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Abstract In this paper Mathematica is used to solve the moving boundary problem of freezing in
& {inite slab for higher order perturbations. Mathematica is a new system which makes it possible to do
algebra with computer. More specifically, it enables researchers to find the location of the ice atany time
for as high order of perturbation as one whishes. Using of Mathematica and outer solution and an inner
solution for the quantities involved are developed and then these solutions are matched together using the
method of matched asymptotic expansions. At the end the composite solutions are compared to the
available low-order solutions.
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INTRODUCTION

The problem of freezing in a finite slab using pertur-
bation methods has been solved by Weinbaum and
Jiji[1], and Aziz [2] [2]. These works, however, only
consider the first two perturbation terms in which the
outer solution and inner solution of some quantities
turn out to be the same. Therefore, the asymptotic
matching plays no role and the boundary layer (inner
region) in this singular problem does not show itself.
This lack of information, among others, can be com-
pensated by solving the problem for higher orders
of perturbation quantities. The compensation
procedure, nevertheless, involves a large amount of
algebra which is overwhelming and impossible if
the order is rather high. This difficulty can be over-

come by using Mathematica developed recently by
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Wolfram [3]. Mathematica is a system for doing
mathematics by computer; therefore, it canbe
very useful in solving problems which uses
perturbation techniques. Ideally, Mathematica can
be employed to solve problems using perturbation
techniques with very high orders of accuracy, say
exact.

In this paper the outer and inner solutions for the
problem of freezing in a finite slab with very high
order of accuracy are considered. Then these solu-
tions are matched together asymptotically to find the
composite solution. Since the presentation of results
for higher order terms needs large amount of paper,
here we only present three perturbation terms of the
resulting equations.

In the next section, the governing equations and
the perturbation techniques are presented.
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FORMULATION OF THE PROBLEM

This problem is concerned with a situation where the
difficultyis due to the presence of amoving boundary
whose position is not known a priori. A relatively
simple moving boundary problem is the inward freez-
ing of a finite slab shown in Figure 1.

Initially the liquid assumed to be at its freezing
temperature T,. Attime t>0, the face at x=0is main-
tained at constant subfreezing temperature T, so that
T <T.

As heat is extracted from the liquid, it begins to
freeze. Let the freezing front, at any instant of time,
be located at distance x. It is assumed that the
temperature of unfrozen liquid changes throughout
the process. For the solid phase and liquid phase, the
applicable equation is that of one-dimensional tran-

sient conduction which may be written as

2

o, O Ts 9Ts (1)
dox? ot

o O 3T, Q)
dox? dt

where ¢ is the thermal diffusivity and subscripts s
and [ denote solid and liquid phases, respectively
(Arpaci [4]). The boundary conditions for the two

phases are
Ts(0,)=T, 3)
Solid | Liquid [
"
- ¥
x=0 x=xy x=t

Figure 1. Freezing in a finite slab.
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Tsler®, A =T Dr(D, =T, Q)
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The initial conditions on liquid temperature T, and
interface location x/ 1) are

T:(x,0)=T; (6)
xf (0)=0 Q)

The energy balance at the interface requires

ks 0T (xr,1) ki oT; (xf,1) =pH dx ®)
dx dx dt

By introducing the dimensionless quantities

9= ks(Ts -T¢) I, -Tf E=X
ki(Ti-Tr) T: -Tr x7 (1)

n=Xt-X p=EOl 52X
L

E__:C(Ti -T¢) ©)
L-xf L H

Equations 1-7 become

90__(cu ( 200 dca_g
—=£ ol—- ¢t (10)
oE? (-a—s) o7 édr 0

0 _fa.629% . 1-0a- M_.a_ﬂb] 11
3’ e[( 0) = (1-0)( n)dT 3 (11)

subject to the boundary conditions

0(0,7)= M:ga (12)
ki(Ti - Tr)
0(,1)=9¢0,7)=0 (13)
99(47) _ (14)
an
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and the initial conditions

$(n,0)=1 s)

c(0)=0 (16)

The energy balance at the interface, Equation 8

becomes

ae(l,T) a¢(0,l)_ do 7
1- - a 1" — 1
( o') O'( ‘ O') ( )

Mathematically, we seek solutions to Equations 10
and 11, subjectto the boundary and initial conditions,
Relations 12-16 and the interfacial energy balance,
Relation 17, for a given value of 6,. The ratio of the
diffusivities o, /o, is of course known. Here our
choice of perturbation quantity is the parameter

e=C Ti-Ty)
H

which in phase change literature is called the Stefan
number. It represents the ratio of the sensible heat to
the latent heat stored during the phase change pro-
cess. The magnitude of Stefan number € can vary
considerably depending on the material and the tem-
perature differences involved. For water and paraffin
waxes, £<1, for metals 1<e<10, and for materials
such as silicates € reaches up to several hundreds.
Thus, for substances such as water and for materials
used in latent heat thermal energy storage devices a
perturbation analysis based on the assumption of
small €is appropriate,

