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Abstract  This paper suggests an optimization-based methodology for the design of minimum weight
structures with kinematic nonlinear behavior. Attention 1s focused on three-dimensional reticulated
structures idealized with beam elements under proportional static loadings. The algorithm used for
optimization is based on a classical optimality criterion approach using an active-set strategy for extreme
limit constraints on the design variables. A fixed-point iteration algorithm based on the criterion that at
optimum the nonlinear strain energy is equal for all members 1s used. Several examples are given to
evaluate the validity of the underlying assumptions and to demonstrate some of the characteristics of the
proposed procedure.
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INTRODUCTION

The minimum weight design of structures subject to
a stability constraint is one of the most important
problems in structural optimization and has attracted
a great deal of interest in the structural mechanics
community. Methods for optimum design of struc-
tures have progressed rapidly in recent years. In
particular, optimality criterion procedures have sig-
nificantly advanced the state-of-the-art of the mini-
mum weight design of structures involving large
finite-element assembilies.

Quite frequently, studies in the literature reveal
that a linearized stability approachis used beyond its
limits of applicability. ‘‘Linear stability’’ can only
give physically significant answers if the linear
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analysis gives such deformations that are exactly the
same when geometric nonlinearity is considered.
This only happensina very linited number of practical
situations, such as a perfectly straight column under
an axial load. In real engineering situations where the
qualitative nature of the behavior is completely un-
known, linearized stability represented by critical
eigenmodes does not provide an adequate represen-
tation of nonlinear behavior of a structure. For such
cases, itis more appropriate to optimize a structure on
the basis of a ‘‘nonlinear stability constraint’’ when
the structure has an inherent tendency.to possess
nonlinear behavior.

Khot and Kamat [1] were among the first re-
searchers who developed an optimization method
based on an optimality criterion to minimize the
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design weight under system nonlinear stability for
truss structures. Later, Kamat and Ruangsilasingha
|2]and Kamat [3] formulated stability inits nonlinear
torm. They resorted to solving two special cases.
They addressed the problem of maximization of the
critical load of shallow space trusses and shallow
truss arches of a given configuration and volume,

Levy and pemg [4] discussed the optimal design
of trusses to ‘withstzmd nonlinear stability require-
ments. They developed a two-phase iterative proce-
durc of analysis and design, where phase one utilized
analysis to dctermine instability and phase two uti-
lized a recurrence relation based on optimality crite-
ria for redesign.

Virtually all of the methods developed in the area of
fincar and specially nonlinear stability optimal design
procedures have dealt with the optimization of truss
clements or truss like idealized elements, but are seldom
cngaged with complex stiffness elements such as three-
dimensional beam elements. The present procedure
develops an optimality criterion approach to determine the
optimal minimum weightdesign of astructure idealized by
three-dimensional beam elements with constraint on the
nonlinear strain energy density distribution. This paper is
an extension of the previous work, especially, the work
done by Khot and Kamat [1].

NONLINEAR ANALYSIS

The approach cmployed for the analysis of three-
dimensional structures for this study is based on a
second-order approximation of the nonlinear
cquilibrium equations in terms of stress resultants.
The kinematic hypothesis employed is based on the
Bemoulli-Kirchhoff hypothesis that plane sections
remain planar after deformation. On the basis of the
assumption, the rigid body kinematic transformation

can be expressed as

u(xX)=u-yo +29, 1)
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w(X)=v - z¢, (2)
u,(X)=w+ y@, (3)

where the vector u = [u,v,w]' is the displacement at
the origin of axes (x,y,z) where (y=z=0) and ¢=19,
¢,, ¢.1' is the vector of rotation of cross section about
(x,y,z) axes respectively. Note that superscript 7
means the transpose of the argument.

One can express Green’s strain tensor in terms of
Cartesian components of displacement vectors in
indicial notation as

E, = (ui'j +u +uu ) 4)

v )

B [

By using Equations 4, the following constitutive

equations can be derived

N=EAA

where A =u' +%[(u')2 + (VP + (W) (5)

N=GAA, where X =v'-¢(l+u)+w'¢ ()

V,= GA3)\-3 where x} =w'+ ¢2(l+u') - v'¢] 7
M,=ELA, where A, =¢"(1+u)-w'g' ®)
M,=ELA, where A =¢"(1+u)- V'’ €

T=GIA, where A =9’ +IJ_3¢'2¢3 -1J_2¢2¢'3 (10)
where A=[A, A, A, A, A, A ] is the vector of strain
measures which is conjugate to the stress resultant R.

