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Abstract   In this paper, a Multivariate-Multistage Quality Control (MVMSQC) procedure is 
investigated. In this procedure discriminate analysis, linear regression and control chart theory are 
combined to control the means of correlated characteristics of a process, which involves several serial 
stages. Furthermore, the quality of the output at each stage depends on the output of the previous stage 
as well as the process of the current stage. The theoretical aspects and the applications of this 
procedure are enhanced and clarified and its performance is evaluated through a series of simulated 
data. Both in-control (type one error) and out-of-control (type two error) Average Run Length (ARL) 
studies are made and the performance of the MVMSQC methodology is discussed. 
 
Key Words   Statistical Quality Control, Control Chart Theory, Average Run Length, Discriminate 
Analysis, Regression Residuals, Hotelling T2 

 

در اين روش   .  چند مرحله اي بررسي شده است      -در اين مقاله يك روش كنترل كيفيت چند متغيره             چكيده
تحليل تبعيض گذاري، رگرسيون خطي و نظريه نمودارهاي كنترل، تركيب شده اند تا بردار ميانگين خصوصيات          

 هم به خروجي مرحله قبل و كيفيتي همبسته يك فرايند كه شامل چند مرحله است و كيفيت خروجي هر مرحله    
جنبه هاي نظري و كاربردي روش به كمك مقاله          . هم به خصوصيات مرحله جاري بستگي دارد، كنترل شود          
تحت هم از نوع     (ARL)متوسط طول اجراء    . شود واضح شده و عملكرد آن از طريق شبيه سازي بررسي مي            

گيرد و در مورد     مورد بررسي قرار مي   ) اي نوع دوم  خط(و هم از نوع خارج از كنترل         ) خطاي نوع اول  (كنترل  
 .شود نحوه عملكرد روش ارائه شده، بحث مي

 
 

 
INTRODUCTION 

 
The revolution of design cycle and customers’ 
tendency to use more efficient and easy to use 
products have had significant effects on design and 
production of goods. On the other hand the 
competitive market has made the quality of 
products an important factor for having higher 
market share or even surviving in the market. The 
complexity of products and the need for higher 
quality require more advanced quality control 
techniques. The quality of today’s products usually 

involves several quality characteristics. If these 
quality characteristics were independent, the 
traditional univariate control charts would have 
been effective tools for controlling the process. 
However, this is not usually the case. When there 
is a strong correlation among the quality 
characteristics, the traditional control charts may 
provide misleading results. Montgomery [1] has 
presented the consequences of this misuse. 
     Multivariate quality control can be classified 
into two categories. First, when quality test includes 
several parameters. Second, when a production line 
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Figure 1. Two different multivariate scenarios. 
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Figure 2. General scenario on multivariate systems. 
 
 
 

 
 
 
 
 
 

 
    Stage 1: Solfunation               Stage 2: Solfunate Slurry         Stage 3: Detergent Powder 

 
Figure 3. Three stages of detergent production line and their corresponding quality. 

 
 
 
includes several serial stages as a sequential 
system. Sequential and non-sequential systems are 
graphically presented in Figure 1. In the sequential 
case, production lines have several stages and the 
quality of the product in each stage depends not 
only on the process of the current stage, but also on 
the quality of the input to the current stage, which 
is the output of the previous stage. Chemical 
industry is a good example of this case. In the non-
sequential case, where there are several correlated 
characteristics, the purpose of each test is to detect 

where the process has gone “out-of-control” and 
which of the variable(s) is (are) the cause of 
deterioration. A general scenario depicted in 
Figure 2 can be a system, which contains both of 
these categories. 
     The detergent production industry is a good 
example of these systems. Detergent production is 
a chemical-physical process, which in different 
stages of the process, different materials mix 
together and go through chemical reactions. This is 
a typical example of the case where the manufacturing 
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systems have several stages in production; and in 
each stage of the production several correlated 
quality characteristics are present and used to 
control the process. Figure 3 shows the main stage 
of production and quality characteristics at each 
stage. The output quality of the second stage 
depends on the process of the first stage as well as 
the quality of sulfunic acid, which is the output of 
the first stage. We will use the data of stage one 
and stage two of such a system in example one. 
     In the MVMSQC method, Niaki and 
Moeinzadeh [2] developed a statistic and an 
algorithm for the cause-selecting problem in which 
the population parameters are not known and are to 
be estimated. They also applied the Hotelling T2 

statistic (Hotelling [3], Montgomery [4] or Ryan 
[5]) and regression concept to develop a criterion 
to eliminate the effect of the prior stage from the 
current stage’s quality characteristics. They 
suggested a statistical quality control system to 
address the general scenario by answering the 
following questions: 
1. Is the process at each stage “in control”? 
2. If the process of stage (i) is out-of-control, 
which characteristic(s) is (are) the cause of 
deterioration? 
1. If the process shows an “out-of-control” signal 

in stages i and i+1, how has the output of stage i 
affected the result of stage i+1? 