Since the parameter £ appears in front of the
highest order of derivatives of 8, and ¢ with respect
to 1, the initial conditions 15 and 16 cannot be
satisfied, Nayfeh [5] and Bender & Orszag [6]. An
inner expansion near t= 0 will have to be introduced

in addition to the regular perturbation.
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SOLUTION OF THE PROBLEM

In this section are considered the outer and inner
solution of the governing equations along with their
appropriate boundary conditions. To find the outer
solution, an outer expansion of the form (outside the
inner region) is used

o

8(¢,7.e)=2 €"20,( 1) (18)
n=0
p(M.T. )= €*2¢,(M, 7) 19)
n=0
o e)=Y er20,m 1) (20)
n=0

which upon substitution into Equations 10, 11 and 17
gives (Only three terms are presented here)

2
g: 98 g Q1)
0&?
3% ¢o _
W—O (22)
(1-0‘0)890(2’1) -O'oa¢°a(0’r)—0'0(1—0'0)id@
T
(23)
g 801 g 24)
9&?
o1 _
W;_O 25)

(1-60)9001D) 5 96(LT) _; 9610,7)

o0& o0& an
-GI.M_O(O’—T)= 0'0(1- o'o)dﬂ-do O-ldﬂ
p) dt art
+0] (1- O'o)L‘—O (26)
dt

%0, _ oy 2 960 d oo 9o
£: —==(=2) (0f —=- Cop=h . 27
S (&) (@ 52 fondD 2l )

P9 _ (1.0 29 (1ol -m 400390 (o
S =00 S oy a-m 403 ag)
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30,0,0) (36,00 3607 30:07)
3¢ FE 9¢ N
000D 30000 ooy 30,
an on dr de
oo(1-00) gi%-g %%‘.&+ 01(1- 50) 49L- 55 (1- 69) 492

T T dr dt
(29)

(1-00)

The solution of Equations 21-29 can be obtained as

80=0.(1-&) (30)
61=0 €2
02(E,7)= a9 (&- mmu a03(E-£°)(32)
$0=0 (33)
$1=0 (34)
$2(n,7)=0 (35)
Go (co-20a7)" (36)
o1=0 (37

—Otcwf']/m

d=[Ladlr+La(c-26.)*
3 6

(3%)
Here ¢ is a constant which can be determined from

matching the inner and outer solutions. The outer

expansions are therefore
9(5,1',8)=0a1-§)+%a6a5(1-§)+... (39)

6(n,1,e)=0+0(") 40y

Oz &)= (co-26, T)P+£>

(173) 062 T+ (1/6) &t (co - 28, T)? - 1/6 dlcodEs

Voo 287
o @1

For the inner expansions, the following inner vari-

ables are introduced
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T=

Q(é,T)=9(é,¢) (42)
omT)=¢(n,D

o(I)=0(7

™ |

and substituted into Equations 10, 11, and 17 give:

2“ ~ . ~

96 _o 323_9-5861_0%} @3)
azr o \° o1 °° 4T 3¢

P8 _(1.5720 i3 %
2¥Y-1-)'2=-(1-0)(1-ne&s = 44
26-a-3728-a-Ba-ndl & (@4)

1- -0 =c(l-c 45
E{( . o0& on | ( )d1 o

By expanding 6, ¢ and O in terms of inner variables,

BET.e)=3 e B, (E.T) 46)
n=0
6(1,1,6)=Y. €26, (n.T) @7)
n=0
5= eBu(T) (48)
n=0

and substituting into Equations 43-45 and presenting
here only three terms of them, lead to

2A
& 96 g (49)
9E?
o 360 (50)
~aon? oT
00=0 G
2A
g2:9 0 - (52)
a&?
8 ¢1 8¢1 a¢0 (ln)fla¢0 (53)
on? dr dT dn
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2“
I O(LT) 5,40, (54)
¢ dr
s 92 2890 ~ dG 390
£ ——==0 55
(1 ==-¢3: T E (55
0’ ¢2 8¢2 A2a¢o 20.18¢1 23, a¢o
on? T oT T

