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Abstract In this paper the flow behaviour over a number of car bodies is studied. For this purpose the
unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and
nondimensionalizing the equations, the system of equations has been transformed from the Cartesian
(x-y) coordinates to a body fitted generalized (§-n) coordinate. As the flow is incompressible, the density
in the continuity equation will disappear and thus the coupling between the continuity and the momentum
equations will be lost. To resume the missing coupling between the aforementioned equations an artificial
state equation is introduced. This artificial state equation will couple the continuity and the momentum
equations via pressure. For turbulence simulation Jones & Launder's Low Reynolds turbulence model was
employed. By means of an implicit method, the system of five equations are solved. From the flow field
solution, the drag force on car geometries are predicted and the results are compared to the drag force
calculated from experimental correlations. Agreement is fare enough i.e. within 90 percent of accuracy.
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INTRODUCTION

Prediction of the drag force on car geometries are of
prime importance for designers of this sort of shapes.
The air drag force on a car geometry is usually
calculated from the pressure and velocity field around
the body. Wind tunnels are normally used to measure
the pressure and velocity around a model or possibly
a full scale car geometry. From the measured results,
it is possible to make some correlations which could
be used to predict the drag force (for example see the
results of Reference 1. However, the experimental
tests are both time consuming and expensive.
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Therefore, if we can model the flow behaviour around
a car shape numerically, it would be possible to
predict the drag force from the calculated pessure and
velocity field, which will save time and money.
Solution of the flow field around simple geometries
are reported by many researchers such as Lin [2],
Selika [3] and Payne [4). However from these simple
bodies results it is not possible to make any conclusion
on complicated car geometries. On the other hand the
flow analysis around the car bodies are classified by
car makers and therefore the published materials in
this regard are rare. In the present work it is attempted
to model the flow behaviour on a number of car
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shapes. To simplify the problem, the flow under the
car body and the effect of car wheels are ignored. In
order to assess the performance of the program the
following steps were taken: First, the drag coefficients
of two selected car geometries are extracted from the
wind tunnel results of Reference 1 and these results
are compared i.e. their ratio are calculated. Second,
for the simplified shapes of the aforementioned car
bodies the program is run and the predicted drag
coefficients are compared. Third, the ratio of the
predicted drag coefficients are compared to the ratio
of the drag coefficient which was calculated based on
wind tunnel correlation. Comparison of the two sets
of results for the tested cases appeared to be
promissing.

GOVERNING EQUATIONS

The unsteady 2-D incompressible Navier-Stokes
equations are the governing equations which are as
follow:

ou/ox + dv/dy =0 (¢))

9(pu)/ot + o(pu” + p - T, )/0x + d(pvu - T )/dy= pf,
@
9(pv)/ot + d(pvu - T )/ox + d(pV? + p - T )/oy=pf,
©)]

where
T, =AV.V+200u0x , T =AV.V+2udvRy (4)

T,=T,,= u(@v/ox + ou/dy), , A=-2/3u
where y is the dynamic viscosity coefficient and A is
the bulk viscosity coefficient. It is worth noting that
in Equations 2 and 3 the friction forces (f,, f) are
considered to be zero. The aforementined equations
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could be nondemensionalized by means of the

following reference parameters:

w=ufu, , v=viu_, x*=x/L_ , y=yL_

p+= p/pref ’ u+= u'/uref ’ t= t'ua-/chf

p=p/p, . . Re_=pu L _/u

Where u_ is freestream velocity which for this study
was the air velocity of 16.6 m/s, corresponding to a
car velocity of 60.0 Km/h. Alsop_,, p,., and u_, are
pressure and air properties at freestream conditions.
The characteristic length or reference length (L) is
the car length. After nondimensionalizing the
governing equations are as follow:

du/ox + ov/oy =0 (&)

ou/ot + u.9u/9x + v.du/dy = -0p/dx + 1/Re_(d*u/dx* +
d%u/ay?) (6)

9v/ot + u.0v/ox + v.0v/dy = -0p/dy + 1/Re_ (9*v/dx?
+ 02v/oy?) @)