To address the first question they used the well-
known Hotelling T2 statistics, then they applied the 
discriminant analysis to address the second 
question; and an iterative algorithm was developed 
to test each variable and subset of variables. In 
their research, the third question was answered by 
applying T2 statistic and regression concepts. They 
developed a criterion to eliminate the effect of the 
prior stage from the quality characteristics of the 
current stage.  

The purpose of this research is to enhance 
the theoretical aspects of the MVMSQC method, to 
clarify its applications as well as to evaluate its 

performance through series of simulated data and 
average run length studies.  

 

LITERATURE REVIEW 
 
The literature in Multivariate Quality Control can 
be classified into two broad categories; Sequential 
and Non-Sequential. The distinction between 
sequential and non-sequential processes is not in 
the order of occurrence of the processes, but in the 
order of measurement of the process parameters.  

Sequential Process   The control of sequential 
processes is less of a problem since a change in a 
parameter affects only the upstream processes and 
does not affect the preceding processes. Using 
least-square regression seems to be the best 
possible solution to the problem (Mandel [6]). See 
also Zhang [7-10]. Constable et al. [11,12], Wade 
and Woodall [13] and Hawkins [14,15]. 
     Zhang [7] has studied a system with several 
production stages in which each stage consists of 
one quality characteristic. The other approach, 
which was put forward by Mason et al. [16], has 
proposed an effective method to address sequential 
systems using double decomposition of Hotelling 
T2. In this model each stage can have more than 
one variable. This method is designed to detect 
stepwise changes. One draw back of this method is 
its excessive computation, especially when the 
number of time periods increases. Each time period 
adds one row and one column to the variance-
covariance matrix. The other draw back of this 
method is its limited generality, where the quality 
characteristics of all stages remain the same, which 
is not the case in many real situations. 

Non-Sequential Processes   Murphy [17] 
proposed a method to identify the “out-of-control” 
variables based on discriminant analyses. A quality 
control method is viewed as trying to discriminate 
between the process of being “in control” or “out-
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of-control”. He divided the complete set of 
variables into two subsets and then tried to 
determine which one of the subset caused the 
“out-of-control” signal. He used the difference 
between the full squared distance and the 
reduced squared distance as the test statistic. By 
doing a series of tests and continuously 
dividing the subset of the variables into smaller 
subsets, it is possible to determine the “out-of-
control” quality characteristics. 
     An extension of Murphy’s [17] work is Chua 
and Montgomery [18]. They proposed a three steps 
quality control process by using a Multivariate 
Exponential  Weighted Moving Average 
(MEWMA) control chart, a backward selection 
algorithm and a hyper plane method. A MEWMA 
control chart is established after every new 
observation in a continuous basis until an “out-of-
control” signal appears. If an “out-of-control” 
signal appears, then the backward selection 
algorithm and the hyper plane method are used to 
diagnose it. An obvious draw back of this method 
is that it does not allow us to see trends, so it is not 
diagnostic on a continuous basis. This method does 
not necessarily always pinpoint the “out-of-
control” quality characteristic. The method also 
uses only the MEWMA chart to detect initial “out-
of-control” signals, which sometimes take a 
considerable amount of time to show up because of 
the inertia problem in the MEWMA chart. The 
MEWMA should always be used in conjunction 
with the Hotelling T2 (Lowry et. al. [19]). 
     The principal component analysis is a way of 
explaining the variance-covariance structure in a 
multivariate environment by the use of few linear 
combinations of the original variables. Jackson 
[20-23] gave a detailed description of principal 
components and its possible use as a multivariate 
quality control tool. Chang [24] extended 
Jackson’s work by giving a thumb rule to identify 
the cause of shifting in the overall mean based on 
unique distribution patterns exhibited by the 

principal component charts. The problem with 
principal component is that they are not easily 
interpretable in many cases. They do not have a 
one-to-one relation with the original variables (i.e. 
the first principal component signaling does not 
mean that the first variable is “out-of-control”). 
Regardless of the order of variables, the principal 
components remain the same, so it is not possible 
to pinpoint a cause based on principal components. 
In some cases principal components can be very 
useful, depending on the context, but these 
successes cannot be generalized in all cases. 

