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Abstract A detailed investigation into the analysis of beams with different boundary conditions,
carrying either amoving mass or force is performed. Analytical and numerical techniques for determination
of the dynamic behavior of beams due to a concentrated travelling force or mass are presented. The
transformation of the familiar Euler-Bernoulli thin beam equation into a series of ordinary differential
equations is demonstrated. These equations are solved numerically using fourth order Runge-Kutta and
central difference expansion methods. It is observed that the results corresponding to either method of
solution, with the assumption made (moving force or mass) are very close. Moreover, the moving force
problem is solved using the finite element method. The inertial effect of the moving mass has been proven
to be an important factor in the dynamic behavior of such structures. Finally, using the obtained dynamic
deflection functions, values of maximum shear force and bending moment at each time step are calculated
and variation of these parameters with time is demonstrated.
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INTRODUCTION

Engineers designing highway and railroad bridges
and space installation facilities which are likely to be
affected by sudden changes of mass, have renewed
the investigation of the travelling mass problem.
Bridges on which vehicles ortrains travel and trolleys
of overhead travelling cranes that move on their
girders could be modelled as a moving mass on a
simply supported beam.

Since the middle of the last century, whenrailroad
bridge construction began, the problem of oscillation

Journal of Engineering, Islamic Republic of Iran

of bridges under travelling loads has interested engi-
neers. Contributions to the solution of this problem
were made by Sir George Stokes, Robert Willis [1]
and many others. Stephen Timoshenko [2] consid-
ered the case of a pulsating load passing overabridge.
Sir Charles Inglis [3] in this systematic analysis of
trains crossing a bridge, took into account many
important factors such as the effects of moving loads,
the influence of damping and the spring suspension
of the locomotive.

For the case of a concentrated force moving with

constant velocity along a beam, neglecting damping
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forces, Timoshenko [4] has determined a general
solution to this problem and presented an expression
for the critical velocity. In 1969, Stanisic and Hardin
[5] tried to investigate the dynamic behavior of a
simply supported beam carrying a moving mass.
Although the findings were interesting, they were not
easily applicable to different boundary conditions.

The analysis of dynamic behavior of bridges
subjected to motion of a concentrated mass, has been
performed by the present authors in [6] and [7] and a
detailed discussion has been presented in [8].

In this paper, inertial effects of the moving mass
are considered. It is assumed that structural damping
and effects of rotary inertia and shear forces in the
dynamic behavior of the beam are negligible.
Furthermore, the beam is assumed to be homogeneous
with constant sectional properties. The response of
this resulting, to some extent, more realistically
modeled system is determined by using both analyti-
cal and numerical techniques. Finally, a detailed
comparison between the results for the case of mov-
ing mass with those corresponding to the travelling
force is made. As an important design factor, varia-
tions of maximum bending moment and maximum
shear force with time have been analyzed and corre-

sponding graphs are plotted.

RESPONSE OF A UNIFORM BEAM TO A
TRAVELLING LOAD

Consider the case of a concentrated load advancing
along a beam with constant velocity. As can be
expected, this load will produce larger deflections
and stresses than the same load acting statically. The
effect of such live loads on bridges and beams is of
great practical importance. Figure 1 illustrates a
vehicle of weight P, travelling on a simply supported
beam at a constant velocity V.

It is assumed that the moving load exerts a con-

stant vertical force on the beam and the inertial effect
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Figure 1. The model of the problem.

of the load is negligible. Moreover, any change in the
gravitational potential energy is omitted. The beam is
assumed to have zero velocity and deflection at time
t=0, when the load is at the left-hand support.
Therefore, it is clear that at any later time t, the
distance of the load from the left support will be
E=Vr.

In order to obtain the governing differential equa-
tion of motion for this system, the principle of virtual

work may be applied,
SW“ + SWEi + SWpi = 0 (1)

where,

6W,, = the virtual work associated with the beam
distributed inertia

8W g, =the virtual work related to the elasticity forces,
8W,; = the virtual work associated with the vertical
load.

These terms are considered to be the results of the
virtual displacement, dy; , for the ith natural mode of
the beam vibration.

With a reasonable assumption, the transverse

motion of the beam is:
Yo =22 0:0) . Xi(0) )

where ¢, ’s are unknown functions of time, and X;’ s
are deflection curves for the ith mode.