ARTIFICIAL COMPRESSIBILITY

In the equations presented above u, v, and p are
unknowns. The pressure does not appear in the
continuity equation and hence the coupling between
these equations with respect to the pressure is lost.
There are many ways to overcome this problem. The
SIMPLE algorithm used by Patankar [S] is a famous
one. Integrating u momentum equation with respect
to y and v momentum equation with respect to x, and
subtracting the two equations, the pressure term will
cancel out from the momentum equations. The
resulting equation combined with the continuity
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equation will end up with a Poisson type equation [6]
which, upon the solution, will provide the velocity
field. This is a good procedure for steady 2-D
problems, but due to the errors generated in mass
balance [7] it is set aside. The method proposed by
Chorin [8] uses an artificial state equation, as

following:

p=xp ®)

where p is the pressure, p is the density and x > O is
the artificial compressibility factor. By using the
above equation the unsteady continuity equation
becomes:

op/ot + x(du/ox + dv/dy) =0 e

The value of the x should be selected in such a way
that the system of equations reach the steady state as
fast as possible. Its value is selected by trial and error,

GENERALIZED COORDINATE

Car bodies have complicated geometry and cartesian
coordinate is only suitable for simple rectangular
shapes. Therefore, it is necessary to transfer the
goveming equations from (x-y) coordinate to a body
fitted general (§-m)) coordinate. The resulting
transformed equations are,

op/ot + [y, ow/dE -y du/on +xdv/om - xqavﬁ)&] 1/}=0
(10)

ou/ot + [y, d%u/dg? - y07w/on’11/J + [xduv/on -

x, 0uv/0E]1/J - (cou/an + tu/oE]1/Re J*+

ly,0p/9& - y,0p/on11/J = [0d*u/0E? - 2B0*u/dEam +

yo’u/on’11/Re J* (1n

ov/oL + [xd*v/on?® - xnazv/B&Z]I/J + [yﬂauv/ai -

xgauv/an]l/l - (odv/on + Tov/dE]1/Re_J* +
(x,0p/on - xﬂBp/B&]l/J = [a0*v/0E? - 230%v/oEan +
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y0*v/on?]1/Re_J? (12)
where the parameters are:

X,=0x/0§ , x =0x/on , y,=0dy/d§ , y =0dy/on ,
J=xy, -X ¥, » & =x3 +y . B =xx +vy, .

Y =y +yh, 0=(yD - xD)J t=(x,D -y D)/,

Dx= U‘xéé a 2Byﬂﬂ * Yxnn ? Dy= Otyg‘,’ - ZB)’&” * 'YY,m (13)
TURBULENCE MODEL

By taking into account the overall size of a car body
and the kinematic viscosity of the air which is the
working fluid, the Reynolds number would be high
enough to consider the flow as a turbulent flow. To
model the turbulence, the two-equation K-& model of
Jones and Launder[9] isused inthis study. Michelassi
and Shih [10] have shown that in the flows with high
adverse pressure gradients the highReynolds number
version of Jones and Launder model does not provide
accurate results. Therefore, a low Reynolds version
of their model which is accurate enough near the
walls is used so that there is no need to consider wall
function. K equation (rate of kinetic energy

generation)

pDK/Dt = o[(u+i,/ )10y + 1, (du/dy)’ - pe - 2t
[0k°3/dy]? (14)

€ equation (rate of kinetic energy dissipation)

pDe/Dt=0((1 + ., /0,)de/dy)0y +c,f e/K i [du/dy]*-
c,f,pe¥/K + 2up /p [9°u/dy?) (15)

where
p= c“fppl(’/e , K= cpu1/0.9 (16)

and the constants are,
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=009 ,c=155, ¢=2, 6=1, o=13
and for f constants one has

f=1, £f=1.0- 3exp(-R?), f = exp[-2.5/(1+R/50)]
where R = pk?/ue is the turbulence Reynolds number.

COMPUTER MODELING AND SOLUTION
ALGORITHM

As the Navier-Stokes equations are nonlinear, they
are linearized. Further, all the space derivatives that
appear in Equations 10, 11, and 12 are discretized
with second order accurate central finit differences.
Afterlinearization and rearangement of the equations
a tridiagonal system of equations for u, v and p is
obtained. By means of analternating direction implicit
technique (ADI) this tridiagonal system of equation
issolved. Using the results of this system of equations
the K and € equations are solved separetly. Therefore,
the mass and momentum equations are not coupled to
the K and e equations. To start the solution procedure
a guess of the initial conditions is required. The free
stream condition is a good initial guess to start with.
The solution will continue until the steady state is
reached which is the final answer.