To set the stage for the following developments,
the displacements are denoted by u=[u, v, w, b, 0,
M, M, T],
the vector of the applied forces by g=[p,q,,q,, m,, m,,

¢,)', the stressresultantsby R=[N, V_, V

t]* with p being the applied axial force, ¢, and g, being
the applied shear forces in directions y and z, respec-
tively, m,,m, being the applied moments in directions

y and z, respectively, and 7 being the applied torque.
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Equation 5 through 10 fumishthe simplest constitutive
model in terms of the generalized strains. Clearly, the
model (5) through (10) derives the strain energy
potential of the ith group, W,, defined as

L
wi=;_ [Ai(x )E AT +(A 2i(x) GiA3
0
+(A9i (<) GiA3 +Eili+ X )AT+E Li(x YA
+3i(xi) Aé] dy an

where A (x), (A), (x), (A)), (x), I; (x), I.(x), J.(x) are
the area, major shear area, minor shear area, major
moment of inertia, minor moment of inertia, and
torsion constant of the cross section for group i,
respectively, all of which depend on the design vari-
ables. The term G, is the shear modulus of group i.
Finally, the total potential energy of a structure

can be simply expressed as

L
N
n=Yy w;-[ n'qds (12)
0

i=1

where N is the total number of groups.

FORMULATION AND DEVELOPMENT OF
THE OPTIMIZATION PROBLEM

Nonlinear critical load, which may be either a limitor
a bifurcation point, can be characterized as the load
that results in a loss of positive definiteness of the
tangent stiffness matrix. For the optimization prob-
lem considered here, the load distribution applied to
the structure is specified and is assumed to be propor-
tional. The geometry of the structure is given and the
optimization problem seeks to procure the minimum
weight design of a structure, such that for the given
designload distribution aninstability can be achieved.
The instability can be a limit or a bifurcation point.
The structure is idealized with nonlinear beam ele-
ments and, in each optimization cycle, the structure

is analyzed using the geometrically nonlinear
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procedure formulated earlier. By using adisplacement
control procedure such as Ramm (1980) and Batoz
and Dhatt [5], one can reach and pass a limit or a
bifurcation point. A limitor a bifurcation point can be
traced either by monitoring the positive definiteness
of tangent stiffness matrix orusing the current stiffness
parameter developed by Bergan and Soreide [6].
They showed that the nonlinear behavior of multi-
dimensional problems may be characterized by a
single scalar quantity called the current stiffness
parameter. The current stiffness parameter is imple-
mented and employed in this study. As soon as the
load approaches an instability load, the current stiff-
ness parameter approaches zero and becomes zero
right at the instability load, changing sign after pass-
ing the instability point.

For the present study, the members of the struc-
tures are arranged into M distinct groups. Each group
is associated with a set of design variables that
describe the geometry of the cross section of that
group. For example an I-beam can be described by its
depth h, flange width b, web thickness ¢, flange
thickness 7,. Consequently, the I-beam has four de-
sign variables. A rectangular cross section has two
design variables: the width b and the height # of the
cross section. A square cross section can be identified
by one design variable which can be either the width
orthe height of the cross section. The vector of design
variables will be designated as x = {x ,, % ,» .- - X & }»
where dv is the number of design variables, com-
puted as the sum over all the groups of the number of
design variables per group. Therefore, the optimiza-
tion algorithm can handle 'éomplex cross sections
with several variables to describe the cross section.
One important point that needs to be mentioned here
is that this study is not concemed with local buckling
but rather is concerned with global instability of a
structure. Because the analytical model does not
include local buckling modes, these will not be rep-

resented in the objective function or constrain
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functions. One could use a model that incorporates
local bucking, but the interaction between local and
global buckling for most structures is small. On the
otherhand, since local and global buckling are lightly
coupled, local buckling constraints in the form of the
width-to-thickness limitation would be relatively
simple to describe and implement.

To simplify notation, the specific weight of the
mth group is designated as the weight per unit of the
cross-sectional area of the entire group

4.=3 oL, (13)

i€ m

where the length of member i is L, and its density
is 0. The sum is taken over vall members associated
with group m.

With the aobe definitions, the optimization prob-

lem can be posed in the following way

Minimize  g'a(x) (14)
Suchthat  h(x)=IT (x)-II=0 (15)
and x<x<x (16)

where [1(x) is the total potential energy and s the
total potential energy associated with the optimum
design at the nonlinear critical load. q= {q,, q,, ... ,
q,,} is the vector of specific weights, and a(y)={a
[(X).a,(x),...,a_(x)} is the vector of cross-sectional
areas of M groups. Each function a_(x) depends only
on the design variables from group m. The inequality
constraints given in Equation 16 indicate that each
design variable has a minimum permissible size, x,,

and a maximum permissible size, X
Optimality Criteria

The optimality criteria can be obtained from the first-
order necessary conditions for a constraint optimum.
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The Lagrangian functional corresponding to the
optimization problem given in Equation 14 through
16 can be written as

L(x£)=q'a(x) - £ [1- 1] (17)

where & is the Lagrange multiplier for the equality
constraint. The element size-limit constraints are not
included in the Lagrangian and hence do not have the
corresponding Lagrange multipliers. The explicit
size constraints can be handled more efficiently with
an active-set strategy. Whenever a design variable
violates a size constraint, it is assigned its limiting
value, is removed from the active set, and no longer
is considered as a design variable.

