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Abstract  This paper presents an application of Continuum (i.e. Lagrangian) and Finite Element
Techniques to flexible manipulator arms for derivation of the corresponding Dynamic Equations of
Motion. Specifically a one-link flexible arm 1s considered for detailed analysis, and the results are
extended for the case of a two-link flexible manipulator. Numerical examples are given for the case
of both one and two Tink flexible arms, and the resulting dynamic equations are solved and thoroughly
discussed. [n addition, hoth methads are compared 1n the sense of modeling and the required time and
accuracy for computation.
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INTRODUCTION

Recent advances m the design and control ol robot mi-
nipulators ¢learly indicate the importance ol robot struc-
tural exibility and the fact that this study s sull i oats
infancy. In the past several years rescarchers in this fieid
have shown increasing interest in the modeling and analy-
sis of link and joint {lexibilities i computer controlled
manipulators and robots. Currently. inorder to circumvent
the problem of robotic deformations the practice 1s 1o
design amanipulator which is very rigid. This results inthe
creation of a heavy arm, that by 1tselt puts more ol a stramn
on the actuators that drive the manipulators joints and
furthermore reduces the mobility of the robotic structure
due to the Targe values ol inertial torces. Inadduon, Jight
welght manipulators are needed to increase robot operat-
ing speeds without requiring high performance actuators.
The drawback of robots having lightweight arms s repre-
sented by their structural elasticity which makes modeling
and control complicated tasks. Book etal. [1-4]. Usoro ¢t
al. |5]. Ghassempouri [6], and Meghdart [7] have made
signilicant contributions to the modeling. design, and
control of manipulators with clastic members. In the
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following sections, exact and approximate dynamic mod-
¢ls of flexible manipulators are derived using the con-
tnuum and linite element methods and o comparative
analysis of both modcels is presented.

PART ONE: ANALYTICAL MODELING
The Continuum Approach

In this section we make use of the Lagrangian technigue
presented by Book [1]. The presented model considers a
robot manipulator consisting of clastic links, and rotary
rigid jonts. By defining (wo transformation matrices, one
forexpressing the joints' rotationand the other for express-
ing the hinks' clastic deformation, one can specity the
position of any pointon the manipulator at any configura-
tion, Assuming small deflection in Iinks, elastic deforma-
tion of each link would be equal to the sum of the assumed
mode shapes.

Using the above assumptions, 4 suitable formulation
for expressing the potentiad and kinetic energies of the
system is found. Then, using the Hamiltontan principle
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one can derive the cquations of motion ol the flexible
manipulator.

In this paper. using the Lagrangan method, the
nonlinear cquations ol motion for aone link planar robol
are derived. This robot is capable of bending only i the
plane of motion. Axial deformation and (wisting of the
robot’s link are tgnored in our analvsis,

Kinematics of the Mechanism

The position of 4 point on the robot’s Tink in Cartesian
coordinates is defined by an augmented vector as:

|1, X-component. Y-component, Z-component]

Furthermore. the coordinate frame (X, Y, Z)) is attached
to the link with origin "O" at the joint, and it is oriented
cuch that its X-axis is coincident with the neutral axis of
the link in its undeformed condition (see Figure 1), When
the Tink is undeformed a point on the neotral axis at X=mn
is located at lkil (m) under a general condition of deforma-
tion in terms of coordinate frame (X, Y |, Z ) as:

0
l m X}(n)
=l + 380y ()

I A1)
where:
X .Y i.Z; = displaccment components of mode j of the
link
§i(1) =the time varying amplitude of mode j of the link:
and
m = the number of modes used to describe the link

deflection.

