
parameters, however, is not simple for modern power system networks. Heuristic and rather
intelligent algorithms have to be sought. In this paper a new algorithm is proposed that is based
on a variant of a genetic algorithm combined with simulated annealing updates. In this
algorithm a fuzzy multi-objective approach is used for the fitness function of the genetic
algorithm. This fuzzy multi-objective function can efficiently modify the voltage profile in order
to minimize transmission lines losses, thus reducing the operating costs. The reason for such a
combination is to utilize the best characteristics of each method and overcome their deficiencies.
The proposed algorithm is much faster than the classical genetic algorithm and can be easily
integrated into existing power utilities software. The proposed algorithm is tested on an actual
system model of 1284 buses, 799 lines, 1175 fixed and ULTC transformers, 86 generators, 181
controllable shunts and 425 loads.

Key Words Genetic Algorithm, Simulated Annealing, Fuzzy Multi-objective O ptimization,
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INTRODUCTION researchers. The classical approaches such as
linear programming, quadratic and nonlinear
programming have been applied for many

decades. Since real power system networks are

Due to the vatness of power system network,
reactive power dispatch for voltage profile

modification is one the most complicated
problems which has been of interest to many
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very large, such classical approaches could only
be applied either to smaller systems or with
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approximations to larger ones. Recently,
however, researchers have been interested in
finding new expert, heuristic or intelligent
solutions for many large problems for which no
other efficient algorithms are known.

The goal is to become as close as possible to
the global optimum solution. Some probabilistic
techniques such as genetic algorithms or
simulated annealing, in theory, yield such near
global optimal solutions. Both techniques,
however, are slow. A combination of the
techniques have proven to be faster than either
of them alone.

Genetic algorithms are powerful
general-purpose optimization techniques and
have been applied to large optimization
problems. For example references [1,4] show
how they are applied to large power system
problems with difficult and complicated
constraints. References[2,3] demonstrate how
expert systems can be applied in control and
planning of the voltages and the reactive
powers. Al techniques, especially artificial
neural networks and fuzzy modeling of the load
with consideration of uncertainties are discussed
in differentreferences, e.g. [8]. Applications of
fuzzy sets in optimal reactive power dispatch are
investigated by many researchers [5,6,7].
Simulated annealing is also a general-purpose
optimization technique that can accelerate
computations for large systems; it is usually
implemented in combination with other
techniques to speed up the convergence. In
reference [3] this technique is utilized in an
expert system to optimally dispatch reactive
power. And is reference [4] it is also applied for
optimal scheduling of thermal power plants in a
genetic algorithm.

In this paper genetic algorithm has been
applied to an actual power system network and
simulated annealing is utilized to speed up its
convergence. Fuzzy multi-objective technique is
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also integrated into this technique to implement
soft constraints (voltage constraints). Numerical
results demonstrate the feasibility of the
proposed combination technique for large
systems.

GENETIC ALGORITHMS

Genetic algorithms are general-purpose
nonlinear optimization for discrete and
continuous variables. These techniquesbelong
to a group of probabilistic algorithms that can
converge to global optimal solutions. In these
methods, the algorithms start from an initial
random population of members and go through
some evolutionary type of stages to come close
to a global solution.

For detailed treatment of this topic
interested readers are referred to abundant
references, e.g. [1,4]. Ref. [9] proposes a genetic
algorithm for optimum voltage problem. In this
technique generator voltages and reactive
shunts are determined in such a way that the
bus voltages become close to some desired
values. Feasibility of this technique is
demonstrated on a system of 4 generators and 7
loads. For larger systems this method is very
slow and should be improved. For economical
operation, it is also desired that the voltage
profile reduce transmission line losses, in
addition to respecting the system voltage limits.
Below an outline of genetic algorithm structure
that is used in this project is given.

Genetic algorithm works on population of
strings that are called chromosomes. These
strings are sequences of controls such as
generator voltages, capacitance shunt and
transformer taps. The objective is to find the
best string of controls that, in addition to
resecting the operating limits, reduces the total
transmission line losses. It starts from an initial
random population ofcontrolsequence. Three
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Figure 1. Control strings (chromosomes).

main operators, namely crossover, mutation and
selection, are used to form new populations.
Figure 1 illustrates the strings of a population.

As is illustrated in this figure, control strings
are made ofthree sections: generator voltages,
Capacitor shunts and transformer taps. All
generator voltages, v's, Capacitor shunts, q's,
and transformer taps, t's, are in per units and
within their allowable ranges. For each of the
mentioned controllable devices. One variable is
assigned and its value is set within its
operational limits. To determine the best
control string the genetic algorithm of Figure 2
can be applied.

