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Abstract Reverse osmosis (RO) has become a standard unit operation in Chemical Engineering. This
separation process can be used for a wide variety of applications including: desalination of sea water, treatment
of industrial wastes, concentration of food products, and recovery of value materials from solution mixtures.
In order to best utilize RO it is necessary to have a fundamental understanding of the process so that the
optimum design can be reached. In this first part of a two-part series, the fundamental aspects of the RO
process are reviewed, several transport models are summarized and the design equations necessary for scale up
are presented. The emphasis is to provide a simple, practical, and yet comprehensive summary of the most
relevant information that will be needed by a chemical engineer trying to apply reverse osmosis membranes to
specific applications.
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INTRODUCTION

‘Although invented about 30 years ago on the
lab scale, the reverse osmosis (RO) separa-
tion process has become a major unit opera-
tion in Chemical Engineering. Today, this
membrane separation process has found a
wide variety of applications as in producing
potable water and agricultural water by desa-
lination of seawater and brackish water indus-
trial pure water, industrial and municipal
wastewater treatment, in chemical, petroche-
mical, and textile industries, and in food and
pharmaceutical industries to name a few [1-3].

A good understanding of the fundamentals
of the membrane transport is needed in order
to properly describe and predict membrane
performance, and to design practical RO

units. It is a challenge to Chemical Engineers
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‘to provide these models and develop useful

methods of design. The purpose of this
paper is to provide the reader with an over-
view of the fundamental aspects of reverse
osmosis. The emphasis is to provide a simple,
practical, and yet comprehensive summary of
the most relevant information that will be
needed by a chemical engineer trying to
apply reverse osmosis membranes to specific
applications. A detailed summary of several
transport models is given for the interested
reader.

Covered in this first part of a two-part
series is information on osmotic pressure,
the driving forces for mass transfer in mem-
branes, concentration polarization, the phy-
sicochemical criteria for separation, transport
models for permeation in membranes and the
design equations needed for scale up. The
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‘second part of this series will examine the
ability of transport models to describe and
predict membrane performance. Most of the
information on modelling membrane transport
is restricted to single solute systems. How
these models can be used to describe the
more difficult problem of mixed solute systems

will be discussed in the second paper.

'1. Membrane Performance

Typically, membrane performance is cha-
racterized in terms of flux and separation as
fllustrated in Figure 1. Flux is the rate of
material transported per unit membrane area
and separation is the relative change in con-
centration from the feed stream to the per-
meate stream. .
Separation (which is called equivalently
rejection and retention in some references),
f, is defined in terms of the feed and per-
meate molal concentrations, mp} and mp3,

respectively [5]:

f=(mp[-mp3)/ma) Rty

For moderately dilute solutions, the molal
concentration, my; can be approximated by
the molar concentration, Caj;, and Equatioh

(1) can be rewritten as:

£=(Ca1-Ca3)/Cal (2)

Alternatively, separation can be defined in
terms of the concentration of »the boundary
solution near the membrane surface, Cpo
The separation based on the boundary layer

S ‘
concentration, f, can be written as:

f=(Ca2—Ca3)/Caz {3)

The separation calculated in this manner
represents the theoretical separation that

would be measured with perfect mixing on
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Figure 1. Reverse osmosis performance.

‘the high pressure side of the membrane. The
advantage of using f for modelling purposes
is that f is function of the concentrations
that are adjacent to the membrane surface.
The fand f valuescan be related by considering
the concentration polarization phenomenon
as described below.

2. Osmotic Pressure

When an ideal semi-permeable membrane

(one that is permeable to solvent but

not to solute) is placed between two
compartments, one containing pure solvent
and the other containing a solution (solvent
plus solute), the solvent passes through the
This phe-

nomenon is called “osmosis” (see Figure 2).

membrane to the solution side.

