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Abstract In this paper, a markovian queue with two types of servers and buffer space is considered.
The resequencing constraint is imposed according to which the customers leave the system in the same
order in which they entered it. For finite buffer queue, the steady state queue size distribution has been

obtained.
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INTRODUCTION

There may be real world queueing situations wherein
customers are compelled to leave the system in the
same chronological order in which they arrive.
Washburmn [1] was a pioneer in this regard and has
studied M/M/s queue. An extension of this model to
finite waiting space was studied by Sharma et al. [2].
Jain et al, [3] obtained an expression for expected
waiting time of customers for a discouragement queue-
ing model having two types of customers and
nopassing. The resequencing buffer is an important
issue in manufacturing system, distributed comput-
ing system communication network, etc., and re-
quires a solution for minimizing waiting time and
maximizing the efficiency and reliability of the sys-
tem. In such systems, the jobto be completed requires
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services of more than one servers in a predetermined
sequence.

Two servers queueing models have been studied
extensively by several reserchers. Two servers queue
sequencing with and without an intermediate waiting
space was studied by Avi-Itzhak and Yadin [4] and
Clark [5]. A queueing model with resequencing con-
straints was studied by Lien [6]. He obtained an
expression for the average resequencing delay. An
extension of this model, by including allocation of
customers with thresh-hold type policy, was studied
by Hiadis and Lien [7]. A resequencing system with
disordering due to infinite server was studied by
Baccelli et al. [8], Harrus and Plateau [9], Kamoun et
al. [10]. The resequencing system with finite server
queue was considered by Gun and Marie [11],Yum
and Ngai [12]. All these works have centered on
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obtaining the distribution of resequencing delay.
Buffer probability distribution in resequencing of an
infinite queue with block diagonal structure was first
studied by Verma [13]. Recently Takine et al. [14]
investigated queue length diribution of a resequencing
buffer fed by a homogeneous M/M/2 queue.

In computer communication systems, there may
be situations where communication between two
nodes can be performed by two independent chan-
nels. After getting the required service, the job waits
in a resequencing queue due to physical restrictions.
The waiting space, i. e., the buffer for resequencing
queue, is finite for such systems. Some other ex-
amples of this type of situations are common in
distributed database systems, multi-link stores, and
forword switching networks. Earlier work on
resequencing queue has been based on the assump-
tion of infinite buffer resequencing. In this paper, we
consider two server queueing model and a finite
resequencing queue. The queue size distribution is

obtained in implicit form.

NOTATION AND STATES

a Arrival rate

u,(u,) Service rate of fast (slow) server

n Numberof customerinthe main queue buffer.
e, 1 (resp.0) if the faster server is busy (resp. idle)

e, 1 (resp. 0) if the slower server is busy (resp. idle)
m Number of customers in the resequencing

buffer.

Z=1 If the fast server is serving the customer
which enters the system earlier. It will be
referred to as in-sequence state.

Z=0 If the slow server is serving the customer
who entered the system earlier. It will be
referred to as out-sequence state.

These notations hold true even if there is a single
customer in the system. It can be easily varified that

the state variables (n, e,, ¢,, m, Z) belong to the space
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E= {0} UNx {0, 1} x {0, 1} x N x {I, O}

where {0} is the empty state. It is noted that E
provides a complete markovian state space descrip-
tion of the system. The future states of the space E
depend only on the present state and it contains all the
states discribing the system. Hence E provides a
complete markovian state space discription of the
system (Cox and Miller) [15].

THE STEADY STATE EQUATIONS
GOVERNING THE MODEL

For our model we have equilibrium equation for
various states as follows:

At origin
M M

aP(0)=w ¥ P(0,1,0,J,=uw2 X P(0,0,1,],0) ey
=0 =0

For states when Z=I

(a+ul+uz)P(l,l,1J,I)=uzP(1+1,1,1,j—1,I)+aP(i-1,1,1,j,I)
For O<i<B, j>0,¢=1,¢e=1
2.1
(u,+u,) P(B,1,1,j,D)= aP(B-1,1,1,j,D)
Fori=B, j>0,e=1,¢~=1
2.2)
(at+u,+u)P(0,1,1,j,D=u,P(1,1,1,3-1 JD+aP(0,1,0,j,D
For i=0, j>0, e,=1,¢e,=1
2.3)
(a+u)) P(0,1,0,j,D=10,P(0,1,1, j-1,D
For i=0, j>0, e =1, e,=0 2.4)