BOUNDARY CONDITIONS

A set of boundary conditions have to be defined
which are chosen as follows:

1) Inlet (Left): Attheinletagiven velocity profile
is imposed. The pressure is computed imposing its
second order derivative in the direction of the flow
equal to zero which becomes as following:

3p/ox*=0 , u=ufy) , v=0 17

2) Outlet (Right): At the outlet the parallel flow
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condition is assumed. Such a condition implies that
the eventual disturbances introduced in the domain
arenow completely damped so that, at the downstream
boundary, the flow pattem will not change any more.

dudx=0 , dv/ox=0 , v=0 (18)

3) Solid Wall (Lower): Atthe solid wall the no slip
conditionis applied, therefore the velocity components
are both set to zero. The pressure at the wall is
computed with the momentum equation normal to
the wall obtained by a suitable linear combination of
the momentum equations in the two coordinate
directions, i.e.

op/on=1/Redufon’> , u=0 , v=0 (19)

4) FarField (Upper): The upperboundary is set far
enough from the body in such a way that there would
be no influence of the body on it.

u=u_, v=0, d¢/dy=0 (20)
Where ¢ can be any variable.
GRID GENERATION

The choice of the cartesian orthogonal coordinate
leads to the standard form of the Navier-Stokes
equations with a simple rectangular mesh system.
Nevertheless, the lack of generality of a code based
on this option becomes evident as soon as it becomes
necessary to deal with a physical domain in which the
boundaries are not aligned with the coordinate axes.
A curvilinear non-orthogonal coordinate mesh was
chosen, where the boundaries of any flowfield can be
made to coinside with coordinate lines. Several ways
to produce such a domaih are available, ranging from
algebraic transformations to the solution of elliptic
partial differential equations with a smoothly
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generated mesh (6]. The method of Thompson [11]is
used in the present work, where the following Laplace
equations could be solved.

VE=0 , V=0 1)

where € and 1 are the coordinates in the computational
domain. In order to cluster points in regions with
high gradients, the exponential weighting functions,
pn) and q(€m) are introduced, and the Poisson

equations are solved.

VE=pEn) . Vn=qEn) (22)

Where p(€,n) and q(€,n) are as follows:
pEM) =- Elaa sgn (§ - &) exp(-c[E - E])

3 bsgn &- &) expCdV €-gF+ D) (2
2

qE&m)= - X a sgn (n - ) expCom -0

£ bsgn (- ) exp(-d VE-EP+@-mP) @4
2

Where m is the number of constant grid lines § and/
or 1 in which clustering is enforced, whereas & and
n, specify the lines. Similarly n is the number of grid
points arround which clustering is enforced with &,
and M, specifying the points. Also a and b are
amplification factors and ¢ and d are decay factors
respectively. Proper values of these constants are
selected by trial and error. The first term in Equation
23 has the effect of attracting the &= constant lines to
£=§& and the second term causes &= constant lines to
be attracted to the points (§j,nj). In Equation 24
similar effect onn= constant lines happen. The use of
the sign-changing (sgn) function is only necessary
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to cause attraction to both sides of a line or point in
the field. The (sgn) was defined as sgn(x) to be 1, 0,
or -1 depending on whether x is positive, zero, or
negative.

COMPUTER PROGRAM

To carry on the calculation a computer program
written in Fortran 77 was used. In order to check the
generality and accuracy of the program, first the flow
over a step was solved, and its results are shown in
Figure 1 which qualitatively agrees well with the
results published by Michelassi and Benocci [7].
Figure 1ashows the generated mesh while Figures 1b
and 1c show the velocity vectors and streamlines
respectively. The effect of the number of mesh points
on the accuracy of the results was assessed and it was
found that as the number of grid points are increased
the mass error is decreased (see Table 1). However,
the final grid points are 66*26 which is close to the
capabality limit of the computer used, i.e. DX2-486.

TABLE 1. The Results of a Grid Study.

Number of Grid Points ) Mass Error % II

16 * 10 1, 0011350 |
 25%16 [ 0.007471
55% 31 | 0.002019

RESULTS

Two car bodies were selected, i.e. Citroen-2CV and
Renault-5. The results published by Reference 1
indicate that the drag coefficient for these cars are
0.52 and 0.42 respectively. The ratio of the drag
coefficients for these two cases is 1.23. Then the
program was run for the aforementioned car bodies
and the ratio of the drag coefficients was found to be
1.1 which is in good agreement with the test results
and the difference is about 12 percent which is
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Figure 1. a) Body fitted mesh for a step. b) Vector plots for flow over a step. ¢) Streamlines for flow over a

step.

considered to be reasonable. Figures 2a and 3a show
the generated grids for the Citroen-2CV and Renault-
5, respectively. In Figures 2b and 3b the velocity
vector plots forboth bodies are shown. The streamlines
of the aforementioned cars are shown in Figures 2c
and 3c. As it is shown in Figures 2d and 3d the
reciculating flow behind the cars are quite clear and
it is more pronounced for Citroen-2CV. Therefore,
the predicted drag coefficient for this car is greater
than Renault-5. Moreover, another car known as
(Paykan) was tested. The generated mesh, velocity
vectors and streamlines for this geometry are shown
in Figures 4a, 4b and 4c respectively. Again the
recirculating flow for this car is shown in Figure 4d.
The size of this recirculating flow in comparison to
the other two cars is smaller. Hence, it is expected to
have smaller drag coefficient, forthis car. To calculate
the drag coefficient, the correlation introduced in