In the genetic, algorithm, an initial
population P(0) is created at random. Next
three genetic operators of crossover, mutation
and selection are applied to produce next
generations. Since many of the randomly
generated initial chromosomes cause a large
number of over-voltages and line overflows, in
practice it is much better to generate the initial
random population around several available
operating cases.

In order to increase the speed of the process,
one can include a control string that represents
the initial condition (i.e., base case). Some of
the genetic operators are shown in Figure 3.
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Procedure: Genetic Algorithm
Begin
t=0;
Initialize P(t);
Evaluate P(t);
While (not termination condition) do
Begin
t=t+1;
Select P(t) from P(t-1);
Apply Genetic Operators to P(t);
Evaluate P(t);
End;
End;

Figure 2. Genetic algorithm.
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Figure 3. Mutation and cross over.
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After the generation of new control strings a
suitable selection mechanism is needed to
guarantee that the next population would have
better characteristics with respect to the
previous ones. For this purpose a fitness
function is defined and a selection based on
roulette wheelisapplied. In this method those
strings which possess higher relative fitness will
appear in the next population with higher
probability. Details of this selection are
explained in some of the references of this
paper.

Holland in his Doctoral Thesis proved that
bythese genetic operatorsthe populations will
eventually converge to the global optimal
solution. This however slows down the
convergence of the genetic algorithm. In
practice if elite chromosomes are added to the
population pool manually, the speed of the
convergence will improve substantially.
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This method is still slow for the long control
strings of actual power systems and needs to be
improved. Simulated annealing can preserve the
global optimality of the solution and at same
time increase the speed of the genetic algorithm
considerably.

SIMULATED ANNEALING

Simulated annealing (SA) is also a
general-purpose optimization algorithm that can
converge to the global optimal solution. This
method is applied to problems that are primarily
hard. Details of the theory can be pursued in
many references, e.g. [10]. Ref. [4] proposes the
combination of SA and genetic algorithm for
thermal generator scheduling.

In this paper an improved version of the
combined genetic algorithm and simulated
annealing which utilizes the fuzzy
multi-objective function optimization method is
proposed. The structure of the algorithm is
shown in Figure 4. The Fuzzy part is explained
in this section.

The details of the combined genetic and
simulated annealingalgorithm is as follows: At
each step of the genetic algorithm either one
child is generated by the mutation ofa parent
chromosomes, or two children are generated by
the crossover operation of two parents
chromosomes. In the proposed revised
algorithm [13] the chance that the parents may
replace their children in the next population is
determined by a Boltzman distribution function.
This proves to speed up the convergence of the
classical genetic algorithm by orders of
magnitudes (from months to hours!). In this
method a Chromosome (D) can replace its
parent with a probability Pr (D)

Pr(D) = (1/(1+exp( D/T)) (1)
T is a parameter that corresponds to the SA
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temperature.
T, = r(k-])T() )

r is a parameter which is less than one. In this
method if Pr(D) is relatively large, then the
offsprings replace their parents with higher
probability. The introduction of SA in the
genetic algorithm can effectively speed up the
convergence of the genetic algorithm, as is
shown on a real power system. Of course, in the
process of optimization it isnecessary that the
bus voltages remain in their operational limits
(or very close to their limits, i.e., soft
constraints). This is similar to the methods
employed in fuzzymulti-objective optimization
that is explained below.

FUZZY MULTI-OBJECTIVE
FUNCTION OPTIMIZATION

References 5 to 8 present the effectiveness of
Fuzzy Method in the control of reactive power
to modify the buses voltages. In general
multi-objective function optimization one can
utilize a combination objective function as
discussed in references 11 to 12. In this paper
the main objective function is the total
transimssion line losses and secondary objective
functions are the bus voltages. The following
procedure is developed for this purpose:

a) For the base case controls the total
transmission line losses is determined (ZAO).

b) For the relative losses (zy) (relative with
respect to the base case), a membership
function is defined as follows (if z is negative it
means that the losses are lower w.r.t. base case)

& 1 Z AzA -z}
®

fo(Zo) = % -Z()/ZOA -ZOA Vi Z A 0 (3)
: 0 0 A Zy
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Figure 4. Combined genetic algorithm and simulated annealing.

C) For each bus voltage a membership function
is defined as follows:

& 0 v, A 8

® L

® 10(v-.8) S8AV,A9

® L
f(vp)= a | SAVALL (4

® L

® 1-10(vi-1.1) 1L1AvV,A12

® R

: 0 1.2AVi

d) A Combination objective function is defined
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as follows:
& i
Z= -z «*Mina f,,i=0,1,..,N ®)]
A —
1
1

where N is the number of all monitored bus
voltages of interests.
e) It is required that the relative losses are
minimized.

