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Abstract   the nonlinear discrete crack modeling of Shahid Rajaee thin arch dam is considered. The 
interface elements are positioned such that certain potential separated blocks can form possible failure 
mechanisms. The dynamic stability of theses blocks are investigated by a special finite element 
program "MAP-73" which its nonlinear algorithm and interface elements formulation are presented. 
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INTRODUCTION 

There has been extensive research to examine the 
effect of contraction joints opening in the 
nonlinear response of arch dams [1-2]. These 
studies show that arch stresses reduce drastically, 
but cantilever stresses in the downstream face 
increase. For high earthquake excitations, these 
cantilever stresses are much higher than the tensile 
strength of lift surfaces, causing horizontal cracks, 
which grow and form separated blocks. The 
stability of these separated blocks for the 
remaining part of the excitation duration poses a 
major question for designers, which has not been 
focused in the above-mentioned literature. 
Although, this could be evaluated approximately 
by simplified rigid body blocks method [3], but it 
is more appropriate to model the weak horizontal 
surfaces by using interface elements similar to 

contraction joints but with greater tensile 
strengths.  
     In this paper, a special finite element program 
called "MAP-73" [4], and the corresponding pre- 
and post-processing program "MAP-P" are utilized 
for this purpose. The theory of the interface 
element formulation and the nonlinear algorithm 
applied are explained initially. Later, nonlinear 
behavior of Shahid Rajaee thin arch dam is being 
considered by evaluating the dynamic stability of 
potential separated blocks. The dam is 130m high, 
with the crest length of 420 m and it is being 
constructed in the north of Iran in the seismically 
active foothills of Alborz Mountain, near the city 
of Sari. 

THEORETICAL BACKGROUND 

Nonlinear static analysis is a prerequisite for a 
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complete nonlinear dynamic analysis, because the 
latter applies the results of the former as initial 
conditions. Therefore, it is worthwhile to 
concentrate initially on static analysis, although 
from theoretical point of view, static analysis can 
be considered as a special case of dynamic 
analysis with no inertia and damping effects. 
 

Nonlinear Static Analysis   There is much 
literature on the subject of nonlinear analysis [5-
7]. However, it can be simply stated as an iterative 
process on the equation of static equilibrium 
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 could be taken as initial or tangent 

stiffness   matrix   leading   to   initial   stiffness  or  
Newton-Raphson method. The latter approach 
often requires much more computational time. 
However, there is less chance of divergence 
especially for large increments of loads. A more 
popular technique, which is a compromise between 
the previous two algorithms, updates the tangent 
stiffness matrix merely at the beginning of each 
increment. This is referred to as modified Newton-
Raphson technique. i
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The initial guess for vectors of displacements and 
internal forces at instant 1+n  is taken as its known 
values for instant n . 

Internal Force Vector   Assuming that state of 
stresses in a finite element is known at some 
instant n , the vector of equivalent internal forces 
for the element is obtained by setting equal the 

virtual works of internal stresses and the 
equivalent forces, i.e., 
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By combining (3) and (4), the following relation 
yields 
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which must be true for an arbitrary virtual 
displacement. Therefore, the vector of internal 
forces of an element at instant n  can be obtained 
by the following integration. 
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Tangent Stiffness Matrix   The total tangent 
stiffness matrix is obtained by assemblage of different 
elemental tangent stiffness matrices which can be 
defined for a given discrete crack model. The 
nonlinearities are limited to contraction joints and 
some of the horizontal surfaces. It should be noted 
that the solid elements could be taken as usual 
linear isoparametric elements whose stiffness 
are calculated once at the beginning, assembled 
and stored for recursive application throughout the 
analysis. While the interface elements stiffness 
need to be updated at all iterations. 