The first-order necessary conditions for an opti-
mum design are obtained by differentiating the
Lagrangian functional with respect to design vari-
ables x and by setting the corresponding equation to

Zero

VL(x,&) =q'Va(x) - § [VI] - DIT.u] =0 (18)

where [V(.)]j = d(.)/ox ; is the ordinary gradient
operator and D[].u is zero. Therefore, Equation 18
yields

qVax)-gEVII=0. (19)

To simpplify the formulation, itis necessary to make
some definitions. First define the vector F to be the

gradient of the objective function
F(x) = q'Va(x) = q' A(x) (20)

where the components of the newly defined matrix A
are given by A = da./dy, ;» Further, define the vector P

to be the gradient of the constriant

P(x)=VIL 2D
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Thus, the optimality criteria presented by Equation
18 simply reduces to

F(x) - £ P(x) = 0. (22)

This equation geometrically signifies that, to have an
optimal solution x, for a design the vectors F and P
must be collinear.

Later on, the derived optimality criteria, Equation
22, will be used to set up the recurrence algorithm for
updating the design vector x. To simplify the notation

for future developments, one can define a diagonal
quotient matrix Q such that

I Fi if 0=

P;
Qij= :
\ 0

Therefore, by using the definition given in Equation

(23)
if 1#].

23 and by considering the optimality criteria given by
Equation 22, one will obtain the following simplified

optimality criteria expression

Qx) =1 24

where I is the identity matrix.

SOLUTION PROCEDURE

The optimum design must statisfy the optimality
criteria and the nonlinear energy density constraint.
Since these equations are nonlinear, they must be
solved by an iterative procedure. The algorithm used
here is a fixed-point iteration based on the first order
necessary conditions (optimality criteria). The fixed-
point iteration, used in conjunction with a scalling
procedure, will move the initial design toward a
configuration which satisfies the optimality criteria

and the constraints, The algorithm steps are as
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follows:

1) Choose an initial design;

2) Perform a nonlinear analysis and determine the
nonlinear limit load;

3) Perform a line search (scaling) to satisfy the
constraint and keep the design in feasible region,
by assuming the Lagrange multiplier equal to
unity;

4) Select adesign vector direction and determine new
design variables;

5) Check the optimality criteria;

6) If convergence is not acheived, go to step 2.
The Fixed-Point Iteration

Various forms of recurrence relations have been
developed by various researchers and have been used
to update the configuration in an optimization prob-
lem (Gellaty and Berke {7], and Khot, Venkayya and
Berke [8]). The recursive approach has the advantage
of eliminating the need for the Hessian of the
Lagrangian functional in a nonlinear programming
algorithm. In general, the optimality criteria are used
to modify the design variable vector. Therefore, one
can generate a new design vector from the previous

one with the exponential recursion relation
Xk = Xk [Q(x)]F @5)

where k denotes the iteration number and 7 is the step
size parameter. At the optimum, the optimality crite-
ria will be’satisfied and therefore, the design vari-
ables will be unchanged with any additional itera-
tions. The convergence behavior depends on the
parameter r. Depending on the behavior of the con-
straint, it may be necessary to increase r to prevent
convergence.

At the optimum, the term Q(x*) given in Equation

25 approaches identity. Therefore, linearizing the
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exponential gives the altemate recurrence relation
; - 1 -
xk“:xk[l+%_[Q(xk)—l],j (26)

This equation is referred to as the linear recurrence
relation for the design variables and can be used to
update the design.