Vo] a¢1 Vited a¢o tﬁ a¢o
- L (1n) 2 (1S £ 56
ar o El ar o G

~ ~
5,401 _ada+31a’62_ael(1,T)_aaeo(1,T)
dr dr dr o¢ o0&

5,900, 7) (57)
on

The solutions of Equations 49-57 are

Bo=64(1-&) (58)
61=0 (59)
52(5,T)=-6_a93§3+ea(é—aea-l)§+ea (60)
Co=0 (61)
01=(-26.T)% (62)

o0 2
Ga= / 2 exp{-[j+l’n]T>

=\ + L I 2

Vrerf [(G+L)nVT)

[</+;-)n]3ﬁ

[ 2 [l [0 Py
¢°_Z;‘[(i+ )nsm(”f)m]“p\ [(”5)”] =)

Here, the other orders of a(n,T ) are not presented
due to their complexity. Equations 58-64 represent
the inner solution of the three quantities 8, ¢, and o.
Now match these solutions can be matched by using
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Van Dyke matching princiles, see Nayfeh (5] and
Bender & Orszag [6]. The Composite solutions are
found from the matching condition (for example
for o)

0@=00+ g0 - (6®)© (65)

in which (6©)® is the limit of inner solution in terms
of outer solution. Doing this the value c=0is
obtained. Therefore, the composite solutions are

8¥ (ér)=ea(1-5>+e%a&(—zear)lﬂ(é-52)

(66)
+%a05(5-53)]

(16) 0269 - (13) it
(260"

0©9=(-287) 2+

= Vrar [+ 1T )
I o

E w+;—2>ﬁf“’\'[(”5)"]”' w@-m?ﬁ )

+... 67)

and ¢ is not presented here due to its complexity.
Asitcan be seen from Equation 66, the composite
solution is given in a function of time. This is seen
from order gon. Alsoitis seen that the outer and inner
solutions differ and therefore the matching principle
can be applied. As mentioned before the result of
Reference 1is not a function of time. Nor does it show
the singularity in terms of time variable. Therefore,
when the result of Equation 66 is drawn, the trend of
an outer solution intersecting an inner solution can be
observed, which indicates and displays the removal
of singularity in terms of time. In the case of Equation
67 the correction of ice location in terms of time is

presented.

SOME NUMERICAL RESULTS

Here some numerical results are presented. For ex-
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ample in Figure 2 a three-term expansion for the [ ;
—~ — - two-term expansion

| = six-term expansion

composite solution of temperature is presented along
with the result of two-term expansion of this quantity
€= 0.10

which is not a function of time and has been done by = 0.50

Weinbaum and Jiji. As one can see from this figure, 1.0

the time dependency of this quantity shows itself "

€= 001 ™ 050

from the third term on (see Equation 66). The impor- b
tant point here is the existance of singularity with 0.75 b
respect to time. Here the composite solution has a
trend of an outer solution intersecting an inner solu- R

tion, which is the indication of this singularity (time 0.504 ™,
boundary layer). In Figure 3, a six-term solution of , &
this quantity is presented. For example at T= 0, and T
&= 0.5, o has the form of 0.15%1

o= 0.5 + 0.0625¢ + 0.01€? + 0.0154€* + 0.0243¢*
+0.0471¢€° + O(e°) S : —~ .

Here the composite solution shows a more clear trend of t

an outer intersecting an inner solution. Figure 4, Figure 3. 0 in terms of €.

two-term expansion

—— six-term expansion

€= 0.10

two-term expansion

— six-term expansion

r= 0.0

0.75+

0.25+

0.0 0.25 0.50 0.75 1.0 0.0 0.125 0.25
£ i

0.375 0.50

Figure 2. 0 in terms of £. Figure 4. Ice front in terms of time, €= 0.1.
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shows the non-dimensional ice front in terms of
time. The curve representing the six-term expan-
sion is a correction to the two-term expansion.
The comparison of the results obtained here with
lower-order results proves the necessity of solving
this problem for higher orders. It is obvious that for
liquids with &>1, the technique of perturbation can
not be applied and perhaps a numerical method can
be employed which provides a lesser physical under-

standing.
LIST OF SYMBOLS
¢ specific heat
H Ilatent heat
k  thermal conductivity
L location of wall

time

-

T temperature

X  cartesian coordinate system

Greek Letters
o thermal diffusivity
6  dimensionless temperature

dimensionless variables

e

mass density
dimensionless temperature
dimensionless time

ice location

m g &8 © F

perturbation parameter
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Subscripts
s solid phase
1 liquid phase

a  ambient

o  zeroth-order perturbation
1 first-order perturbation

2 second-order perturbation
f  icefront

Superscripts

1 inner quantity
i inner solution

0o outer solution
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