Isoparametric Interface Element   The interface 
element is utilized to model discrete cracks and 
joint openings at any predefined surface. It consists 
of two spatial 8 noded isoparametric layers A, and 
B placed originally on top of each other with 
potential for being separated partially or completely. 
     The coordinates of any point on the surface of 
the interface element can be interpolated based on 
the nodal coordinates of the element. 
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Similarly, the relative displacements of any point 
are interpolated. 
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Therefore, the vector of relative displacements at 
any point is written as  
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~  is a 3 x 3 diagonal matrix with each 

diagonal element being equal to if . 
      The local stresses at any point on the surface of 
the element are related to the local relative 
displacements in two arbitrary tangential 
directions and the perpendicular direction as 
follows  
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jk  being the stiffness in the thj  direction, which 
is set equal to a relatively large number. 
     However, in case l

3σ  at a gauss point is greater 

than a specified limit *σ , perfect tensile softening 
is assumed ( i.e., 3k =0 ) and the element opens up.  
Of course, it regains its stiffness if the gauss point 
tries to act in compression at a later stage. 
     The local surfacial relative displacements 
vector is related to global relative displacements 
through matrix 
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in which thj  row of matrix 
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T  corresponds to 

components of a unit vector in thj  direction. Also, 
combining (9), (11) and (13) it yields: 
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     Finally, the stiffness matrix is obtained by 
setting equal internal and external virtual works of 
the element  
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Substituting (13) - (15) into (16) results in  
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which must be true for arbitrary displacements 
vector TU
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δ . Thus the elemental equation of 

equilibrium is yielded. 
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The integration process is easily performed by 
famous gaussian procedure and 

t
K
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 being the 

tangential stiffness matrix of the element is 
obtained. 

Linear Dynamic Analysis   It is worthwhile to 
explain the algorithm applied in case of linear 
dynamic analysis prior to the more complicated 
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nonlinear dynamic analysis. In the “MAP-73” 
program the popular Newmark method is used 
which is a generalization of several algorithms 
such as constant or linear acceleration methods. 
This is explained briefly below. 
     Consider the equation of dynamic equilibrium  

~~~~~~~
RUKUCUM =++     (20) 

where 
~~~

,, KCM  are mass, damping, stiffness 

matrices of the system respectively, and 
~
R  is 

vector of nodal external forces. In Newmark 
method, velocity and displacement vectors of 
instant 1+n  are written in terms of displacement, 
velocity of instant n , and accelerations of instants 
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in which δ α,  are two arbitrary constants to be 
specified. In this report, the values of 1/2 and 1/4 
are used for these constants respectively. 
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For simplicity, (23) and (24) can be written as 
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Finally, replacing (25), (26) into (20) yields 
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+
are referred to as the effective 

stiffness matrix, and the effective nodal force 
vector at instant 1+n  respectively. Therefore, we 
solve for displacements at each step in (27), and 
substitute into (25), (26) to obtain the acceleration 
and velocity at instant 1+n . 

Damping Effect   As mentioned in previous 
section, direct integration method in time is being 
employed for dynamic analysis. In this method, the 
damping matrix requires to be explicitly defined. It 
is customary to apply the Rayleigh damping in 
which the damping matrix is defined proportional 
to mass and stiffness matrix,  

~1~0~
KMC αα +=  

where 0α  and 1α  are arbitrary constants to be 
specified. In the analysis carried out, these were 
determined such that the equivalent damping for 
frequencies close to the first and sixth modes of 
vibration would be 12% of the critical damping. 

Dam Reservoir Interaction   There is several 
procedures to consider the effect of hydrodynamic 
pressures induced by dam-reservoir interaction, 
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e.g. ,  methods  based  on  compress ib le  or  
incompressible water theories in frequency or 
time domain. In this paper, a conservative and 
computationally efficient modified Westergaard 
approach is employed which is explained below. 
     The method assumes that hydrodynamic 
pressures in excess of hydrostatic pressures acting 
on the dam body are proportional to the normal 
acceleration of the dam upstream surface, i.e.; 
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in which h,ρ  are water density and maximum 
depth. h′  is the depth of water at the location 
being considered. The normal displacement and 
acceleration of the dam upstream face can be 
defined in terms of displacements and 
accelerations in Cartesian coordinates system. 
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where zyx nnn ,,  are the components of a unit 
vector normal to the dam upstream face outward 
the fluid domain. The displacements and 
accelerations can be interpolated by the nodal 
quantities. 
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     Let us now convert the effect of hydrodynamic 
pressures into equivalent nodal forces. Setting 
equal the virtual works of the hydrodynamic 

pressures and the equivalent forces can achieve 
this  
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Knowing that (36) must be true for an arbitrary 
virtual displacement, we obtain 
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a
M
~

 is the added mass matrix, which is combined 

with the usual mass matrix of corresponding dam 
finite element. In this approach, the effect of dam-
reservoir interaction is considered in an efficient 
and conservative manner. 
 