M
(a+u+u) PG,1,1,0,D= w,Y, P(i+1,1,1,j,0)+2aPG-1,1,1,0,))
i=0

For 0<i<B, j=0,¢e=1, ¢,=1
2.5)

M
(@+u,+mu,) PO,1,1,0D=u,3 P(1,1,1,j,0+aP(0,1,0,0,T)
j=0
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For i=0, j=0, e,=1, ¢,=0
(2.6)

M
(a+u) P(0,1,0,0,D)= UZZ P(0,1,1, j,0)+aP(0,0,0,0)
i=0

For i=0, j=0,e=1,¢,=0
2.7
For states when Z= 0

(a+u +u)P@,1,1,j,0=u PG+1,11, j-1,0+aP(i-1,1,1,3,0)
For O<i<B, j>0,e=1,¢,=1
3.1
(u,+u,) P(B,1,1, j,0)= aP(B-1,1,1, 30
Fori=B, j>0,¢e=1,¢~1
3.2)
(a+u,+u,) PO,1,1,j,0=uP(1,1,1, j-1,0+aP(0,0,1,j,0)
For i=0, j>0,¢e=1,¢e=1
3.3
(a+u,) P(0,0, 1, j,0)= u,P(0,1,1, j-1,0)
For i=0, j>0, =0, e,=1
34

M
(a+u1+uz)P(i,1,1,O,O)=u]Z P(i+1,1,1,j,0)+aP@-1,1,1,0,0)
j=0

For O<i<B, j=0, ¢ =1, ¢,=1
3.5)

M
(a+u+u1,)P(0,1,1,00)= u,Y, P(1,1,1,j,D+aP(0,0,1,0,0)
j=0

For i=0, j=0, e =1, e,=1
(3.6)

M
(a+u,) P(0,0,1,0,0) = ulz P(0,1,1,j.D
j=0

For i=0, j=0, ¢,=0, ¢,=1
3.7
FORB=0

In this case, a customer who arrives when both
servers are busy is not taken for service. Due to
resequencing constraints, the customers leave the
system in the same order in which they entered. It is
assumed that the resequence box has a finite waiting
space. Noting that n= 0 due to B= 0, we can omit n
from the notation. Now Equations 1 - 3 reduce to:
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M |

aP0)=u; 3 P(10,iH=u2 ¥ P(0,1,31;j=0,1,....M
=0 =

4)

(a+u) P(1,04,D= u,P(1,1,j-1); j=12,.... M (5.1)

(a+u,) P(0,1,j,0)=u,P(1.1, j-1,0); j= 1.2,..., M(5.2)
(u,+u) P(1,1,j,1)= aP(1,0, j,I);

j=0.1,..., M(6.1)

(u,+u,) P(1,1,j,0)=aP(0,1,3,0);  j= 0,1,....,M (6.2)
M

(a+u) P(1,00,)) =aP(0) + w2 3, 0(1,1,3,0) 7.1
=

(a+u,) P(0,1,0,0) =m LEA', P(1,1D (1.2)
=0

Using Equations 5 and 6, we have

P(1,0,j,D= - )" (ﬁ)’ P(1,00,D); j=0,1,...M

a+u

@)

ST w \ a j+l .o
P(l,l,],I)—(m—l-) (m_+_u_2) P(1,0,01); j=0.1.....M
)

sen_f W\ a \i ; ol
P(0,1,,0)= (a+u2) (m P(0,1,00); j=0.1,....M
(10)

‘W Y a M Ci
P(1,1,j,0)= (a+u2) (m_HE) P(0,1,0,0); j=0.1,..., M
1

Putting Equation 11 into Equation 7.1, we obtain

M . i
@+u)P(100.D=aPO1,3, () ()™ PO.LOO)

(12)

M .
Wi _ u )J( a )j-rl
SIS 2(a+uz u;+u2

=0
_ __afatu) [1 i ( auy )J]
uz (a+u1 +uz) (at+uy) (u1 +u2)

uj
ui +u2

Since UL <1 and <1, r, is always finite
ahn

so that Equation 12 can be written as
(a+u,)P(1,0,0,D= aP(0)+ ru,P(0,1,0,0) (13)

Vol. 9, No. 3, August 1996 - 171



Putting Equation 9 into Equation 7.2,

M .
u ] i
(a+0)P0,100=u, 2. (72 (=) P00

(14)

M :
=y U VM a ¥l
Denote r,= (a+u1) (u1+u2

a@+uy)

