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Abstract Several optimal three-dimensional orbital transfer problems are solved for thrust-limited 
spacecrafts using collocation and nonlinear programming techniques. The solutions for full nonlinear 
equations of motion are obtained where the integrals of the free Keplerian motion in three dimensions 
are utilized for coasting arcs. In order to limit the solution space, interior-point constraints are used 
which proved to be beneficial in finding the optimal results by making initial estimates more sensible. 
The application of this methodology to the design of several three dimensional optimal trajectories is 
also investigated. The results indicate that the method is suitable for any 3D transfer between non-
coplanar and non-coaxial orbits. 
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 از مسائل مانورهاي بهينه مداري سه        با استفاده از يك تكنيك جديد بهينه سازي مستقيم، تعدادي              چكيده
روش هم مكان سازي مستقيم و      . بعدي سفينه هاي فضائي با نيروي رانش محدود مورد بررسي قرار گرفته اند             

برنامه ريزي غير خطي طوري استفاده شده اند كه محاسبه تحليلي ماتريسهاي ژاكوبين و هسيان را امكان پذير                    
 خطي با در نظر گرفتن انتگرالهاي حركت كپلري در مسيرهاي پرواز آزاد              حل معادلات حركتي غير   . مي سازند 

كاربرد روش فوق . به منظور محدود كردن فضاي پاسخ، قيدهاي مياني انتخاب شده اند   . مياني بدست آمده است   
قع در طراحي ماموريتهاي فضائي بررسي گرديده و نتايچ مطلوبي براي مانورهاي سه بعدي، بين مدارهاي غير وا              

 .در يك صفجه بدست آمده است
 
 
 

INTRODUCTION 
 
 

In compliance with the utilization of space science 
and technology to gather information about the 
outer space, many challenging problems have 
developed. One of the main related problems is the 
optimal three-dimensional spacecraft maneuver. 
The importance of these maneuvers is realized in 
situations such as satellite maintenance missions 
(servicing Hubble space-telescope), time optimal 
rendezvous between the space shuttle and the 
space station, rendezvous with comets from 
outside of our solar system (Giotto’s extended 

mission), three dimensional transfer trajectories to 
halo orbits (SOHO mission) and three dimensional 
gravity-assisted maneuvers needed to exit the 
ecliptic plane (Ulysses mission). To perform such 
maneuvers, energy is expended in controlled 
directions resulting a change in the velocity vector 
and causing the desired orbital changes. Traditionally, 
the impulsive thrust models have been utilized to 
produce the desired change in the velocity 
magnitude and direction for very short duration 
[1]. Due to several problems such as misdirected 
injection [2] and potential damage to spacecraft 
subsystems, because of high impulsive forces, low-
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thrust models have also become attractive and in 
some cases provide the only feasible alternatives 
[3,4,5]. Most practical work involving optimal 
orbital transfers has focused on two dimensions. 
These include two-impulse transfer between two 
coplanar elliptic orbits [6,7], transfer to 
synchronous orbits [8], Mars orbit insertion 
[9,10], multiple-impulse rendezvous problem in 
fixed time [11], optimal coplanar rendezvous 
problem using solar sails [5] and two dimensional 
orbital evasive maneuvers [12]. Due to the 
increasing importance of three-dimensional 
orbital maneuvers, this study focuses mainly on 
the optimal design of 3D trajectories. 
 The three dimensional equations of motion are 
highly nonlinear and one way to approach them is 
through linearization, which is appropriate for 
short orbital maneuvers. Cooperative rendezvous 
maneuvers between neighboring circular orbits 
[4] and the low-thrust rendezvous return after 
impulsive intercept [5] are good examples of this 
approach. In this study, however, the full 
nonlinear 3D equations are solved numerically. 
The optimal 3D maneuvers with intermediate 
coast and maximum-thrust (MT) arcs are obtained 
through a variation formulation. The optimal 
controls are defined so as they minimize the total 
burn time. In addition, several sensitivity analyses 
are performed based on initial MT level, orbital 
radii and inclination angles. Interior point 
constraints and discontinuity in state variables 
have also been taken into account in order to 
improve the design of maneuver structure. 
Optimal transfer into the recently discovered solar 
sail halo orbits [13,14] is another problem that is 
considered using the developed technique.  
The optimal control of spacecraft results in a two-
point boundary-value problem (TPBVP) for 
which two general approaches of solution exists, 
namely direct and indirect methods. In indirect 
approach, the state space equations are obtained 
using the calculus of variations for which various 
common methods of solution exist. They include 
steepest ascent, quasilinearization, gradient 
projection and variation of extremals. The 
difficulty with the mentioned techniques for the 
indirect approach, is their sensitivity to the initial 
guess. The second approach is to discretize the 
variation form of the original problem, 