Nonlinear Dynamic Analysis   In this section, 
the Newmark method explained for linear dynamic 
analysis is generalized to the case of nonlinear 
dynamic analysis. 
  Consider the equation of dynamic equilibrium at 
instant 1+n  
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based on (48), the thi )1( +  correction for 
displacements vector is obtained, and using (44), 
(45), better estimates for acceleration and velocity 
vectors can be calculated.  

     This process recurs until convergence is 
achieved, having in mind that i
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defined based on correct stresses at all iterations. It 
should be noted that the initial guess for vectors of 

acceleration, velocity, and forces equivalent to 
internal stresses at instant 1+n  could be chosen as 
follows: 
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Specialization for Linear Analysis   As 
explained, linear dynamic analysis can be 
considered a special case of nonlinear dynamic 
analysis for which at each increment only one 
iteration is performed. In this manner, replacing 
(49) - (51) into (48), we obtain 
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which is the same as linear dynamic relations 
previously obtained. 
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FINITE ELEMENT IDEALIZATION 

 
Selected Models   Two cases are studied. Case 
A, a linear model used mainly for comparative 
purposes. Case B, a nonlinear discrete crack model 
in which interface elements are utilized at some 
predefined surfaces where cracks deemed to occur 
based on the linear analysis results. In both cases, 
the finite element mesh consists of 660 nodes and 
76 isoparametric 20 noded elements (Figures 1a,b). 
Meanwhile in Case B, there are 26 isoparametric 
16 noded interface elements to model cracks and 
opening of joints (Figure 1c). Although, the same 

number of nodes are used for both Cases of A and 
B, the nodes corresponding to interface elements 
of Case B are constrained in the linear case, to 
guarantee that every two nodes have similar 
displacements. 
     The foundation is also taken as rigid to keep the 
computational time realistic. Of course, this could 
influence the boundary stresses in case of linear 
analysis drastically. However, it is less important 
for nonlinear case due to joint openings at the 
boundaries. It should also be noted that rigid 
foundation assumption has less impact on stresses 
in the vicinity of the spillway where the major 
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failure mode is deemed to exist. 

Basic Analysis Parameters   The concrete is 
assumed to have the following basic characteristics: 
Elastic modulus = 30.0 GPa 
Poisson's ratio  = 0.18 
Specific weight = 24.0 kN/m3 

     The interface elements, utilized for the discrete 
crack model (Case B) is applied with the  
parameters mentioned below : 
Elastic modulus ( Ec ) = 30.0 GPa 
k1=k2 ( tangential stiffness ) = 0.2 * Ec 
k3 ( normal stiffness ) = 50. * Ec 
σ* ( tensile stress limit for contraction joints and 
boundaries ) = 1.5 Mpa. 
σ* (tensile stress limit for horizontal lift joints ) = 
3.0 Mpa. 
      The water is taken as incompressible, inviscid 
fluid, with weight density of 10.0 kN/m3 and the 
water level to be at elevation 485.0 m.a.s.l 
(h=122.0 m ) 