In order to diagnose the “out-of-control” 
variable in a non-sequential case, Alt [25] 
proposed an application of Bonferroni inequality to 
develop control charts. The control limits of these 
charts are wide and they are not effective when the 
shifts are small. We tried control limits based on 
simultaneous T2 intervals (Johnson and Wichern 
[26]), which were even wider than the control 
limits when using Bonferroni intervals. 

Daganaskoy et. al. [27] proposed the use of 
univariate t-statistic for ranking the variables most 
likely to have changed. Then to further strengthen 
the belief that a certain variable has changed they 
applied Bonferroni type interval. The obvious draw 
back of this method is that it only tells you which 
variable is most likely to have shifted and this it is 
not conclusive. This method does not also allow us 
to study trends. 

Mason et. al. [28] proposed a cause-selecting 
procedure using the decomposition of Hotelling T2  
statistic. By decomposing Hotelling T2 statistic the 
user can see the contribution of each variable in 
this statistic. This decomposition allows the user to 
detect which variable(s) with significant 
contribution is (are) the cause of deviation. The 
only draw back of this procedure is its extensive 
computation and sensitivity to the number of 
variables. This procedure becomes more 
cumbersome when the user adds to the number of 
variables. 
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THE MVMSQC METHOD 
 
In the MVMSQC procedure, it is assumed that the 
process at each stage of production possesses a 
multivariate normal distribution with unknown 
parameters (µ , Σ ), and Σ is constant during the 
study. The procedure consisted of four phases, in 
each of them the estimated value of (µ , Σ ) was 
used. 

In phase zero, named the “Collecting Data for 
the Model Setup phase”, assuming an in control 
process, k groups of sample data were collected; 
each consisting n observations, and Xijm was 
defined to be the observation of the mth sample of 
parameter i in the jth group. Then the p*k sample 
means of parameters in k groups were computed 
as: 
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The overall sample mean of the ith parameter and 
the sample mean vector was calculated as: 
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The estimated element of row i and column j 
of the pooled sample variance-covariance 
matrix (SP) of the sample vector mean of the 
p parameters, was then computed as: 
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where i and j are equal to 1, 2, … , and p. To make 
sure that the setup phase had been successfully 

completed, for each of the k groups Tj
2 was 

calculated as: 
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and compared it against the Upper Control Limit 
(UCL) as: 
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whereX(j) denoted a vector with p elements that 
contained the group averages for each of the p 
parameters. If the values of Tj

2 in all of the k 
groups did not exceed the UCL, then Tj

2 values of 
stage s+1 were regressed on the Tj

2 values of stage 
s and the regression parameters were estimated for 
future use. Otherwise, if any of the Tj

2 exceeded 
the UCL, then the corresponding group(s) was 
investigated. Furthermore, if there was any 
assignable cause in them, the corresponding entire 
group(s) was eliminated and the computations 
were made again. 

In phase one of the MVMSQC procedure, 
named the “Detecting Departure at Each Stage 
phase”, the actual behavior of stages of the 
production line was controlled through the 
Hotelling T2 statistic. If an “out-of-control” 
signal was detected for a group, the phase two 
of the procedure was then activated to find the 
parameter(s) causing the deviation. Also, if 
both of the subsequent stages were “out-of-
control’, phase three of the method were 
activated to see whether the latter stage was 
“out-of-control” or if the former stage had been 
“out-of-control” and caused an “out-of-control” 
signal for the current stage. 

Phase two of the algorithm, which we will call 
it “Cause Selecting Process” is an extension of 
Murphy’s method [17] and is the most important 
analysis in any non-sequential multivariate 
analysis. It is an analysis in which the variable(s) 
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causing the deterioration is (are) detected. The 
users of any multivariate system can find the 
technical reason of “out-of-control” signal much 
easier if they know which variable(s) is (are) the 
cause of deviation. Because of the statistical 
concerns, a cause selecting procedure must have 
the following three characteristics to be useful in 
real world application.  
 
• It must be easy to use. This means that the 
interpretation of the results does not need a high 
level statistical expertise. An example of this, 
which does not satisfy this criterion, is using 
principal components for the Cause Selecting 
problem. The final results of the analysis consist of 
a set of independent variables none of which 
individually represents any of the original 
variables.  
 