162 - Vol. 11, No. 3, August 1998

Reference 1 is used which is as follows;
C,=0.16 + 0.0095R

Where R is a constant of which its value depends on
configurations used in front, rear, sides, roof, etc., of
a car geometry. The values of R can be extracted
from the information supplied in tables of Reference
1. However, using the information obtained from
Reference 1, the drag coefficientof Paykan geometry
was calculated and compared to that of Citroen 2-CV.
The ratio of the calculated drag coefficient for this car
withrespectto the Citroen-2CV was found to be 0.85.
Therefore, using this value and the value of 0.52
which is the drag coefficient of the Citroen-2CV, the
predicted drag coefficient for the Paykan would be
0.44. Now, if we use the correlations of Reference 1,
the predicted drag coefficient for the Paykan body

International Journal of Engineering
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Figure 2. a) Body fitted mesh for a Citroen-2CV car. b)
Vector plots for flow overa Citroen-2CV car (Re_= 5x10°).
¢) Streamlines for flow over a Citroen-2CV car (Re_=
5x10%). d) Vortex behind the Citroen-2CV car.

would be 0.46. Comparison of the two values shows
only a small difference. Examination of the
aforementioned test cases reveal that it is possible to
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Figure 3. a) Body fitted mesh for a Renault-5 car. b) Vector
plots for flow over a Renault-5 car (Re_= 5x10°). c)
Streamlines for flow over a Renault-5 car (Re_=5x10%).d)
Vortex at the rear of a Renault-5 car.

run the program for any car body of interest and
predict the drag coefficient within about 90 percent of
accuracy. Also, it is possible to perform any change
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Figure 4. a) Body fitted mesh for a Paykan car. b) Vector
plots for flow overaPaykan car (Re_= 5x10f). ¢) Streamlines
for flow over a Paykan car (Re_= 5x105). d) Vortex behind
the Paykan body.

in an existing car geometry and examine the effect of
the possible changes on the drag coefficient.
Obviously, if any drag reduction could be observed
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from a possible modification, from drag coefficient
estimation it is possible to calculate the power saving
and also reduction in the fuel consumption. By
predicting any amount of fuel to be saved it would be
possible to calculate its impact on the reduction of
air pollution which is another important matter.
Moreover, it is worth to emphesize the impact of the
application of the results of this type of study on car
making industry. Itis possible to apply the results of
this type of work on geometry optimization of their
products. From any optimization obtained in this
way it would be possible to have some savings on
sheet metal work as well. Furthermore, it is worth
noting that the experimental results which were
refered to in this paper are for 3-D car geometries.
The results predicted from this numerical study are
for simplified 2-D bodies. The comparison of the
two sets of results are good enough and this is due to
the fact that in drag force estimation the dominant
contribution is due to the body section which is of a
2-D nature. Finally, in order to complete this study
it was decided to examine the effect of Reynolds
number by changing the inlet velocity. Hence for a
range of inlet velocities and thus the corresponding
Reynold numbers the ratio of the drag coefficients
for the Citroen-2CV and the Renault-5 are calculated.
The results are shown in Table 2. As it is seen from
these results there are only minor changes between
the calculated drag ratios. Therefore, it can be
concluded that the effect of the Reynolds number is

TABLE 2. Effect of Reynolds Number.

I Reynolds Number Drag Ratio
= 5000 1.08817
10000 1.07178 |
30000 1.08368
50000 1.08397
60000 1.08638
75000 1.07952
100000 1.07502
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not so crucial.

CONCLUSION

In this paper the flows around a number of car
geometries were studied. For this purpose the 2-D
incompressible Navier-Stokes equations with a
suitable K-g turbulance model were used. The
predicted results are in good agreement with the
existing experimental results.
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X
§ T

X Yo Yy Transformation metrics

Greek letters

o,B.y.0,T Transformation parameters

X Artificial compressibility factor
€ Turbulence dissipation

A Bulk viscosity coefficient

K Dynamic viscosity coefficient
T Freestream viscosity coefficient
En General space coordinates

P Density

P Freestream density

o, O, Turbulence coefficients

tT,T ,T
xx* Tyy’ “xy

Normal and shear stresses
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