approximating the optimal control problem with a 
discrete optimization problem that is referred to 
as the direct approach [15,16,17].  
   The present paper uses a hybrid approach in 
which the continuous variational equations of the 
system are discretized and a collocation scheme is 
utilized to satisfy the state and costate differential 
equations as well as any problem constraints. By 
this technique, a set of nonlinear algebraic 
equality/non-equality equations is obtained that is 
solved using nonlinear programming (NLP) 
methods. Hargraves and Paris [17] have 
investigated the application of direct method to 
the solution of aerospace flight mechanics 
problems. The problem of planar orbital transfers 
is another application performed by Enright and 
Conway through the direct collocation with 
nonlinear programming [10] and direct 
transcription [18]. As evidenced by Betts and 
Huffman, solution algorithms include sparse 
nonlinear programming [15] and sequential 
quadratic programming [16]. Most above-
mentioned researchers have relied on numerical 
techniques for the evaluation of their Jacobian 
and Hessian matrices, and have studied issues of 
accuracy, speed and stability of solutions. Here 
we construct our Jacobian and Hessian matrices 
analytically, which allows us to control the 
performance of our NLP solver precisely.  
 
 

THRUST-LIMITED SPACECRAFT 
MODEL IN THREE DIMENSIONS 

 
The spherical coordinate system Figure1 is 
utilized to express the spacecraft motion [19]. The 
dynamical equations of the system are 
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Figure 1. Trajectory Simulation in Spherical Coordinates. 
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where x R1 = , x2 = θ , x3 = ϕ , x R4 = & , x R5 = & c o sθ ϕ , 
x R6 = &ϕ . The variable x7 is the propulsive 
acceleration generated by the thruster. The 
variables ur, uθ and uϕ are the controls. The 
parameter c is the effective exhaust velocity and µ 
denotes the gravitational constant, which in 
canonical coordinate systems is set equal to unity. 
The control variables are related to the local 
spherical angles (u1 and u2) through the 
following relations: 
u ur = sin 1,   (2a) 

u u uθ = cos cos1 2 ,    (2b) 
u u uϕ = cos sin1 2, (2c) 
In Equations 2, u1 is the angle between the thrust 
direction and the local horizontal and u2 is the 
angle between the projection of the thrust vector 
on the local horizontal plane and eθ. The 
maneuver structure usually consists of an 
alternating sequence of MT and coast arcs (in the 
absence of the thrust-vector, the free two-body 
motion takes place which is known as coasting) 
[18]. During the coasting interval, the state 
variables are related through the six constants of 

integration as follows: 
 

Q h x x x x x x xx1 1 6 2 1 5 3 2( ) sin sin cosx = = − , (3a) 
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where hx, hy, and hz are the components of the 
angular momentum vector, h, and e = (ex, ey, ez) 
is the well known Lenz vector [20]. No mass is 
expelled during a coast arc, therefore, the thrust 
acceleration x7, at the end of the thrust arc, which 
precedes the coast arc, equals the thrust 
acceleration at the start of the proceeding MT arc.  
 