X0

Figure I, Schematics of a one-link flexible arm.
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&S A A
Let us further define the coordinate frame (X0 Y. Z))

fixed to the link such that in the case of no deformation it
18 p;l{\u,l]cl o the (X.Y,.Z)) coordinate system with X
and X, being coincident. Henee. using a homogencous
transformation one can describe the position of i point in
terms of the tixed basce coordinate frame (X o, Y o.Z 1) as:

hi=w,'hy (2)
where:
1 0 0 0
wi=|0CH-5680 (3)
= (7) S8 Ce 90 )
00 01

and CO=Cos (8). 58 =Sin (0).
Therefore, the position of a point on the link in the base

frame is given by:

m m

Ce “*Z §;(xim) [ SO Fyim)
hi=w; 'hi 5 - - - =

—~ a0 o~ m m

SOIN+Y., §uxm) [+Col Y Hym)

j=1 =1

o -

m

Y 8i(zim)

i=1

(4)
Please note that it is assumed the bending occurs in the XY
plane, and the axial deformationisneglected; Xj(n) =Zim)
= (). Thus we have:

ncCo - se[}: ES,(()y,-(n)]
hl= i:l

nSe + CH[Z &(l)yi(n)]

i=1

Furthermore, the link transformation matrix between
A A

A
(X,. Y,.Z) and (X, Y, 7Z) farmes can be expressed as:
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E=[E+Z&(I)M} (5)
s 2902
where:

100 0] 0000
ho| P oo MJ:_J_ J By
Tl 010 = y;(jfji)-,

Lo 00t 7 By Bxj 0 |

[ = the link length,

S(I, ?I, i] = displacement components of mode jof the link

arn=1/,
B, 0,8, = rotational components ol model j of the link at
n=1.

Once again note that bending is assumed to occur in the XY
plane as shown in Flgurt, I, and axial deformation is

neglected; hence Bx,qﬁ =0, and XJ ZJ*().

The System’s Kinetic Energy
The kineuce energy of a point on the link is given as:

dT=1dm Tr"}.l;. h l’r‘: (6)
y T he

where din represents a differential mass at that point, and
Tr{ } s the trace operator, For slender links we have:

dm =pdn
where W is the mass per unit length.

Integrating Equation 6 over the link length results in the
total kinetic energy contribution 4s:

!
T:L/ Tr’;ﬁl.gf}udn 7)
21y

which may be expressed as |1
T- Trjwl B;wl +2wlng1 +wi By w \ (8)

" !

where:
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- -
00 0 0
00 0
0
B, =
== 2 - -
0 0[2 Y 8,05, (0] y M)y (M) dn] U
k=1
00 0 0
{h
00 [2 &([)J Y,('ﬂ) dT]] 0
00 {2 §m J ‘W;‘m)d“} 0
Bo=} ! (10)
()(J{Z > &(t)&(t)J yi{m) ye(n) dn}
j=lk=1
00 0
: 0
i |
— ; ,
} dn f ndn
0 0
! !
ndn J d
B,=H L Jo e
= 2 m - 1 m -
2 6J'J y M) dn Z 81“ nym)dn
=170 ji=1 Jo
0 0
m - 7]
P J y {n)dn
i=1 Jo 0
m -
[Z SJ nyj(n)dnJ 0
j=1 0 (1 ])
[Z Z 5 d J yimym) dﬂ] 0
i=lk=1
0 0
_

and,
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0O 0 0 0
0 -6S8-6CO 0
0 6CO -6S6 0
O 0 0 0

From Equations 8 through 12 one can obtain:

Im ) ! .omo,
T:%\ 2{&6 +0 66” yimymdn+203 §
1i=1 =1 0 =1
N -l \
J nym)dm@“J nan’ (13)

The System’s Potential Energy
The potential energy of this system is contributed to two

effects. One being the system’s elasticity. and the other is
due to the gravitational field.

a) Potential Energy due to the System’s Elasticity.

Since the considered model bends only in the plane of

motion. the corresponding clastic potential energy of the

lenght dn is:

dve=Ldn <EI {‘*’;T(;T) ;> (14)
4_. G

where:

8, : rotation ol neutral axis of the link at the pointn in the
Z-direction.

E : Young's Modulus of Elasticity of the link.

I, : the link’s cross-scctional arca moment of 1nertia
about the Z-axis.

Considering a truncated modal approximation of the link

deformation, 8, can be represented by a summation over

the modal coefticients times the deflection vartables as:

m

=Y 8(08xM) (15)

k=1
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Where 0,4 (1) is the angle about the Z-axis corresponding
to the k-th mode of the link.