Asis seen from the definition of Z, it is in
MW and if all voltage constraints are satisfied Z
equals the system losses (unless the losses are
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more than the base case losses, in which case
the losses are set equal to the base case losses).
However, ifone or more voltages violate their
limits, Z becomes closer to zero, i.e., less
relative losses are considered. Therefore, it will
be less different from the base case and have
lower fitness, i.e., is selected with lower chance.

For the fitness function, a load flow must be
executed for each chromosome of the
population pool. All bus voltages and line flows
of interest are monitored and the total
transmission lines loss is computed. From a
practical point of view, not all of the buses
and/or lines need to be monitored. Now a
fitness function is required that could minimize
the total system transmission lines loss and at
the same time modify the bus voltages profile.
The proposed objective function is based on the
well-known trapezoid member functions that
are used in fuzzy multi-objective optimization.
In this technique both the system loss and the
busesunder-and-over voltages are considered.
And the cases with more sever violations are
selected with lower probability.

RESULTS

In order to implement the techniques discussed
in this paper on an actual power system, it was
decided to integrate them into the existing
computer software for voltage stability
(VSTAB). All additional routines are written in
FORTRAN for the DEC workstation in UNIX
environment. Table 1 shows the system data for
the system under study.

Figure 5 shows the variations of relative
losses with respect to base case loses. After 50
generations no change has been observed in the
best control string. It is found that this method
is much faster than the classical genetic
algorithm. And for this actual power system
with the total base case losses (370 MW), the
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optimal point is a relative loss of-15 MW.
Figure 6 shows the output of the Load Flow
program for the determined controls.

As is seen in Figure 6 the total losses are
reduced to 355. This means a total reduction of
15/370= 4% which is approximately 2.6 million
dollars a year in saving!

CONCLUSIONS

In this paper a combination technique based on
genetic algorithms, simulated annealing and
fuzzy membership functions is proposed. This
algorithm can optimize reactive power dispatch
in order to reduce the total transmission line
losses. Voltage will be kept within the specified
operating ranges or remain close to them.
Either of the above techniques has certain
merits and weaknesses. In combination,
however, theybecome a powerful and efficient
optimization technique, which is both fast and
has the desired characteristic of finding the
global optimal solution.

In short, the genetic algorithm is one of the
best-known general-purpose nonlinear

TABLE 1. System Data.

BASE DATA:  06-Nov-95 11:39:38
1284  BUSES
1 AREAS
27 IONES
86  GENERATION UNITS
425  LOADS

0 FIXED SHUNTS
181  SWITCHED SHUNTS
799  LINES
1112 FIXED TRANSFORMERS
63  ADJUSTABLE TRANSFORMERS
0 FIXED SERIES COMPENSATORS
0 ADJUSTABLE SERIES COMPENSATORS
0 STATIC TAP-CHANGERS / PHASE-SHIFTERS
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Figure 5. Variation of relative loss with respect to the execution time.

1 <PAGE 1> IPFLOW PROGRAM 06-Dec-95 12:51:11
MASTER SUMMER BASE CASE 95 -- 8 6BP4DS5N1LK16BK2LBOLX16SDLOS
679BLIP, 1124 FABC, -141FETT, -618FN, -75CLAN, 573F10,

*** SOLUTION REPORTING - POWER FLOW SUMMARY ***
TOTALS BY AREA IN MW AND MVAR

>  AREA FROM TO TO BUS TO BRN FROM TO TO NET INT
NAME/NUMBER  GENS LOAD SHUNT ~ SHUNT  CHARGE LOSSES NET INT DES/TOL
ONT HYDR 10312.6  9897.7 0. 59.8 0.0 355.8 -0.7 0.
1 2693.4  6490.8 -4958.  480.0 5370.8 6054.1 -2.7 10.00
TOTALS : 10312.6  9897.7 0. 59.8 0.0 355.8 -0.7 0.
2693.4  6490.8 -4958. 480.0 5370.8 6054.1 -2.1

Figure 6. Output of IPFLOW for the optimum controls.

optimization techniques. With the introduction
of simulated annealing the speed of
convergence is improved immensely. For
multi-objective optimization situation, also,the
fuzzy membership functions are appropriate.
This combination technique which has been
tested on a real power system of 1284 buses, 86
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generators, 425 loads, 799 lines, 181 variable

shunts, 1112 fixed transformers and 63 ULTC

transformers revealed encouraging results.
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