Active-Set Constraint Strategy

After cach iteration, a new set of design variables is
obtained. If a design variable lies within its permis-
sible range, it is placed in the active set; otherwise, it
is placed in the passive set so that a proper scaling can
be performed before the next iteration. At the start of
each iteration, a formerly passive variable can either
remain inthe passive setor be reactivated. In genefal,
it is not known apriori if a variable will be active

at the optimum.
Sensitivity Analysis

Evaluation of the optimality conditions, Equation 22,
requires knowledge of the sensitivity, or rate of
change, of the potential energy with respect to the
design variables. The sensitivity of the potential
energy can be computed by differentiating the poten-
tial energy given in Equation 12 with respect to the

design variable, x,

in which the differentiation of the strain energy

involves only differentiation of the scalar cros

w

sectional parameters of Equation [1.
L

Vwi:-;— [VAX)EA +V(A2)i(x) GiAJ

4]

+V(A2)i(x) GiAl + VIE;(x)A2 + VIE; (x )A2
L

+ VIi(x)he ldy [ Vn'qdy (28)

0
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where I= 1,1

17 727"

ofinertias of M groups, I = (I,L,....I l'isthevector

.., I_]'is the vector of major moment

of minor moment of inertias of M groups, J=[J, 1,
..., J_]'1s the vector of torsion constants of M groups.
Each function such as 1  (x) depends only on the
design variables from group m. The sensitivities of A,
are identically zero for statically determinate struc-
tures since the distribution of force through the struc-
ture does not depend on the element rigidities. In
addition, such sensitivities are usually small and are
generally neglected in practical computations for
indeterminate structures.

The following section describes how the devel-
oped nonlinear analysis procedure and the proposed
optimization method are applied to several simple
structures. The purpose of the examples is to demon-
strate how the algorithm performs.

Examples

In the example investigated in this report, Young's
modulus of elasticity of 107 psi and material density,
p,of the 0.1 Ibs/in® were used. A square cross section
was used for all the members with a minimum allow-
able size of 0.316 inches for each design variable (or
0.1 in? for minimum allowable cross-sectional area).
Each design variable consists of either height or
width of a square cross-section. In addition, each
structural member is modeled with 2 three-noded
quadratic geometrically nonlinear beam elements.

Th
11X

ana

eaua.lysisand'h' i i ati e e aadiien 2o

thcoptimization procedure, used
in the analysis and design of the structures studied
here, are implemented in the general finite element
program FEAP [10].

Four-Beam Structure

The four-beam structure consists of four beams with

four fixed supports, and all the beams have one
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Figure 1. Topology of four-beam structure

common c¢nd point. The topology of the structure is
given in Figure 1(a) and 1(b). The loading on the
structure consists of a single proportional load ap-
plicd at junction node in negative z-direction. The
magnitude of the applied loading is 200 1bs. This
struture is to be optimized to determine the minimum
weight optimal design that exhibits a limit or a
bifurcation instability under the applied loading. The
initial design was chosen with the cross-sectional
arcas of cach member o0 be 2.0929 in?, with a total
initial weight of 120.64 Ibs. The history of the optimi-
zation process is given in Figure 2. The problem

converged m 15 iterations with the cross-sectional

TABLE 1. Properties of Four-Beam Structure

properties as given in Table 1. The weight of the
structure at the optimum is 77.67 Ibs.

The relative strain energy densities of each mem-
ber are also given in Table 1. One of the members
became passive at the 11th iteration, and the other
three members remained active with strain energy
densities of almost unity. The member that became
passive is the member AD (see Figures 1(a) and 1(b)).
Member AD is the longest member of the structure
and consequently, the most slender member of the
system. The optimization problem, converged with
member AD becoming passive, physically points out

that this member is an unimportant member and that

Member Cross Sectional Major moment of Minor Moment of Torsion Relative Energy
Area (in%) Inertia (in') inertia (in*) (in*) Densities at
Optimum
AR 2.7101 0.61207 0.61207 10.356 1.0000
AC 1.8762 0.29336 0.29336 4.963 0.99786
AD 0.1000 0.00083 0.00083 0.013 0.20986*
AE 1.5665 0.20423 0.20423 3.455 0.99770

*Passive element
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in order to have a minimum weight structure to
exhibit a limit or a bifurcation instability under the
applied loading, one needs to take this elemen out of
the active-set. This was done by the algorithm by
assigning the minimum allowable design variable
size to member AD and setting it to be a passive
element.

Figure 3 presents the magnitude of the load factor
at [imit load versus the optimization cycle. Looking
atthis figure, itbecomes apparent that the structure is
reallocating properties to the different elements to
achieve the minimum weight and unity for the load
factor at the limit load. After the second iteration, the
optimization problem moves smoothly toward hav-
ing unity for the load factor at the limit load, which

happens at the fifth iteration.

CONCLUSIONS

An optimization-based design that efficiently pro-
duces structural design with minimum weight and
with geometric nonlinear behavior has been pre-
sented. The procedure is based on nonlinear stability

ad wgrith tarn o d thenns A
CUu wiudl Ltwou-aiilu uucco-ui

s ctemintiirae Jdaalio P,
for structures idealiz nen-

sional beam elements. The method establishes a
rational framework to address the nonlinear stability
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Figure 3. Optimization cycles versus load factor

of the minimum weight design of structures whcih

exhibit instability under the applied loading conditions.
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