Static and Dynamic Loading  It should be 
mentioned that static loads ( weight , hydrostatic 
pressures ) are visualized as being incrementally 
increasing in time until they reach their full 
magnitude. Therefore the same time step of 0.01 
second, which is chosen in dynamic analysis, is 
also considered as time increment of static loads 
application. It should be noted that time for static 
analysis is just a convenient tool for applying the 

load incrementally, but it is obvious that inertia 
and damping effects are disregarded in the process. 
In this respect, the dead load is applied in one 
increment and hydrostatic pressures thereafter in 
nine increments at negative range of time. At time 
zero, the actual nonlinear dynamic analysis begins 
with the static displacements and stresses being 
applied as initial conditions.  
     The dynamic excitations include the three 
components of Friuli-Tolmezzo earthquake records 
normalized on the basis of frequency content for 
MDE condition with a peak ground acceleration of 
0.42g. It needs to be mentioned that even though 
time duration of 20 seconds was applied on the 
initial trial cases, it was noticed that the response 
declines drastically after 6.0 seconds. For this 
reason and due to long execution times, the time 
duration was limited to 6.0 seconds in the main 
analyses carried out. 

ANALYSIS RESULTS 

As mentioned in previous section, two models are 
considered , the linear model ( Case A) and, the 
nonlinear discrete crack model ( Case B ). These 
cases are analyzed and the results are displayed in 
the following  forms. 

• Snapshots of the state of stresses on deformed 
shape together with contour of one of the 
principal stresses at specific instants of time. 

•     History of displacements for few nodes 
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TABLE 1. Maximum Principal Stresses ( MPa. ) for Linear Model ( A ). 
 

Location                 σ1  σ 3      
 U/S D/S U/S D/S 
Spillway 7.9 7.9 -16.7 -14.8 
Base and Abutments 14.2 3.1 -9.2 -13.0 

 
TABLE 2. Maximum Displacements ( Cm ) at Dam Crest for Linear Model ( A ) 

 
Component Displacements of Dam Crest 
 Left 1/4 point Center point Right 1/4 point 
U( cross-canyon ) +3.0 -1.6 -4.6 
V( stream ) +4.2 +11.0 +8.0 
W( vertical ) -0.4 -1.4 +0.6 

 
TABLE 3. Maximum Principal Stresses ( MPa. ) for Nonlinear Discrete Crack Model ( B ). 

 

Location                 1σ  3σ      
 U/S D/S U/S D/S 
Spillway 5.6 6.0 -15.0 -17.6 
Base and Abutments 7.5 2.0 -7.0 -13.5 

 
TABLE 4. Maximum Displacements (Cm) at Dam Crest for Nonlinear Discrete Crack Model ( B ) 

 

Displacements of Dam Crest Component 
Left 1/4 point Center point Right ¼ point 

U( cross-canyon ) +4.0 -2.4 -5.3 
V( stream ) +6.4 +12.0 +9.4 
W( vertical ) +0.8 +2.1 +1.3 

 
 

specified on Figure 1d. 
• History of stress components or principal 

stresses for few elements at certain Gauss 
points specified on Figure 1d. 

• History of horizontal or vertical joint openings 
(Figure 1c) crossing the nodes shown on 
Figure 1d in case of nonlinear discrete crack 
model (Case B). 

• Contour of the envelope of maximum principal 
tensile or compressive stresses occurring 
throughout the time. 

Linear Analysis   The linear model (Case A) is 

considered just as a comparative case. It is 
apparent that the state of stresses at the base could 
be significantly overestimated in this case due to 
rigid foundation assumption. However, it is 
expected to be a good representative of a more 
accurate flexible foundation model in the middle 
part of the dam. 
     The results of stresses for Case A are displayed 
on Figures 2-5, the snapshots at specific times, and 
the envelope of maximum principal stresses. It is 
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noted that due to dead weight loading ( .,e.i  
sec09.0t −= ), the maximum compressive 

principal stress at the upstream face of the base 
reaches a value of MPa67.43 −=σ . At the end of 
staticloading ( 0.0t.,e.i = ), the base of the dam on 
upstream face goes into tension ( MPa00.51 =σ  ), 
while at the downstream face (base and abutments) 
acts in compression ( MPa45.53 −=σ ). The 
maximum principal stresses at each face 
throughout the time are extracted from envelope 
diagrams showed on Figures 4 and 5 and they are 
tabulated in Table 1. It is observed that, there are 
very high tensile stresses occurring at the base of 
the dam, which is due basically to rigid foundation 
model deficiency, and high tensile stresses in the 
area of spillway, which in reality are released with 
opening of contraction joints. 
     The displacements at the left quarter point, 
center, and right quarter point of the dam crest are 
also monitored through time and the maximums 
are summarized in Table 2. 