In the case of a simply supported beam, with
mass per unit lenght m and the ith natural
frequency, p;, substituting Equation 2 in Equation
1 would lead to:
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-mﬁaq» mpl86:-P s / Sin (’”V 5] 86, =

Thus, the goveming differential equation for ¢, s is:

dq)t q»--—/ Si ("W_f) (i=1,2,..) )

Using the Duhamel’s integral and employing Equa-

tion 2, the solution is,

3 .
Y f)= -2 PL ) Sin(inx/L) Sin(inVt/L)
mn 12(12n2a2 V2L2)
2 PL:V po Sin (inx/L) Sin (iznza ¢/ Lz)
mna P (127z2a2 V2L7‘)

Q)
where: a=YEI/m; E = modulus of elasticity; 1 =
moment of inertia of the beam cross section.

The first series in Equation 5 corresponds to the
forced vibration of the beam, while, the second one
pertains to its free vibrations. Since i2and i3 appearin
the denominators, it is expected that the terms which
correspond to the higher modes have less contribution

to the resulting deflection than those of lower modes.

BEAMS TRAVERSED BY MOVING
MASSES

At this stage, inertial effects of the moving load are
taken into consideration. Hence, it is expected that
more realistic solutions for practical problems could
be pursued such as cars travelling on a suspension
bridge, as modelled in Figure 1. According to Euler-
Bemoulli beam theory, the governing differential
equation describing the lateral vibration of a beam,
carrying the time varying force, p(x, £), perunit lenght
is, [9]:

Elgj{-+ m?-z%=p(x, H (6)
ax or
where,
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Px,t)=-M,| g+
1 ot

(7

M,, = mass of the moving load

Assuming that the mass acceleration at any point
is equal to the acceleration of the beam point
coincident on the mass at the desired time. the total
derivative term in Equation 7 may be substituted with
the partial one. However, this assumption is valid
only at relatively low speed of the mass motion.
Adopting this assumption, Equation 7 would reduce
to.

2,
+926.0 a(é? D) 6c-&) @®)
!

p (x’t)=_MU[g

Similar to Equation 2, the loading function per
unit length may be expressed as.

p )= Xi) . wi(r) )

For a simply supported beam, it may be shown that

the normalized modal shape functions are,

"ﬂ) (10)
L

Substituting Equation 2 in Equation 8 one obtains,

Xi0)]= %Si]l

B 9
px.D=-M, iLg+§—2 b x-(é»@(z)” §0c-€) (11)

Comparison of Equations 9 and 11 results in,

2 X E) i)

X @ () =M, [g+i }6@-5)

ar (12)
In order to drop the Dirac delta function, one may
multiply both sides of Equation 12 by X; (x) and

integrate along the beam to yield,

L
-Mpg j Xj (0 8- &) dx- My[ X2 Xi(§) 6i1)] x
0
L

L
f Xj(x) 6(x- &) dx= Zf;\lfi(t)J Xi@Xj(dx  (13)
0

0
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However, since the modal shape functions, X; (x)
form a set of orthonormal functions on the beam
length interval, the following holds true

Lin 0 X;00) dx=6i; (14)
Hence, Equation 13 reduces to,

MgX;€)-M [ ZL XD o] Xi©)=wi()  (15)
Substituting Equation 15 into Equation 9 results in,
p (.1)=-M, [g+ T X;(©)9,()] x Tl i ©)Xi(9) (16)

Finally, Equations 16 and 2 may be substituted into
Equation 6 to yield,

ELT X! () 0i(0)+pA Ty X)) =

- M, [g+ X X;(©) 4;()] x X2 Xi(©) Xi(x) )
and with,

X'®- BXi@=0 (18)
Equation 17 takes on the form,

EIT: B X600 0i(0) + pAZ, Xi ()i (1) =

M, [+ X2 X (6) 6(0)]| X X2y X (€) Xi(x) (19)

Considering a finite and arbitrary number of mode
shapes, N, (rather than an infinite number) the
following equation should be satisfied for each
mode.

EIB X; (2) 0u(¢) + pAX; 0fi (1) =-M, [g + 2om X (€) §5(0) | X
Xi(E)Xi(0) (20)

or,

PAG()+M, [ ZXXAE b (0] X X: ©)+EIB 0:1)=-MygXi (€)

216 - Vol. 8, No. 4, November 1995

i=1,2,3,..,N @2n

In order to solve the considered problem, Equa-
tion 21 should be analyzed. By solving this set of
coupled linear differential equations, ¢;(t)’s could be
evaluated. When substituting these functions in Equa-
tion 2, the desired solution for vibration of the beam,
under different boundary conditions and with any
number of modal shapes can be determined.