Transport occurs due to the chemical poten-
tial driving force which is caused by the
presence of the solute. The exact pressure
that must be applied to the solution side to
stop the solvent flux is called the “osmotic
pressure”. In reverse osmosis, a pressure
greater than the osmotic pressure is applied
to the solution to reverse the flow and drive
solvent from the solution side to the pure
solvent side: hence, the name reverse osmosis
(see Figure 2). To model the flux through
“a membrane, the influence of the osmotic

pressure driving force must be considered.
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For a real membrane, some solute exists in the
permeate and therefore the osmotic pressure
of the solution on each side of the membrane
must be considered. An effective pressure
driving force across the membrane can be
defined as the applied pressure difference
minus the osmotic pressure difference. For
most models, the water flux is considered to
be proportional to the effective pressure
driving force.

Osmotic pressure is a thermodynamic pro-
perty (a colligative property) of a solution
and as such values can be found in various
reference books [5, 6]. The osmotic pressure
of a solution at position i, 7;, isrelated to the

i
mole fraction of the solvent, Xp, as [7]:

n;=—(RT/Vp) In Xp (4)

For dilute systems, Equation 4 simplifies
to the van’t Hoff Equation [7]:
m=Cp; RT (5a)
where Cp; is the molar concentration at
position i. If the solute dissociates then each
ion contributes to the osmotic pressure so
that for a completely dissociated salt M, +X,—,
the osmotic pressure is:
m=(* +v7) Cp;RT (5b)
Therefore, the osmotic pressure difference
across a membrane, An, is related linearly

to the concentration difference, (C A2—Ca3) -

The above two equations are useful, but
it is preferable to use experimental data on
osmotic pressure if the information is avail-

able.

‘3. Driving Forces for Transport

In general, several driving forces are possible
in membrane transport. The main driving
forces are pressure, concentration, electrical
potential, and temperature each of which
primarily influences the flux of solvent, solute,
electrical current and thermal energy, res-
pectively. In addition to the primary effects,
each of the driving forces has a cross in-
fluence on the other fluxes. For instance
the pressure driving force can cause a flux
of current, called the streaming current [8].

In reverse osmosis systems,the only driving
forces of interest are pressure and concentra-
tion which lead to flux of solvent and solute,
respectively (see Figure 3). The cross in-
fluence of solute concentration driving force
on solvent flux is represented by the osmotic
pressure term in the solvent flux equation.
For high separation membranes, the cross
influence of pressure driving force on solute
flux is often small and is therefore neglected;
When it is included this effect is described by

the Staverman (or reflection) coefficient [9].

Normal Osmotic Reverse
Osmosis Equilbrium Osmosis
P

Osmotic
Pressure

Semi—Permable Membrane

Driving ] .
Force Pressure Concentration
Gradient Gradient
Flux
‘Solvent Solvent “Osmosis
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ven Ultrafiltration Diffusion
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Figure 2. The principle of the reverse osmosis pro-

cess (with permission from reference [4].
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Figure 3. Fluxes and driving forces in reverse osmosis.
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The solvent flux equation, written here for
both volume flux, J, and molar flux of
solvent, Npg, indicates that flux is directly
proportional to the effective pressure driving
force [5]:

Np=J, C=A(AP—An) (6)

where A is the appropriate proportionality
constant.

4. Concentration Polarization

When solute is rejected by the membrane,
the solute concentration near the membrane
surface increases. The build-up in concentra-
tion in this boundary layer region is referred
to as ‘“concentration polarization”.  The
polarization can be described by film theory
[10]. At steady state, the flux of solute to
the membrane, (Nj + Np) CA/C, the flux of
solute through the membrane, N, and the
solute back diffusion, —D AB dc A/dx, are
balanced as illustrated in Figure 4. Mathe-
matically:

which is a form of Fick’s first law [10].
Solving this equation with appropriate boun-

dary conditions [5, 11] gives:

|
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' Figure 4. Concentration polarization at the bigh

pressure surface of a reverse osmosis membrane.
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‘where N is the total molar flux of solute

and solvent through the membrane, and Cp1>
Cpg, and Cp 3 are the feed, boundary layer,
and permeate concentrations, respectively. As
the mixing on the high pressure side of the
membrane is increased, the mass transfer

coefficient, k, increases and Equation 8
predicts that concentration polarization de-

creases (Cp, decreases and approaches Cp1)-

Some authors choose to ignore the in-
fluence of concentration polarization by
claiming that if the mixing is sufficiently
thorough, the boundary layer concentration
This
may not be the case in large scale systems or

approaches the bulk concentration.

even in many laboratory scale apparatus.
Therefore, the best method is to specifically
account for concentration polarization by
using Equation 8 orsome equivalent method.