OPTIMAL  CONTROL     PROBLEM  
BOUNDARY  CONDITIONS   AND  

PERFORMANCE INDEX 
 

It is desired to guide the spacecraft from a given 
initial state to a target orbit, where the final state 
variables must satisfy some terminal conditions. 
The boundary conditions may be written as: 
 

x( ) { , , , & , ( & cos ) , ( & ) }t R R R R T
0 0 0 0 0 0 0= θ ϕ θ ϕ ϕ , (4a)  

 
 

Φ( ( ), )x t tf f = 0 . (4b) 
     There are two basic types of propulsion 
systems. High-thrust systems in which the thrust 
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duration is relatively short in comparison with the 
total mission time, and low-thrust systems in 
which the thrusting intervals are prolonged. In the 
current study the thrust-limited category of low-
thrust systems has been used (there is another 
type referred to as power-limited systems). For 
the low-thrust systems an optimal trajectory is 
defined so that the amount of consumed 
propellant is minimized; in other words, the burn 
times (total duration of the MT arcs) must be 
minimized. 
     Assuming a maneuver structure consisting of 
N number of MT arcs, the cost function is defined 
as 

J dt dt dt
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where ti-1+ is the time at which the i-th MT arc 
begins and ti- is the time when the i-th MT comes 
to end. The constraint vector ∆∆∆∆j takes into account 
the effect of the j-th coast arc of which the 
components are defined as 
 
∆ j

m
m j m jQ t Q t= − =− +( ( )) ( ( ))x x 0, (6) 

m j N= = −1 6 1 2 1, .. , ; , , .. , . 
 
The definition of the cost function (5) does not 
necessarily minimize the total flight time. 
However, with only one MT arc, the maneuver 
will also be time-optimal.  
 
 

HAMILTONIAN FUNCTION AND THE 
OPTIMALITY CONDITIONS 

 
The Hamiltonian function (on the MT arcs) is 
given by 
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where pI (i=1, ..., 7) are the adjoint variables. The 
necessary condition for optimality will be 

∂
∂
H
u

0= ,  (8) 

 
where the control vector u satisfies the following 
constraint 

1=⋅ uu T . (9) 
Equations 8, 9, and the convexity condition 
(Legendre-Clebsch condition) result in the 
extremal controls in terms of the adjoint 
variables: 
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Because of the nature of thrust vectoring and 
Equation 9, there are only two independent 
control components. 
 

 
DYNAMICS OF THE ADJOINT 

VARIABLES 
 
The adjoint variables are chosen to satisfy [21,22] 
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with  m = 1, .., N-1 and Q={Q1 ,..,Q6}T. The 
vectors λλλλ and ννννm are the Lagrange multipliers and 
tm must be chosen to satisfy the transversality 
condition 

 
H t H tm m( ) ( )− += . (13) 
 
The transversality condition at the final time tf  
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will be 
H t

t
t tf

f

T
f f( ) [ ( ( ), )]+ ⋅ =∂

∂
λλλλ Φ x 0 . (14) 

     For the problem under consideration, the 
Hamiltonian function is not an explicit function of 
time, Howeres, using Equations 13 and 14, it can 
be shown that, along an optimal trajectory (if  
Ф does not include tf explicitly), the following 
relations hold 
 
H H t H t H ti i f

∗ ∗ − + ∗≡ = = =( ) ( ) ( )* 0, i = 1, .., N-1. 
 (15) 

 
 

INTERIOR-POINT CONSTRAINTS 
 

In many problems it is suitable to constrain the 
manifold of solutions for a better prediction of the 
system performance and to get a good estimate of 
final results. The type and definition of the 
problem constraints depend on many factors that 
may be specified by trajectory designer. 
     Here, we impose a set of interior boundary 
conditions on the state variables as [21] 
 

Z x[ ( )]Tj = 0, (16) 
 

where Tj is an intermediate time in the j-th MT 
arc, with 
 

t T tj j j−
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and Z represents a vector function. The boundary 
conditions relevant to the adjoint variables, and 
the transversality condition are 
 

p p Z
x

T
j

T
j

T

t T
T T

j

( ) ( )− +

=
= + ⋅ππππ

∂
∂

, (17a) 

 
H T H Tj j( ) ( )− += , (17b) 
 

where ππππ is a vector of Lagrange multipliers. 