On the other hand, from mechanics of materials we
have:

o

and from Equations 14, 15, and 16 one can obtain:
2
{ n \

v =1 dn z&k(o
s

Finally integrating Equation 17 overthe link length provides
us with the Link’s Total Elastic Potential Energy as:

Ve=L] 33 SundEL ) (Ty"mdn (18)
2le=11=1 . aﬂ an~

b) Potential Energy Due to Gravity

Considering a differential element of length dn on the
link, the potential energy due to gravity can be writlen as:

dVg=-pg"w,' hidn (19)

where the gravity vector g has the form:

eV =[085 050

Note that in our model gx =g, =0, andg, = -g. Integrat-
ing Equation 19 over the link Iength. the resulting Gravi-
tational Potential Energy 1s:

\/g:-h/lg)rl‘(ySH-gyu(,‘Bz O ()] v dn (20)

k=1 B

Where:

M :is the total mass of the link, and

re :is the distance from the undeformed center of
gravity to point 0.
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Lagrangian Equations of Motion

Unlizing the general form of the Lagrange’s equation as
tollow we have:
a). The joint eqnation as:

dt

T 20

d [dT) 9T IV dVe
gl o8 26 99

or;

! i !
{é] nzdn+z&[ ny[dn+29223‘55[ y\y)dﬂ}
1) 4 {)

i=1 i=l=1

3

/
m

-J\/lgyrc(‘&)-rgyuSE)Zfi" y:dn =1 (22)
()

1=

Where T is the applied torque at the joint.

b). The detlection equation for the ith mode ts:

Md_ ()T\_()T+E)VC+BVE!:() (’)’%)

dtlyg] 08 8¢ 08 N
}m - . .

M\X{B-B“&” yiyjdn +9J nyidn {24)
j=1 1 v ]

2
m o 18 Yi DY, . /r
+2| h‘_ElZJU o . —DTdn g, HCH ” y dn=0
Equations 22 and 24 may be derived from direct differen-
tintions ol Equations 13, 18, and 20, or by Book’s formu-
Jation pesented in (1] 1 and only if one mode shape s
considered in computations and 1t s assumed as the first
mode of a one-end-fixed cantilever beam [2, 3, 4], we
have [R]:

y i) = -1.%2{0)5 (1.87510) - Cosh (1.8750)]
l [

+ Sin (18750 y - Sinh (1.8750) (25)
/ /

Computing Equations 22 and 24 for the first mode, the
system’s equations ol motion shall be as:
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K]

ELB+().7’751,1/26+3.71;1[666-g"“[ Co
3 2
+1.066 ¢ nioSe=1t (20)

N ) .2 Bl
0775 10 8+ 1855 8- 1855 /0 5+22928 28

3

!

+ L.066g, nI1CH=10 (27)

Where 8 is the joint angle, d is the time-varying amplitude
of the first mode. u is the mass per unit length, Lis the link
length, gy is the gravitational accelerations. E 1s - the
Younge's Modulus of Elasticity, and 1 1s the arcamoment

of inertia about the Z-uxis.
The Finite Elenient Approach

In this scction we make use of the method introduced by
Usoro et al. | 5] for the analysis of flexible robots with
rigid joints. They divide cach link of the robot into a
number of clements, and define a deflection function in
terms of the Hermitian polynomials shape function. result-
ing in incrtia and stilfness matrices for cach of the cle-
ments. Utilizing the above matrices, one can compute the
kinetic and potential energies of these elements, and rear-
range them to compute the global stiffness and inertia
matrices of the robot. Applying boundary conditions and
using Lagrange’s equations, the differential cquations of
motion of the system are achieved.

Using the above method (F. E. M.). nonlincar cqua-
tions of motion of a one link clastic planar robot with onc
element 1s presented here (see Figure 2).