Other approaches have been used to des-
cribe the concentration polarization layer
more accurately (see for instance, [12]).
However, for most practical purposes, Equa-
tion 8 is sufficiently accurate. For each of
the models presented below, the original
reference can be checked to determine how
the authors modelled concentration polariza-
tion. .

The mass transfer coefficient is a function
of feed flow rate, cell geometry, and solute
system.  Generalized correlations of mass
transfer, which have been used by several
authors [5, 11, 13-15], suggest that the
Sherwood number, Ngp, is related to the

Reynolds, Np,, and Schmidt, Ng., numbers

as: k]

b 13
Ngp=aNgp, Ng.

9
where a and b are parameters that can be
determined experimentally.

For a fixed feed flow rate and cell geo-

metry, Equation 9 indicates that k variesas a
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function of the diffusivity of the solute to
the 2/3 power. Writing Equation 9 with
respect to a reference solute at the same

experimental conditions gives:

k=kpef (DAB/DAB,ref)ZI3 (10)

If k is known for a reference solute, then k
for any other solute can be estimated using
Equation 10 if the diffusivities of the solute

and reference solute are known.

‘5. Membrane Structure

In order to facilitate the description of the
various membrane models, a brief discussion
of membrane structure is included here. The
inquiry into the exact relationship between
membrane structure and performance is an
on-going concern (see for instance references
[15, 17] and the present discussion is limited
to some of what is known about typical
synthetic membranes.

The success of the reverse osmosis process
is due in part to the development of the
asymmetric membrane. An asymmetric mem-
brane has a relatively dense surface layer
supported by a porous layer underneath.
Such a structure greatly reduces the resistance
to flow through the membrane cdmpared toa
homogeneous dense membrane of the same
overall thickness. The asymmetric structure
is a direct consequence of the casting proce-
dure used. When a polymer solution is cast
on a flat surface, the evaporation of the solvent
produces a surface skin. Subsequent gelation
in cold water fixes the structure; the porous
substructure is formed by the replacement
of solvent by the nonsolvent water. Scanning
electron microscope (SEM) examination of
membranes made in this manner [18] in-
dicates that three layers exist: a relatively

dense surface_skin, a transition layer, and an

“Journal of Engineering, Islamic Republic of Iran

‘open porous support layer.

The transition
layer is intermediate in both density and posi-
tion with respect to the other two layers.
Most of the resistance to mass transfer through
the membrane exists in the surface skin.
Therefore, it may be assumed that the
performance of the membrane is dependent
primarily on the chemical nature, thickness,
and structure of the surface skin.

Thin film composite membranes have a
similar structure to asymmetric membranes
described above except that the porous sup-
port is fabricated first from one polymer
material (chosen for mechanical strength and
chemical resistance) and a thin film of a
different polymer is coated (often by inter-
facial polymerization) on the porous sub-
strate. The coated film is thin to increase
flux and made from a polymer that has good
separation characteristics.

For the skin layer, the basic question is
whether it is porous. Membranes with pores
sufficiently large that they can be seen with a
SEM are usually considered to be ultrafiltra-
tion membranes. These membranes are clearly
porous. As the pore size becomes progres-
sively smaller, there is no clear point at which
the pores disappear. With the technology
available today, the existence or absence of
pores in RO membranes can not be deter-
mined.

With this uncertainty in the membrane
structure it is necessary to consider models
that make no assumptions about membrane
structure and mechanistic models that assume

a membrane structure.

TRANSPORT MODELS

The general purpose of a membrane mass
transfer model is to relate the performance

(usually expressed in terms of flux of solvent
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and solute) to the operating conditions
(usually expressed in terms of pressure and
In the model,

(transport coefficients)

concentration driving forces).
some coefficients
emerge that must be determined based on ex-
perimental data. The success of a model can
be measured in terms of the ability of the
model to describe mathematically the data
with coefficients that are reasonably constant
over the range of operating conditions. Ulti
mately the model plus the now known tran-
sport coefficients can describe the perfor-
mance of the membrane over a wide range of
operating conditions. This ability to predict
the performance is the true power of a tran-
sport model. Combined with a research pro-
gram in membrane making this can lead to
better design criteria for tailor making mem-
branes and combined with a process design
program can lead to a more logical scaleup
procedure for reverse osmosis systems.