• The result must be straightforward. This 
means that the result should have a unique and 
unambiguous interpretation. Graphical methods 
addressed by Anderson [29], Andrews [30], 
Chamber et. al. [31], Chernoff [32], and Scott [33], 
have this draw back because they present the 
overall status of samples and this status can be 
assessed in different ways. 
 
• In real world problems the values of the 
population parameters are rarely available. 
Therefore a test procedure must use the estimated 
values of the parameters. 

EVALUATION OF PHASE THREE 

In phase three of the MVMSQC algorithm, named 
the “Detecting the out-of-control stage”, a 
sequential multivariate problem was addressed. In 
this phase, the intuition of Zhang’s [10] method in 
univariate case was used and extended to a 
multivariate situation. Zhang has used the residual 
of observed value of a univariate quality 
characteristic with its regressed value on the 

corresponding observation of the previous stage. 
Several statistics can be chosen for applying this 
idea on multivariate case. In MVMSQC method, 
Hotelling T2 was selected for two reasons. First, 
the quadratic form of Hotelling T2 magnifies the 
effect of any deviation and makes the test more 
sensitive. Second, the Hotelling T2 was applied in 
phase 1 of the procedure, and by using it in this 
phase there was no need for any extra calculation. 

In MVMSQC procedure, several regression 
models are needed to be tested to find the best 
linear or non-linear regression model between 
Hotelling T2 of the current stage and Hotelling T2 
of the previous stage, and there was no best general 
model. In this phase, instead of testing the 
observed value of Hotelling T2, the residuals of the 
observed value and the predicted value of 
Hotelling T2 were tested. If the process in stage 
s+1 is “in control” the residual will be a small 
value close to zero (positive or negative). Because 
if the system behaves as it did in phase zero of the 
procedure, the observed and the predicted values of 
Hotelling T2 will be close to each other. By a 
simple transformation, these residuals would have 
a “t” distribution, which can be used for 
establishing a test of hypothesis. 

In this research a series of simulation studies 
were done to find the relationship between the 
Hotelling T2’s of the current and the previous 
stages under different conditions. These studies 
have shown that if there is a linear relation 
between at least one pair of variables in two stages, 
linear regression will be an appropriate model. 
Example 1 shows the result of simulation under 
this condition. Under other conditions linear 
regression is not an appropriate model and further 
studies are required for such cases. In the rest of 
the MVMSQC method, it was assumed that a 
linear regression is a valid model. In practice, it is 
possible that other regression models give better 
results and the user must be aware of the 
consequence of choosing an inappropriate 
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regression model. 

Example 1:  Consider the detergent production 
problem depicted in Figure 3. As the figure shows, 
there are three main stages in the production of 
detergent powder. In this example stage 1 and 
stage 2 of the production will be considered. Due 
to proprietary, we are unable to provide any more 
information about the nature of our data or 
specifics of possible signals. This was a consulting 
work done with the full understanding that no more 
than what we have stated here will be made public. 
However, we have used the desired values of the 
quality characteristic means and variance (by using 
the specification limit)* and the correlation among 
the quality characteristics (by interviewing an 
expert in the production line) for simulating data.  

     *Management of the company claims that a 
natural tolerance limits (NTL) of their production 
is narrower than specification limits in standard. 
By relying on this statement, a PCR (Process 
Capability Ratio) of equal to one for each 
characteristic was assumed. Knowing that they are 
adjusting the process at the center of NTL, the 
standard deviation of each of the variables was 
then calculated.  

     Stage one of the production has a multi-normal 
distribution with µ= [67.5,12,97] and 

 

 
For simulating the variables of stage 2, we have 
used the following relations: 