MOVING MASS ON A SIMPLY
SUPPORTED BEAM

In order to compare the results obtained for vibration
of the beam carrying a moving mass, with those
obtained for the case of travelling force a simply
supported beam was assumed. Itis interesting to note
that by dropping the second term on the L. H. S. of
Equation 21, i.e., the coupling term which is due to
the inertial effects of the moving mass, it reduces to
Equation 4, with M,g = P. Therefore, the moving
force solution may be considered as a special form of
amore general case of beam vibration when carrying
a moving mass.

Three different numerical techniques, namely,
finite elementmethod, Runge-Kutta method of fourth
order, and central difference expansions for
derivatives, were used to solve the problem. These
methods are applicable for arbitrary number of mode
shapes and were employed with the following

numerical data.

E =2.07 X101 N/m2; I =1.04x10¢ m4, V=12 Km/h
L=10m;a=1749m?s; M,=70Kg
2=981m/s?2;m=T7.04Kg/m 22)

1- Finite Element Method
The version 7.1 of the SUPERS AP software package,

[10] which has been employed in the present analy-

Journal of Engineering, Islamic Republic of Iran



sis, is capable of accepting finite elementmodels that
are drawn in AutoCAD. Alternatively, the models
can be generated through the package itself. It is
assumed, first, that the material behaves elastically,
with no structural damping. Next, the data for mate-
rial properties and boundary conditions are fed into
the machine. Finally, this model is subjected to the
assumed loading. In order to simulate the motion of
the load, an incremental procedure for imposing the
load has been considered.

In this example, the beam was modeled in two
different manners, i.e., using 20 and 60 elements, and
the solution for both cases were determined. It has
been found that the first three computed natural
frequencies for beam vibration, were very close to

those obtained analytically, as shown in Table 1.

TABLE 1. Comparison between the first three natural

frequencies, (rad/s).

Mode Number | Analytical solution |F.E.M.Solution

1 17.26 17.25
2 ' 69.04 68.99
15533 155.22

Using the calculated modal shapes and natural fre-
quencies, the software evaluates the deflections at
nodes, fortime increments equal to 0.05 s. The results
obtained for the two finite element models have a
maximum discrepancy of 10%, when compared with
those corresponding to the analytical solution,
determined from Equation 5, for the first three modes.
Itis believed that the deviation and alternating behavior
of the F.E.M. solution are mainly due to the
incremental method used for modelling the load

movement.

2- Fourth Order Runge-Kutta Method
Inorderto apply the fourth order Runge-Kuttamethod

to solve Equation 21, this system of equations should
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first be properly arranged, [11}]. In fact, it should be
rewritten in such a way that derivatives of all the
functions are expressed in terms of the other func-
tions (not theirderivatives). Considering Equation 2 1
and applying Kramer’s rule for solution of a set of

linear algebraic equations, one obtains

MogXi -EIB0 MXXo  MAN MoX: Xy
M,,ng—Elﬂg(Dz pA+MPX22 XX M, XoXn
M sk r,l..;;:.;.__ S TR T X
d1 ()= ;
pA+MpX1 MPX1X2 MPX1X3 MpX1XN
MXiXo pA+MX; MXoXs MXoXy
| MXiXy MXXn MoXsXy PAMXy
(23)

Similar expressions for other derivatives can be writ-
ten, as well.

Using Equaticn 23 and other equations for deriva-
tives, the problem can be solved for any finite number
of mode shapes. Clearly it is necessary to apply also
an algorithm for calculation of determinats as given
by Equation 23. Using the described method for two
modes, it was observed that neglecting inertial ef-
fects, the results of this numerical method with time
interval of 0.01 s, have been nearly the same (within
10-2% deviations) as those found analytically.
However, considering these effects, the maximum
difference reaches to about 17% (at t=0.8 s and t=1.9
s). This value is an estimation for the effect of mass
inertiain the present example. The graph correspond-
ing to application of this method for data given by
Equation 22 has been plotted in Figure 2.