- a@tu) [1- (_a_llz._)’]
ui(@+ui+uy) (a-u)(ui+u)

Also we note r, always finite because a—::’%l-d and

u1
uj+u2

<1

Now Equation 14 can be written as
(a+u,)P(0,1,0,0)= r,u P(1,0,0,0,1) 15

The three unknown values P(0), P(1,0,0,I) and
P(0,1,0,0) can be obtained by using Equations
13, 15 and normalizing condition which is given
by

PO+ i P(1,0,j,)+P(1,1,D+P(0,1,,0)+P(1,1,j,0=1

j=0
(16)
Putting values from Equations 8 and 11 into Equa-

tion 16, we have

P(0)+(r,+1,)P(1,0,0,D)+(r +r)P(0,1,0,0)= 1 an

where r = hﬁ( T2 )J( a_\j
3 a+uy up +uy

- atu)+w) [;. ( aup );]

ur (@a+u;+up) (a+u1) (m+w)

and r = I\EA“ (—ul ! __)a J
4 0a+u2 u)+uy

]:
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_ (@a+u) (w1 +w) 1_( am )J]
(

w (a+u;+up) a+uw) (u+uw)

To obtain the values of P(0), P(1,0,01) and P(0,1,0,0)
we solve the system of linear equations

a -@+u) nw P(0) 0
P100D) |=| 0 |(18)
P©,100) 1

0 nuy -@+u)

1 (rz+r13) (T1+714)

which gives

PO) = a+u)U +w) nowuy _ [+ u )@+ w)-nnus] /¢

19)

P(1,0,0,D= a(a+u,)/¢ (20)

P(0,1,0,0)=aru/¢ 1)

where ¢ = (a+u) (a+u) rruu, + a[(ru(r+r)

+(a+u (1,41, 22)
RESULTS

1. The steady state probability of j customers in
the resequencing buffer and the customer who
has arrived earlier is being served by the fast

server is

P(j,I)=(a+“1+“2)) ((auzgj ( a \j (a(a+u2)‘|

ur+uz +w)) \w+w)) 6 )
(23)

2. The steady state probability of j customers in the
resequencing buffer and the customer who has ar-

rived earlier is being served by the slow server is

P0,0)=(3+“‘+"2)\|{ ugj( a \i (arzul)\ 24)

u+uy / (a+u2)l u; +u/ o )

3. The steady state probability of j customers in the
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resequencing buffer is given by

atu+uz A ifi—
I P(O)W[(a+uz)+r2u1]$1fj—0
qj=
( a )J’ (a+u1+u2\ ( uy ) (a+llz)\+( u \ia
u+uy u+n / \a+ud Vnpu /) \a+u/ o

forj=1.2,...M

In limiting case, when M tends to infinity, Equations
23, 24 and Equation 25 reduce to

PGD =(a:1ui:;2) (2;1?%} (a-:—uu]}j (ul iuz)j =0, L,...
(26)

cy=atui+uw 1w Vif a i i
PG.0) u+n Y \atu) (uw@ =0, L....@7)

atur+u fa+u T X
_ PO)+ up+up [sz +l ![/lfJ 0

( a_)jatui+w [( up i a+u2+( u \j]L

u+uy  uw+w a+u’ o la+ul |y
forj=1.2,... (28)
where
_w u \J a YH_ a@a+uy)
o= = 29)
on(a+uz) (U1+U2I w (a+u; +uy)

YT a \M_ _a@+wm)
02 ;(aﬂn) (U1+u2’ ur(@+u;+up) G0

o=°° up \i a \M_ (@+u) (u+uy) 31
’ 2( ) (U1+uzl ul(a+u1+uz) ( )

N w ) a )i (@+w)ui+w)
o4=) = 32)
=0 (a+uz) (Ul +u2) u; (a+u1 +U2)

- @+u)@+w) ow " (62 +03) (a+u2)

+ 01+ 04
ouuza a 02 U1

(33)

y

It should be noted that in this particular case
themodel describes the same results as obtained
by Verma [13] and Equations 26,27, 28, telly
with Equations 23, 24 and 25 of Verma's model
[13].
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DISCUSSION

In this investigation, an M/M/2/B queueing model
with two types of servers are developed. In a particu-
lar case when B=0, various steady state probabilities
have been established. Due to resequencing con-
straints, the presented model is important from prac-
tical point of view and may be helpful to system
designer to decide optimal buffer size in many infor-
mation systems such as distributed database and
communication networks.
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