 
where x21 and x22 are the simulated variables of the 

second stage with µ21=100 and µ22=150. Also x11 

and x12 are the observed values of the variables in 
the first stage with their corresponding means µ11 
and µ12, and finally ε1 and ε2 are normal random 
variables with mean equal to zero and a variance 
equal to the variance of their corresponding 
variables. 
     The distribution of TD (the statistic for testing 
the hypothesis that either the current stage or the 
previous stage is “out-of-control”) is not available. 
So simulation technique has been used to choose 
an appropriate value of UCL. One thousand data 
sets have been used to estimate the coefficients of 
the regression model. To specify the control limits 
for run time phase, the maximum value and the 
histogram of TD under different scenarios have 
been used. Table 1 shows the maximum values of 
TD under different scenarios and Charts 1 and 2 are 
two samples of the charts, which have been used to 
choose the UCL value. 
     After several trial and error studies we have 
chosen UCL to be equal to 5 and used it for the run 
time sets. Table 2 shows the number of “out-of-
control” signals in 10 replications of 1000 
observations for each scenario. The first column of 
Table 2 shows the amount of shift (in multiple of 
σ) in the first variable of stage 1 and the second 
column shows the amount of shift (in multiple of 
σ) in the first variable of the second stage. Each 
cell of Table 2 shows the number of  “out-of-
control” signals in 1000 observations for the 
corresponding replication of each scenario. The 
first and the fifth rows show the number of false 
alarms of the procedure which can be used to 
calculate the type I error of this phase. In 
univariate and one stage multivariate quality 
control for a specific statistic and control limits, 
type I error has a specific value. However, in the 
proposed multistage procedure, it is not correct. To 
clarify this statement, let’s restate the definition of 
type I error in this case. Type I error is the 
probability of having an “out-of-control” signal for 
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the current stage when it is in control assuming the 
previous stage is “out-of-control”. In this case the 
probability of type I error depends not only on the 
control limits of the current stage control chart, but 
also on how the previous stage has been “out-of-
control”. 
     As a second example the first and the fifth rows 
of Table 2 show this fact. In both rows, the current 
stage has not shifted, but the previous stage has 
been shifted equal to 3σ at the first row and 2σ at 
the second row. The numbers of false alarms are 
significantly different in these rows. As Table 2 
indicates, TD is very sensitive when the mean of 
the current stage shifted 3σ (about 96%) regardless 

of the amount of shift in the previous stage (rows 4 
and 8). At 2σ shift in the mean of the current stage 
the procedure is very sensitive when the previous 
stage has shifted 3σ (about 94%). However, when 
both stages are shifted about 2σ, the sensitivity of 
the procedure goes down to 75%. 
      It should be mentioned that phase 3 of the 
procedure has been adjusted for our specific 
problem and the results can be used directly for 
other cases. However, we believe this approach 
can be modified for a wide range of real problems. The 
other point of phase three is used for simulation to find 
the critical value for the test, instead of being faced with 
the mathematical and pure statistical problems. 

 
 
 

TABLE 1. The Maximum of TD in 1000 Data Sets Under Different Scenarios. 
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Chart 1. The distribution of TD (the first variables of both 
stages are shifted 3σ Number of rejected groups considering 

UCL=5 in 1000 observations is 999. 
 

 
 
 

 
 
 

Chart 2. The distribution of TD (the first variables of both 
stages are not shifted Number of rejected groups considering 

UCL=5 in 1000 observations is 37. 
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TABLE 2. Number of “Out-of-Control” Signals in 1000 Observations. 

 
 

Stage 1 
 
Parameter 
 
Change 

Stage 2 
 
Parameter 
 
Change 

 
 
1 

 
 
2 

 
 
3 

 
 
4 

 
 
5 

 
 
6 

 
 
7 

 
 
8 

 
 
9 

 
 
10 

 
3 
 
 
3 
 
 
3 
 
 
3 
 
 
2 
 
 
2 
 
 
2 
 
 
2 
 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
0 
 
 
1 
 
 
2 
 
 
3 
 
 

 
36 
 
 
445 
 
 
950 
 
 
982 
 
 
13 
 
 
384 
 
 
744 
 
 
942 

 
37 
 
 
479 
 
 
941 
 
 
977 
 
 
22 
 
 
384 
 
 
744 
 
 
957 
 
 

 
39 
 
 
466 
 
 
932 
 
 
963 
 
 
20 
 
 
381 
 
 
750 
 
 
950 

 
28 
 
 
458 
 
 
937 
 
 
967 
 
 
23 
 
 
406 
 
 
761 
 
 
951 

 
42 
 
 
485 
 
 
943 
 
 
978 
 
 
14 
 
 
398 
 
 
750 
 
 
949 

 
37 
 
 
481 
 
 
956 
 
 
967 
 
 
19 
 
 
375 
 
 
761 
 
 
958 

 
48 
 
 
462 
 
 
934 
 
 
969 
 
 
17 
 
 
375 
 
 
755 
 
 
943 

 
55 
 
 
463 
 
 
942 
 
 
980 
 
 
18 
 
 
380 
 
 
733 
 
 
954 

 
39 
 
 
459 
 
 
941 
 
 
966 
 
 
12 
 
 
391 
 
 
767 
 
 
943 

 
43 
 
 
482 
 
 
943 
 
 
979 
 
 
20 
 
 
372 
 
 
734 
 
 
954 
 
 

 
 