 
NUMERICALLY SOLVED PROBLEMS 

 

Transfer to a Non-Coplanar Orbit   In this 
case a low-thrust spacecraft orbiting in a circular 
Keplerian orbit with radius one (canonical units) 

is desired to rendezvous with another spacecraft 
on a target circular orbit with radius 1.5 which 
has an inclination angle, φ0, with the initial orbit. 
In the solution procedure, due to the relative 
closeness of two orbital radii, no coast arcs are 
allowed. The initial thrust acceleration and the 
exhaust gas velocity are taken at 0.15 and 1.5 
respectively in canonical coordinates. fun the 
performance measure is taken to be the total 
maneuver time. Since there are no intermediate 
coast arcs, the time-optimal control problem and 
the minimum fuel problem would be identical for 
our low-thrust spacecraft. The boundary 
conditions for the state variables are given below 
using vector notation: 
 
 

x0 01 0 0 1 0 0 15= { , , , , , , . }ϕ T , 
 
 
 

x f
Tfree free= { . , , , , . , , }1 5 0 0 0 816 0 , 

 
     The problem is solved through a collocation 
scheme. The system differential equations are 
discretized using the trapezoidal transcription formula. 
The total maneuvering time to be determined is 
divided into 20 equal intervals which creates an 
NLP problem having 327 variables and 327 
constraints. The solution process is repeated for 
three inclination angles: 5.7°, 16° and 21.2°. The 
numerical results for control components, spacecraft 
velocity components and spacecraft radial as well 
as angular positions are shown in Figures 2. A 
three-dimensional view of the trajectory is also 
shown for one of the inclination angles, φ0 = 21.2°, 
in Figure 3. 
     A notable result is the increased oscillation of 
control components for larger inclination angles. 
Due to homogeneity of the boundary conditions 
on the two variables &R  and R &ϕ , their variation must 
possess some kind of symmetry that is verified by 
the numerical results. Deviation from this 
symmetry occurs when the thrust acceleration is 
changed. Since for the low inclination angles, the 
total flight time and the range of variations in the 
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Figure 2. Control history vs. scaled time: (a). ur, (b) uθ, and (c) uϕ , and variation of 
(d) x4, (e) x5 and (f) state component vs. scaled time. 
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Figure 3. Three-dimensional View of the Two-Burn Transfer 
to a Noncoplanar Keplerian Orbit. 
 
thrust acceleration decrease, the predicted symmetry 
becomes more noticeable. 

 
Transfer to a Solar Sail “Halo” Orbit   Halo 
orbits have recently been utilized using Solar 
radiation pressure that generates the required 
thrust power through large area, light structured, 
Solar sails. A recent application of such orbits 
was the Russia’s space mirror deployed in 
1993. Due to a wide variety of applications of 
halo orbits, such as real-time stereographic 
investigation of planetary surface, investigation of 
full three-dimensional structure of magnetotail, 
etc., the transfer to such orbits has considerable 
importance [13,14]. In this example the goal is to 
transfer a spacecraft from an initial circular 
Keplerian orbit with radius one to a parallel halo 
orbit h units away vertically. The linear velocity 
for the halo orbit is taken to be 0.816.  The initial 
thrust acceleration and the exhaust gas velocity is 
taken as 0.2 and 1.5 respectively. The boundary 
conditions on the state variables are given as  

x0 1 0 0 0 1 0 0 2= { , , , , , , . }T , 

x f f f
Tx free free= { , , , , . , , }1 0 0 816 0ϕ . 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 4. (a)ur, (b) uθ and (c) uφ control history vs. scaled 
time. 

 
 
     The  pe r fo rmance  index  i s  t he  t o t a l  
maneuvering time of the spacecraft.  The final 
angle φf is computed from the following relation 
 

ϕ f
f

h

x h
=

−
arctan( )

1
2 2

. 