The flux of solute and solvent through a
membrane are related to the permeate con-
centration by material balance as:

CA3=C NA/(NA+NB) (11)
At moderately low concentrations, where
Ng>> N and the difference between molal
and molar concentration may be ignored
(Ca=mp;), Equations 3 and 11 can be
combined to give:

 CNu
CazNp

f=1- (12)

7Equation 12 is used frequently in the
derivation of the following models.

1. Mechanism Independent Transport Models

This section overviews ‘models which are

independent of the mechanism of transport.

These models are based on the theory of

irreversible thermodynamics.

168 — vol. 1, No. 4, November 1988

1. 1.

Irreversible Thermodynamics-Pheno-
menological Transport Relationship.
Premises of the model. In the absence of any

knowledge of the mechanism of transport or
the nature of the membrane structure, it is
possible to apply the theory of irreversible
thermodynamics (IT) to membrane systems
[19].
“black box”. Models stating the relationship

In IT, the membrane is treated as a

between forces acting on the system and the
flux of material through the membrane are
formulated. For systems that are not far from
equilibrium, IT suggests reasonable choices
for forces and fluxes. The phenomenological
relationships are manageable ways of expressing
the relationships between the observed fluxes
and the applied forces.
Mathematical formulation of the model.

‘Onsager [20] suggested that the fluxes and

forces could be expressed by the following
linear equations:

7Ji=LiiFi+ £ L.F. fori=l,..,n

= 93

where the fluxes, J; are related to the forces,

Fj’ by the phenomenological coefficients, L1J
For membrane systems, the driving forces
can be related to the pressure and concentra-
tion differences across the membrane, and
the fluxes are solvent and solute permeate
fluxes. This equation can be simplified by
assuming that cross coefficients are equal

[20]:

Li.z

j L. fori# j

J

‘The above Onsager reciprocal relationship

(ORR) is valid when the system is close to
equilibrium, the linear laws (Equation 13 )
are valid, and the correct choice of fluxes and

forces has been made. For systems that are
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far from equilibrium, as is often the case in
reverse osmosis, Equation 14 may not be
correct. The validity of the Onsager reci-
procal relations has been discussed by Soltanieh
and Gill [21].

Kedem and Katchalsky [19] used Equations
(13) and (14) to derive what are known as the

phenomenological transport equations:

I,= QP(AP~oAﬂ) (15)

o) (CaM)In Jy (16)

where the adjustable parameters !ZP, w, and o

Np=wAr +(1

are simple functions of the original pheno-

menological coefficients, L;:.

is similar to Equation (6) with the addition

Equation 15

of the reflection coefficient, o, as originally
proposed by Staverman [9]. The Staverman
coefficient acts to describe the effect of the
pressure driving force on the flux of solute.
For a high separation membrane this effect
is small and o approaches 1.0 so that Equation
15 becomes equivalent to Equation 6. For a
low separation membrane the solute is signifi-
cantly carried through the membrane by
solvent flux and ¢ approaches 0.0 so that the
osmotic driving force becomes unimportant in
Equaiton 15. Thus the Staverman (or refelec-
tion) coefficient represents the relative per-
meability of the membrane to the solute.

Pusch [22] has shown that Equation 16
can be rewritten to relate separation, f , and

flux, J,, as:
) [ ) ¢ )
114D 2B, (—1
f o 2 g Iy
p o

The above equation predicts a linear rela-
tionship between 1/f and 1/J,- The osmotic
permeability, £_, is related to w as:

_w=(£,,/szp—02)(cAM)1n 2, (18)
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1.2

The parameters in the model are the solvent

and osmotic permeabilities. £, and 2., and the
reflection coefficient, 0. These parameters
can be determined for a given solute and
membrane by applying Equations 15 and

17 simultaneously using data collected at
different operating conditions.