AVERAGE RUN LENGTH STUDIES 
 

In-Control ARL (Type I error)   Why does the 
procedure use  Hotelling T2 test in phase one, and 
why does it use the cause selecting method just for 
“out-of-control” groups? Average run length study 
for “in control” and “out-of-control” situations, is 
one of the most effective criteria to assess the 
capability of a procedure. 
    Assume that phase two of the procedure would 
have been used for each observed subgroup 
regardless of the results of phase one. If we 
consider a type one error equal to α for each test 
for each subset of variable(s) in the procedure, 
because of the repetitive nature of the procedure, 
the overall type one error of the procedure would 

be higher than the basic value of α. A conservative 
type one error of the procedure in phase two can be 
achieved by assuming that all of the tests in 
different steps of the procedure are independent. If 
αT gives this upper limit for the total type one error 
of phase two of the procedure, then: 

However, because of the inherent dependency 
among the tests, the probability of the statistic plot 
inside the control limits is higher than 1-αT . 
     To estimate the real values of type one and type 
two errors, one set of 200 subgroups with 6 
samples in each subgroup of four-dimensional 
simulated multivariate normal variables with the 
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1
∑

−
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following parameters has been used for the setup 
phase.  
 
 
 
 
 
 
 

     Then 10 replications of 1000 subgroups with 6 
samples in each subgroup of four-dimensional 
simulated multivariate normal variables with the 
same parameters have been used as runtime 
subgroups for the simulation. 
     Using the setup data we have estimated these 
parameters and have used the estimated values for 
the rest of the simulation study. Table 3 shows the 
number of “out-of-control” signals in test of each 
subset of variables for 10 replications of 1000 
groups. The last two rows of Table 3 show the total 
number of false alarms by the Hotelling T2 and 
cause selecting procedure respectively. A 
comparison of the results in these two rows reveals 
that the number of false alarms at the cause 
selecting procedure is significantly higher than the 
number of false alarms of Hotelling T2. This draw 
back can be managed by one of the following 
ways: 
• Before using the procedure, estimate the real 
value of total type one error by using simulation. 
This means the user must set the value of type one 
error of each test in a way that the total type one 
error becomes equal to a desired α. 
• Use phase two of the procedure only after you 
find out the system is “out-of-control” by applying 
another statistical test; this method has been 
chosen for this research, because we only apply 
cause selecting procedure if Hotelling T2 detects an 
“out-of-control” signal.  

Out-Of-Control ARL (Type two error): In 
multivariate quality control, assessment of type 

two error is not as straightforward as it is in the 
univariate case. This is because the level of shift is 
not the only factor in determining the type two 
error, but is also dependent on the correlation 
between parameters. A procedure can be sensitive 
in detecting a shift on one of the variables for 
specific amount of shift but insensitive in detecting 
the same level of shift in other variables. This 
phenomenon makes it impossible to benchmark 
different multivariate procedures. In general, there 
is no uniformly most powerful test available. 
However, before a procedure is used for 
monitoring a system, it must be tested for the 
important possible shifts and be evaluated in 
detecting these shifts. In this research different 
scenarios for different levels of shift in different 
subsets of the variables have been simulated. In 
this simulation study, we have used the same 
covariance structure under different mean shifts.  
     The simulation study has made in two different 
ways. Table 4 summarizes the results of the first 
study, in which four replications of different 
scenarios with α=0.05 are used in Hotelling T2 as 
well as the cause selecting procedure. The results 
of this study shows that the MVMSQC procedure 
is very sensitive in detecting shifts (in multiple σ) 
in mean of equal or higher than 2σ (the last three 
rows of the table). For smaller shifts the sensitivity 
of the procedure depends on the structure of the 
variance-covariance matrix. As an example, 
consider rows five through eight, where at each 
row, one of the variable’s mean has been shifted by 
1 σ. However, the sensitivity of the procedure is 
much higher in the first three rows; this can be 
explained by the existing lower correlation of the 
fourth variable with the other variables. Another 
interesting point is that the procedure is more 
sensitive for the shift in the mean of one variable 
than the shift in the mean of two variables. To 
investigate this point, consider rows one, two and 
nine. The ARL in rows one and two is lower than 
the ARL in row nine. Assuming µ=(0,0,0,0) and a   

[ ]


















1.00   0.50   0.45   0.40
0.50   1.00   0.65   0.55
0.45   0.65   1.00   0.80
0.40   0.55   0.80   1.00

=Σ0,0,0,0=           and          µ
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TABLE 3. In Control ARL (The No. of False Alarms in Test of 1000 Subgroups (αααα=0.01)). 
 