The (X,.Y
X, Y. Z) is the link coordinate frame. where the

Z)isthe inertial coordinate frame and the

0

Or

Figure 2. One-link clastic arm with one efement.
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undeformed link is in the direction of X -axis. And U, and
U, represent the flexural displacement and slope of the up,
respectively. Furthermore, U, and U, are the flexural
displacement and slope at the joint in which they are set to
zero. As indicated by Usoro [5], the mass matrix of such a
robot is given by:

M. H)M(1.2) M(1,3) M(1.4) M(1,5)
M (2. 1)
M=l M@3.1) (28)
M. 1) P
M(5. 1)
Where:
M(1, 1 =mL  mi 15603+ 417 U3+ 156U3

420
+417U3+ 441U U>-441U3Us+ 108 U, Us

+26 U Us 26 (U Ug- 6 UpUs)

M(I1, 2) = M(2, l)— 3 mp?
20

M(1,3)=M@3, 1)=L_m/’

30)
M(1.4)= M4, 1) =L/’
20
M(1.5)=M(5, 1) =-Lm/’
20

156 221 54 -131 |
poml 210 417 131 317
= 4200 54 131 156 -221
| 130 307 220 417

The kinetic energy of this robot is formulated as:
T:ékuwﬁhuqykuwﬂhu4 (29)

and, the stiffness matrix of this robot is defined as:
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12 61 -12 61
_EL| 6l 41 61 20
= | a2 w61 12 61

6l 21° -6/ 4/°

=

(30)

Finally, the potential energy of the robotic system is
represented by:

V=mgl_S0+mgCo (U U2 IUs U
2 2 12 2 12

T

[U]UwU3U4]K[U1UzU3U4] (1)

+1
2

Applying the boundary conditions U, = U, = (). the kinetic

and potential energies of the system are reduced to:

; 1401 + 156U+ 450 - 441U,
T=1|o U, ]| mL
2[ ]\420 147!

211

147 { 2100 6 \

156 220 || Us (32)
221 a2 U ]
2 2
V=mg L S6+mgCo [[ﬂ [ U4]
2 2 12
+EL[6U3 - 6UsUs 1+2 P UF) 33

13

Utilizing Equations 32, 33, and the Lagrangian equations,
and assuming the inertial matrix is time-invariant. the

equation of motion of the robotic system is derived as:

140 1>+ 156U +4U3 I° - 44 | U3Us 1471
ml | 1471 156
420 | 01/2 221
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-lng£C8+ mgSG(ZU‘-Z_Llﬁ)
2 2 12

2

20019 mIB (15601, 22/U,) - meLCo
2210 ||Us ]| 420 >

ar v,

7

m/9 {4 [2U4 . 22[U,§) + mg[_(,‘ﬁ
420 12

_ EL(]ZU; - (1U4l)

P =| 0 (34)
-EL(-()[U; + 4[2U4)
['z 0

PART TWO: NUMERICAL ANALYSIS
Numerical Results

The cquauons developed from Lagrangian and Finite
Element methods are solved forasingle link flexible robot
with the following specifications:
link Iength: [=1(m)

p=1 (kg/m)

E =2 x10" (N/m?)
I =1.3x10"(m*)
Solid Circular rod with diameter: D = 1.28 (¢cm)

Mass per unit length:
Modulus of Elasticity:
Area Moment of [nertia:

These equations are numerically solved simultaneously by
the Hammings Modified Predictor Corrector Method [9]
via Fortran-77 on an IBM-PC-AT computer. The conver-
gence rate for both of these methods is quite different. For
various imputs, the Lagrangian method converges two to
five times quicker than the F.E.M., It is noticeable that in
F.E.M.. the existence of very small elements in the inertia
malrix sometimes results in an instability of the solutions.
And by eliminating these values, the stability of these
cquations are improved.

The results obtained from various imputs and initial
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conditions applied to these equations are analyzed. Only
three different examples will be presented here and the
reader may refer (o Ghassempouri |6] for further details.
These cases are as follows:

) Free motion of robot arm about its cquilibrium position
(see Figure 3(a)).

b) Forced motion of robot arm under Step torque input (see
Figure 4 (4)).

¢) Forced motion of robot arm under Half-Sine torque
input (sce Figure 4(b)).