Nonlinear Discrete Crack Model (Case B) 
interface elements of discrete crack model are 
shown on Figure 1c. It is seen that interface 
elements provide two potentially separated blocks, 
under the spillway, and at the left quarter point. 
Meanwhile, the interface elements are also utilized 
in a major part of the boundary. 
     The results of the analysis are displayed in 
Figures 6-11. It is evident that for dead weight 
( .Sec09.0t −= ), basically the same compressive 
stresses as of linear case are present at the base of 
the dam on upstream face ( MPa63.43 −=σ  ). 
However, when the hydrostatic load action is 
completed ( 0.0t.,e.i = ), the base interface 
elements open up and relieve the tensile stresses 
induced at the upstream face of the base of the 
dam. This also causes an increase in compressive 
stresses on downstream face ( .MPa81.5.,e.i 3 −=σ ). 
The maximum principal stresses throughout the 
execution time are tabulated in Table 3. 
     It is noted that in the spillway region, tensile 

arch stresses are released by opening of the joints 
but, there are still tensile stresses of lower 
magnitude in inclined directions. Meanwhile, the 
compressive stresses of the downstream face 
increase in comparison with the linear case . At the 
base of the dam and abutments, the tensile stresses 
are relieved up to the point that the interface 
elements are extended (Figure 1c). However at the 
corners, stress concentration are occurring  
( .MPa5.71 =σ ). Furthermore, the compressive 
stresses increase slightly in the downstream face 
while they decrease on the upstream face in 
comparison with the linear case. 
     The history of displacements at the left quarter 
point, center, and right quarter point at the dam 
crest are also monitored through time and the 
maximums are summarized in Table 4. 
     To evaluate the influence of interface elements, 
displacements and stress components of Cases A, 
and B are compared on Figures 12-14. It is noticed 
that for discrete crack model, the vertical 
component of the center point at the dam crest is 
influenced more due to joint openings than the 
stream component. The joint openings are also 
displayed in Figure 15 , with a maximum of 1.8 cm 
occurring in horizontal direction under the 
spillway. 

SUMMARY AND CONCLUSIONS 

The nonlinear behavior of Shahid Rajaee dam is 
considered by evaluating the dynamic stability of 
certain potential separated blocks. For this purpose 
an special finite element program "MAP-73" is 
utilized whose nonlinear algorithm and interface 
elements formulation are presented. 
     Two cases are considered, linear Case A , and 
nonlinear discrete crack model ( B ). In both cases, 
the foundation is assumed rigid to avoid very 
lengthy computational times. Of course, this 
assumption would overestimate the stresses at the 
boundary significantly in the linear case. However, 
it has less effect on the nonlinear cases. 
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The cases were analyzed and discussed in 
previous sections. The main conclusions 
obtained can be listed as follows: 

• There is basically the same state of stresses 
and deformation at the end of dead weight 
analysis for both cases. 

• At the end of static analysis, high tensile 
stresses are observed in the linear case at the 
upstream face of the base of the dam. This is 
reduced to nil for the discrete crack model. At 
the same time, compressive stresses increase 
in the downstream face on the base and 
abutments for the nonlinear model. 

• In the spillway region, tensile stresses decrease 
from .MPa9.7  in the case of linear model to a 
value of .MPa0.6  for discrete crack model. 
Meanwhile, the compressive stresses are 
increased from .MPa7.16−  in linear case to 

.MPa6.17−  for discrete crack model. 
• In nonlinear model, the maximum joint 

opening is 1.8 Cm, displacements are 
increased and the dam has remained stable 
throughout the analysis. 

• The nonlinear discrete crack model has 
converged with displacements, joint openings 
in an acceptable range. However, it seems that 

elasto-plastic behavior of concrete could also 
be significant due to high magnitude of 
compressive stresses present, which was 
neglected in this work. 
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