 

Run No. 1 2 3 4 5 6 7 8 9 10 

Var.1 2 2 2 3 3 1 1 0 1 0 

Var.2 2 1 1 0 0 1 2 3 2 1 

Var.3 0 0 1 1 1 2 1 1 0 2 

Var.4 4 3 0 0 1 1 0 0 2 0 

Var.1,2 1 1 2 0 2 0 1 1 0 0 

Var.1,3 0 0 1 0 2 2 2 1 0 1 

Var.1,4 1 2 1 0 3 2 1 0 1 0 

Var.2,3 1 0 4 0 2 2 1 2 1 2 

Var.2,4 2 0 1 1 1 3 1 5 2 0 

Var.3,4 0 0 2 1 4 3 0 0 0 1 

Var.1,2,3 3 2 1 3 4 2 3 2 2 2 

Var.1,2,4 1 1 1 0 2 3 3 1 0 1 

Var.1,3,4 0 2 0 3 3 0 4 0 0 1 

Var.2,3,4 1 1 2 0 2 2 2 3 1 4 

All 14 14 10 9 17 18 12 10 10 11 

T2 1 2 4 5 5 7 3 2 3 3 

 
 

high positive correlation between the first two 
variables, this can be explained by the higher 
probability to get a point around (0.5, 0.5, 0, 0) 

than to get a point around (0.5, 0, 0, 0). Also 
the simulation results in Table 4 show that the 
cause selecting procedure is at least as 
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sensitive as Hotelling T2 test, while it can also 
detect the variable(s) causing deterioration. 
     In the second simulation study, to show the 
effectiveness of the procedure more clearly, we 
have defined the following terms and have used 
them in Table 5 to better explain the results: 
• Absolute Detection Rate (ADR): The 
percentage of parameters that are “out-of-control” 
and are detected as such. 
• Hyper-Detection Rate (HDR): The percentage 

of times the procedure has detected the “out-of-
control” variable(s), but another in control variable 
is also signaled as being “out-of-control”. 
• Sub-Detection Rate (SDR): The percentage of 
times the procedure has detected only a subset of 
the “out-of-control” variables. 
• Hyper-Detection Rate (HDR): The percentage 
of times the procedure has detected the “out-of-
control” variable(s), but another in control variable 
is also signaled as being “out-of-control”. 

 
 
 

TABLE 4. Comparisons of Hotelling T2 and Cause Selecting Procedure Out-Of-Control ARL (αααα=0.05). 

 
 Shift Hotelling T2 Cause Selecting Procedure 

 Replication 1 2 3 4 1 2 3 4 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 

(0.5,0,0,0) 
 

(0,0.5,0,0) 
 

(0,0,0.5,0) 
 

(0,0,0,0.5) 
 

(1,0,0,0) 
 

(0,1,0,0) 
 

(0,0,1,0) 
 

(0,0,0,1) 
 

(0.5,0.5,0,0) 
 

(0.5,0,0,0.5) 
 

(1,1,0,0) 
 

(1,0,1,0) 
 

(1,0,0,1) 
 

(2,0,0,0) 
 

(0,2,0,0) 
 

(3,0,0,0) 