For all three cases, variations of following parameters are
sketched vs. time. Where 68_1s the joint angle in the
continuum model, B, 1s the joint angle in the F. E. M.
model, 6 is the mode shape amplitude of the link in the

YO

. L
H o

82—1.6 (Rad)

YO

(b)

Figure 3. (a) Free motien of the robot.
(b). Forced motion of the robot.
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0
Tin-a)
10 -
[+ t —
4] ] (Sec) H
(a)
20 r
Tin-m}
0 —
0 T T +
1} 1 {5ec) z

Figure 4. (a). Step torque input.
(h). Half-Sinc torgue input.

continuum model, and U is the end point deflection of the
link in the F. E. M. model. Furthermore, X_and X, are the
X-components of the link’s end point in the continuum and

F. E. M. models respectively.
a). Free Motion of the Robot Arm

Considering the arm to be released from the position
shown in Figure 3 (a) with a zero input torque at the joint,
the resulting motion is represented by Figure 5. Figures
5(a) and 3(b) clearly show the variations ofﬁC and Bf. which
indicate the robot’s oscillation about the equilibrium point
duc to its initial displacement. The period of oscillation of
the link angular displacement differs a little in both mod-
cls. In addition 1o its own oscillations about the equilibium
axis. 8 vibrates with a low amplitude. This eftect 1s not
observed in the F.E. M. model. Figures 5 (¢) and 5 (d) show
the variationsof dand U, respectively, and clearly indicate
that the vibrational behavior of both models is similar,

The link deflections observed here are due to two
sources; one being the link’s structural vibration which 1s

26 - Vol. 7, No. 1, February 1994

speciticd by a high frequency, and the other heing the
change in the robot’s configuration in the gravitational
ficld which appears at a low frequency. Figure 5(e) shows
the variation of X_and X which are closely comncident.

b). Robot Arm Motion Under Step Torque Input

Considering the arm with an input torque as shown in
Figures 3 (b) and 4 (a), the resulting vanations of 8_and 8,
vs. time are displayed in Figures 6(a) and 6 (b). Once again
in addition 1o its own oscillations, 8 vibrates with a high
frequency resulting from structural vibrations. The differ-
ence in the period of oscillation for both modcls is more
than the case where the robot was in free motion. The
reason being an increase in the amplitude of oscillation of
the link due to the step input and its elfecton the juintangle
in the continuum model. Figures 6(¢) and 6(d) show the
variations of & and U,. The results obtained for d in the
continuum model match the physical nature ot this robot
completely. They clearly show the effects of sources
(variations in gravitational ficld and structural vibrations)
creating detormations in the link. Unfortunately, the FLE.
M. model does not show the same suitable behavior, The
obtained results notonly do not match the physical nature
of the robot, but also in solving the equations numerically.
the rate of convergence is lower than the Lagrangian
(Continuum) method and the computation time 1s greater.
This especially happens when the applied torque s sud-
denly removed, resulting in anew shock to the system. and
the F. E. M. model faces ditficulties.

Figure 6 (¢) shows the variations of X and X, . Duc to
the differcnce in periods of oscillations of both inodels, the
step 1input results in high actuation of the system, and
furthermore creates a greater difference in behavior of
both models.

¢). Robot Arm Motion Under Half-Sine Torque Input

Upon application of the torques shown in Figare 4(h)
to the robot, the following results are obtained:

Figures 7(a) and 7 (b) clearly show the vartations in Hl
and 8 . Due to the soft naturc of the apphed torque, the
disturbance is very little and the difference i behavior of
both modcls is less than the previous case.

Figures 7(c) and 7(d) show the variations in & and U%
respectively. These figures clearly show a better behavior
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Figure 5. Variations of motion parameters 8 ,8,8,U , X , X, vs.

time under free motion,

of both maodels. Finally, Figure 7(¢) shows the variations
of X and X, which are about the same.

RESULTS: A COMPARATIVE LOOK

Comparing both methods indicates that in the continuum
model tormulation. there is no need for computing the
kinetic and potential energies of the system. The dynamic
cquations of the system are derived directly using the given
formulation. By increasing the number of links, or the
number of modes under anatysis, the size of corresponding
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matrices remains fixed and upon general formulation of
the robot, one can analyze the robot arm for any number of
mode shapes without any need for a new formulation,

In the finite element method, the kinetic and potential
cnergy of the system must be computed and then by
applying the Lagrangian equation the equations of motion
of the system may be found. In this method as the number
of links or mode shapes increase, the size of the matrices
involved in computations also increases, and (o increase
the number of mode shapes, one must reformulate the
modeling process and perform the computation all over

Vol. 7, No. 1, February 1994 - 27



Hr‘n..m

4
H
|
i

+

n.u + i Coedie aiviod (R

(i ™

Sl =

(AN o

=015

X & Xgtom)

+0,05% 107 rTT : - T
@ \ :
Uylmy T R
i ) ;
o0 4 ‘ ; ;
L il
u.-8 4
FIRTREE 5
BRI
0. 16 = ! ' ;
0.25 i
| N Seed 2
° (d)
— X,
Xt

Alab +

Figure 6. Vanations of motion parameters 6 , 8, S, U o X, Xf. VS,
ttme under step torque input.

again.