3- Central Difference Expansions for Derivatives
Using approximate central diffemce formulas, [11],
the derivatives in Equation 2 1 can be substituted with

corresponding difference expressions. With this tech-
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Figure 2. Time history diagram of center of the beam.

nique, and for N modal shapes, Equation 21 would
then be transformed to a system of N linear algebraic
equations, which must be solved for each time inter-
val. Regarding the approximationsinvolved, the time
step should be chosen to be sufficiently small.
Inorder to present the method, Equation 21 is first

rearranged in the following form,

[H(D] (§ (1) = -(ah (1)) + (C ) (24)

where,

PAMXIVD  MXiX, MXiXy |
2

H ok Mpﬁ:(le pA+M:sz(Vt) MpX:ZXN
MXXi Mo PA+MXVY
¢ (9}
¢, ()

OW=[ o;(v) (25)

8

On(D/

and,

o;=EIB} , C;=-MygX; (VD) (26)
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Assuming rest boundary conditions,

©O)=0 (%<0))=0 @
and considering the following forward difference
equation,

do 5,0 ()-00) 28)
dt h

Equation 27 can be rewritten as,

©O)=0, @HN=0 (29)

where A is the time step size. Hence, the forward
difference procedure was implemented for proper
presentation of initial conditions. At this stage, the
central difference formulas can be used for

completeing the solution. In fact,

iy = 2D 26+ ) (30)
where,
fe=kh Gy = Gt D) b, g = (k1) 31)

Considering the following definitions,

(0d)=(0 ) . [11.) [ 0] (32)
Equation 24 can now be rewritten in the folowing
form,

#[Htk](¢tk+1 20, +¢tk_1) =-(0( ¢tk) +(Ctk) (33)

which can be solved using standard algorithms for
solving a set of linear algebraic equations, such as the
Gaussian elimination.

The foregoing algorithm, adapting 0.01 s time
interval and three mode numbers, was implemented
for solving the problem introduced by Equation22. It
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was noted that neglecting inertial effects, the numeri-
cal solution is within 0.5% deviation from those
found analytically. On the other hand, if the inertial
effects are included in the solution, the maximum
difference reaches to about 18%. This figure isnearly
the same as the one obtained previously, using the
Runge-Kutta method. The results obtained are illus-
trated in Figure 2.

MAXIMUM SHEAR FORCE AND
BENDING MOMENT

So far, only the dynamic values of the beam deflection
were analyzed. Although these values are of great
practical importance, there are also other parameters,
such as shear force and bending moment which
should be studied.

Itis known that neglecting shear deformation, the
bending moment function can be related to the

dynamic deflection function as follows,

B9 =Ma. ) (34)
5.8

Substituting Equation 2 in Equation 34, one obtains

EIZ X 0 0:(0=M(x,1) (35)

And similarly for the shear force,

EIX_ X 06:i()=5x,1) (36)

That is, bending moment and shear force can be
calculated at any instant of time and for any point of
the beam. Therefore, the critical values of these
parameters for asetofassumed datacanbe determined,
and hence, dynamic collapse of the structure
prohibited.

Graphs showing variation of maximum bending
moment and shear force along the beam with time are

also very helpful. Figures 3 and 4 are such graphs
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Figure 4. Maximum shear force variation (positive or nega-
tive).

which represent the desired values using both the

Runge-Kutta and central difference algorithms.

CONCLUSIONS

Dynamic behavior of a beam carrying a moving
mass, when including or excluding the inertial ef-
fects, was fully analyzed. The procedure imposes no
restricting assumptions on the boundary conditions
of the beam. It was noted that for a simply supported
beam, the governing equation in the case of moving

mass would reduce to that of the moving load, pro-

Vol. 8, No. 4, November 1995 - 219



vided the coupling term resulting from inertial effects
is dropped out. Three numerical techniques, namely,
finite element method, fourth order Runge-Kutta
and, central difference expansion method were em-
ployed to solve the equations. It is found that when
neglecting inertial effects, these methods produce
nearly the same results, which are identical to the
analytical solution of the problem. On the other hand,
considering the inertial effects, theirdifferences could
reach to a maximum value of about 18%. Therefore,
it is concluded that the consideration of the load
inertial effects is absolutely essential for modeling
such dynamic systems. Finally, using the obtained
dynamic deflection functions, graphs representing
variations of maximum bending moment and shear
force were also plotted. In practice, these graphs can
be used in order to design safe structures against

dynamic collapse.
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