10.1 
 

11.5 
 

13.1 
 

13.5 
 

3.9 
 

4.1 
 

6.0 
 

5.9 
 

11.9 
 

7.5 
 

6.2 
 

2.2 
 

4.2 
 

1.2 
 

1.1 
 

1.0 

11.2 
 

10.9 
 

13.2 
 

16.6 
 

3.4 
 

3.7 
 

5.2 
 

6.7 
 

13.5 
 

6.3 
 

5.4 
 

2.1 
 

3.6 
 

1.2 
 

1.2 
 

1.0 

11.3 
 

13.2 
 

19.3 
 

22.1 
 

3.4 
 

3.9 
 

5.4 
 

7.3 
 

15.6 
 

6.4 
 

6.5 
 

1.2 
 

3.6 
 

1.2 
 

1.2 
 

1.0 

12.1 
 

13.5 
 

11.2 
 

14.7 
 

4.1 
 

4.2 
 

5.4 
 

7.5 
 

16.0 
 

7.6 
 

6.6 
 

2.2 
 

4.4 
 

1.2 
 

1.2 
 

1.0 

10.4 
 

8.5 
 

12.5 
 

12.3 
 

3.2 
 

3.6 
 

4.8 
 

14.3 
 

14.2 
 

3.7 
 

6.2 
 

1.6 
 

2.5 
 

1.2 
 

1.2 
 

1.0 

9.2 
 

10.3 
 

10.2 
 

11.1 
 

3.1 
 

3.6 
 

4.5 
 

16.6 
 

12.2 
 

3.2 
 

5.3 
 

1.6 
 

2.4 
 

1.1 
 

1.1 
 

1.0 

11.0 
 

10.2 
 

18.0 
 

16.2 
 

2.8 
 

3.4 
 

4.2 
 

18.0 
 

18.5 
 

3.5 
 

6.0 
 

1.7 
 

2.4 
 

1.1 
 

1.2 
 

1.0 

9.2 
 

15.1 
 

10.1 
 

18.1 
 

3.3 
 

3.9 
 

4.3 
 

20.0 
 

14.1 
 

3.6 
 

5.8 
 

1.7 
 

2.8 
 

1.1 
 

1.2 
 

1.0 
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• Absolute False Alarm Rate (AFR): The 
percentage of times the procedure shows a variable 
or a subset of variables to be “out-of-control”, 
when none is “out-of-control”. 
 Absolute Ignorance Rate (AIR): The percentage 
of times the procedure does not show a variable or 
a subset of variables to be “out-of-control”, when 
at least one is “out-of-control”. 
     This categorization is important because the 
critical situations are different in industries. If the 
cost of type one error or examination of an “out-of-
control” signal is very high, the user should 
consider the HDR to be as important as AFR. On 
the other hand, if the cost of type two error or 
ignorance of an “out-of-control” variable is very 
high, SDR must be considered to be as important 
as AFR in evaluating the procedure. Ideally ADR 
can lead to find the cause of “out-of-control” 
signal; however, in some cases, HDR or SDR also 
can be a good starting point in looking for the root 

of the problem because they provide more 
information than Hotelling T2 does. 
     Table 5 shows the average of the above rates, 
which is resulted from 10 replications of each 
scenario. Review of Table 5 shows the results 
clearly. As rows 1-5 show, when one or two 
variables have been shifted by 2 or more σ, the 
procedure is very sensitive. When one variable 
shifts 3σ and the other variable shifts 1σ (row 6), 
the procedure faces a high SDR (57.2%). This is 
because the contribution of the first variable in the 
value inflation of the statistic is much more than 
the other variable and this covers the effect of the 
other variable in the value of the statistic. 
     On the other hand, the last row of Table 4 
shows that the sensitivity of the procedure goes 
down for changes around 1σ and it has a high 
amount of HDR (30.3%)  and  AIR  (25.9%). This 
means that the procedure is not effective for shifts 
of small magnitude. 

 
 
 
 

TABLE 5. The Average of Error Rates Resulting from 10 Replications of Each Scenario. 
 
 

 

Length of 
Shift 

Absolute 
Detection Rate 
(ADR) 

Hyper 
Detection Rate 
(HDR) 

Sub Detection 
Rate (SDR) 

Absolute False 
Alarm (AFR) 

Absolute 
Ignorance 
Rate (AIR) 

(3,0,0,0) 99.98% 0.02% N/A 0.00% 0.00% 

(2,0,0,0) 98.26% 1.52% N/A 0.10% 0.12% 

(3,3,0,0) 99.26% 0.68% 0.00% 0.00% 0.06% 

(2,2,0,0) 86.89% 10.52% 0.00% 0.00% 2.59% 

(3,2,0,0) 96.80% 2.70% 0.00% 0.00% 0.46% 

(3,1,0,0) 41.70% 1.10% 57.20% 0.00% 0.00% 

(1,0,0,0) 41.40% 30.30% N/A 2.39% 25.90% 
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CONCLUSION AND FURTHER WORK 
 
We have presented the practical aspects of the 
MVMSQC method to control a multivariate-
multistage production system. In this research, the 
cause-selecting phase (phase three) of the 
MVMSQC algorithm has been theoretically 
enhanced and a numerical example has been given 
to clarify and evaluate the performance of this 
phase. We have considered a linear relation among 
the variables of two stages and we believe that 
phase three of the procedure is a good area for the 
future work. 
     Even though the procedure works effectively on 
our detergent production example, there is no 
guarantee that the linear relation will work for 
every system. At this point it is the user’s 
responsibility to find the best linear or non-linear 
relation between the Hotelling T2 of any 
consecutive stages. Also the performance of the 
procedure has been evaluated through several 
simulation studies. Results show that while the 
procedure works well for large amount of shifts in 
the mean of the parameters in consecutive stages, it 
has some drawbacks for small shifts. 
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