 

     The solution and discretization procedures are 
the same as those in the first example. This 
example is solved for two values of h, for which 
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the control histories are shown in Figures 4. A 
three-dimensional transfer trajectory for h = 0.34 
is shown in Figure 5. As it can be seen from the 
results, the control histories are totally different 
for the two chosen vertical displacements, where 
fluctuations in control components have been 
increased by increasing h. The initial thrust 
acceleration in such problems could not be 
arbitrary and its minimum allowable value for a 
meaningful solution is obtainable from the 
following relationship 
 

x
xt t

f
f7

1
20= > µ ϕsin . 

 

     After reaching the target orbit, the Solar sails 
become responsible for station keeping and the 
transfer maneuver is completed. The stability of 
halo orbits is of primary concern in their usage 
[13,14]. 

Two-Burn Transfer to a Non-Coplanar 
Orbit   In this example, the problem of transfer 
between two non-coplanar non-intersecting 
circular orbits with large radii ratio is considered. 
The initial orbit is of radius one and the target 
orbit is of radius 4 (both in canonical units), 
where the two orbital planes make an inclination 
angle of 21.2°. Due to this large radii ratio of the 
two orbits, the maneuver phase consists of two 
MT arcs and one intermediate coast arc. The 
performance index Equation 5 represents that the 
total powered flight time is minimized. The 
constraints related to the intermediate coast arc 
are augmented to the performance index using 
Lagrange multipliers. Due to the special form of 
this proposed problem a well-chosen initial guess 
is needed to overcome the solution divergence. To 
alleviate this difficulty,  an interior-point 
constraint is used that limits the solution space 
and thus makes it more predictable. With regard 
to Equation 16, the simple constraints on the two 
states x3 and x6 would be 

Z T x T1 1 3 1 0( ( )) ( )x = = , 
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Figure 5. Three-Dimensional View of the Transfer to a Non-
coplanar Halo Orbit. 

Z T x T2 1 6 1 0( ( )) ( )x = = , 
 
t T t0 1 1

+ −< < , 
 
where t1

−  is the moment when the first MT arc 
ends. With this form of the interior constraints, 
the spacecraft would tangentially enter the target 
orbit plane while it is in its first MT trajectory 
and continues the three dimensional maneuver 
most of which will remain within the target 
orbital plane. The discretized system equations 
are obtained using the trapezoidal rule. The first 
MT trajectory is subdivided into 30 equal 
intervals, while the last MT arc consists of 10 
equal intervals. This makes an NLP problem with 
579 variables and 579 constraints. 
     The solution has been generated for three 
values of initial thrust acceleration, and the 
resulting optimal control components have been 
shown in Figure 4. A three dimensional view of 
the entire trajectory has also been demonstrated in 
Figure 7. Due to the specified interior constraint, 
the control component uϕ approaches zero once 
the spacecraft enters into the final target plane. 
As realized from the results, lower initial thrust 
acceleration auses a reduction in the control  
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Figure 6. Control history vs. scaled time: (a) ur, (b) uθ.and 
(c) and uφ. 
 
 

fluctuations. Apart from a decrease in the 
controller effort, this is practically desirable, for it  
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Figure 7. Three-Dimensional View of the Two-
Burn Transfer to a Noncoplanar Keplerian Orbit. 
 
 
increases the system robustness to the small 
variations in the system parameters (such as the 
inclination angle between two orbital planes). 

 
 

CONCLUSION 
 

Some problems in the optimal three-dimensional 
orbital transfers have been solved for thrust-
limited spacecraft using a recently developed 
collocation and NLP techniques. The full nonlinear 
dynamical equations of motion for a point mass 
have been used and the integrals of free Keplerian 
motion in three dimensions have been utilized to 
determine the coast arcs. In order to better predict 
the final results, some interior-point constraints 
have been used which constrain the solution 
manifold and make the initial estimates more 
sensible. This method was successfully applied to 
the three dimensional transfer between non-coplanar 
Keplerian orbits and transfer to a Solar-sail 
“Halo” orbit from a Keplerian circular orbit. For 
the problem where the difference between the 
initial and target orbital radii is large, intermediate 
coast arc has been considered. This method appears 
to be suitable for any three dimensional transfer 
between non-coplanar and non-coaxial orbits. 
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