The rate of convergence of equations of motion for the
continuum model is two to five times quicker than the F.
E. M. model. The sensitivity of the continuum model to the
step size is less than the F. E. M. model. In the F. E. M.
model, the equations become unstable when the step size
is increased. Finally, due to the great amount of computa-
tons, the F. E. M. model is slower.

Overall behavior of both models from a mathematical
point of view is very similar, Table 1 displays an overall
comparison of both models tor step and half sine torque
inputs.

28 - Vol. 7, No. 1, February 1994

Anotherinteresting difference between these models s

thatin Equation 22 developed using continuum model, the
!

term 2085 uj yydn 1s present while there is no similar
O

term in Equzltion 34 developed by the F. E. M. model. This
term is a torque resulted from the Coriollis force at the
robot joint (see Figure 8). Existence of this term in the
continuum model causes the link structural vibration to
affect the joint angle. Hence, in addition to the oscillatory
motion about its equilibrium point, the jointangle vibrates
with smallamplitude which is compatible with its physical
nature. But in the F. E. M, model, variaticn of the mass
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Table 1. System Behavior Under Step and Half-Sine Inputs.
F.E.M. Model Continuum Model
Input maximum low high maximum low high
Type X - X, (‘ndpn?m frequency | freguency | endpoint frequency | frequency
max | deflection deflection

[m] [m] |H7] |H7] [m] |[Hz] |Hz]
Step 0.003 0.02 .49 50 (0.03 ()48 54
Half-
Sine 5x107 0.018 0.49 455 0.0173 .49 54
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matrix with respect to time was ignored, and as aresult the
clicct of Corollis force was not considered. Hence, the
system behavior using FLEC M. modeling difters trom its
actual model. In fact, this is the most important difference

hetween the two models.

ANALYSIS OF A TWO LINK FLEXIBLE
ROBOT ARM

Comparing the results obtained in previous sections, the
continuum model was found to be more suitable for further
modeling, Hence, using this formulation the equatons of
motion of atwo-link flexible robot were derived by consid-
cring 1 mode shapes for cach link, (sce Figure 9). The
geometrical and mechanical spectfications of both links
are exactly the same. The general form of these equations
are represented by Equations 35,36, 37, and 3% in which
they are highly non-lhinear, and thetr numerical solution is
complex and time consuming (6],

For the first joint we have:

oy o OV v
d (f}f \ ) f) T + L +(' € =T] (35)
dt ()Hl} 98 a8, 00,

For the second joint we have:

STV a1 OV, ¢
dfoT) oT e Ve o (36)
dtlyg | 00, 9v, ae, -

FFor the first Iink and {th mode we have:

d JT dT avp aVL
- + +

\ 0 (37)
dt 051 af)lr ()blf 351f
,

FFor the second ink and {th mode we have:

IV gy
d (a7 -ha~T+_ e Ve g (38)
difgg | 00, do, dd
2 i )

%1

These equations are solved numerically for various cases,

but only the results obtained from free motion about the

equilibrium position are presented here (see Figure 10),

The vartation in joint angles B, and 8, . the mode shapes®
: i

armplitudesofthe firstand second links 8, and 8, and the X-

componcent valire ol the tip ol the robot are shown in Figuie
il
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Figure 8. Effect of corollis force in continum model.

Figure 9, The two-link flexible arm.

Figure 10. Free of the two-link arm.
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Figure I1. Variations of motion parameters 0,..8,,0,0,X, vs.
time under free motion of the arm.
CONCLUSIONS tinuum model. Gbtained cquations were solved numer-

cally and the results are presented.
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