For reverse osmosis systems, the pheno-
menological transport equations have only
been used to a limited extent for describing
membrane transport for two reasons. First,
the concentration differences across the mem-
brane are often large enough that the linear
laws are not valid. As a result the L;; coef-
ficients are concentration dependent [20].
However, for many systems, the coefficients
25 L7 and o are nearly constant provided that
the concentration changes are not too great.
This assumption is relaxed in Kedem-Spiegler
relationship (Section 1.2). Second, by con-
sidering the membrane as a “black box”,
the resulting analysis does not give any insight
into the transport mechanism.

Irreversible Thermodynamics-Kedem
Spiegler Relationship

Premises of the model. One critical assump-

tion in the irreversible thermodynamics-
phenomenological transport relationship is
that the linear laws were assumed to apply
over the whole thickness of the membrane.
Spiegler and Kedem [23] resolved the problem
by rewriting the original linear IT equations
in differential form and then integrating them
over the thickness of the membrane.

Mathematical formulation of the model.

“The equations in differential form for the

solvent and solute flux, respectively are:

=pn (9P, dm . 19)
vPB { dx ’ dx
:le
- AM - -
Na=pa —3—* (1-0) CamJy (20)
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where p is the solute permeability, py is the
water permeability, and x is the coordinate
direction perpendicular to the membrane.

If PAs PBs and o are constant, Equaiton 19
can be integrated to give Equation 21,
below, and Equation 20 can be integrated

and combined with Equation 12 to give
[21, 23] Equation 22 :
J,=(pp/bx) (AP—0A7) (21)

1 1-oexpl-(0)exippl L]l _

£ g{1—exp[-(1-0)(ax/pp) Ty

The result is a three-parameter model des-
cribed by Equations 21 and 22, similar
to the previous phenomenological relationship
but which should have coefficients that are
independent of concentration and pressure.
The three parameters in the Kedem-Spiegler
relationship are pp/Ax, pp/Ax, and ¢.

This model has been used by various res-
earchers to describe reverse osmosis transport
(21, 22, 24, 25].

2. Mechanism Dependent Transport Models
In this section, models which specifically
assume a membrane structure are described.
First, models which consider the membrane
to be nonporous are described and second,
models which consider the membrane to

porous are described.

‘2. 1. Nonporous Transport Models

Several models have been derived that speci-
fically assume that the membrane surface skin
These
models are usually based on a solution-
Modifications of this

is nonporous have been derived.

diffusion mechanism.
model, such as the solution-diffusion imper-
fection and the extended solution diffusion
relationships are discussed briefly.
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‘2. 1. 1. Solution-Diffusion Relationship

 Premises of the model. The solution-diffusion

(SD) model was originally applied to reverse
osmosis by Merten and coworkers [26, 27].
The membrane surface layer is considered
to be homogeneous and nonporous. Transport
of both solvent and solute occurs by the
molecules dissolving in the membrane phase
and then diffusing through the membrane.
Tne permeability of a species is equal to the
product of the solubility and the diffusivity
for that species. Theoretically, the solubility
and the diffusivity of the solute can be
determined for a membrane material by per-
forming equilibrium sorption and unsteady
state sorption/desorption studies, respectively.
The water flux is proportional to the solvent
chemical potential difference (usually expressed
as the effective pressure difference across the
membrane), and the solute flux is proportional
to the solute chemical potential difference
(usually given as the solute concentration
difference across the membrane). The solute
and solvent are assumed to be transported

across the membrane independently.
Mathematical formulation of the model.

The solvent and solute fluxes, respectively

are:
DaaaCraaV
= DBMTBMYB (.
RTAx
D K
AM™-
NA=— (Ca2—Ca3)

‘Note that Equation 23 is identical to Equa-
tion 6, except that A has been replaced by
more physically meaningful terms. The group
of parameters in Equation 23 is abbreviated
as the hydraulic permeability coefficient,
t=DpMCBMVB/RTAX). Dpy and Dpy
are the diffusivities of the solute and the
solvent in the membrane, respectively; Cpp
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is the membrane water content; Vg is the
partial molar volume of water; and K is the
partition coefficient defined as follows:

3
K= kg solute/m membrane (25)

kg solute/ m3 solution

K is a measure of the relative solute affinity to
(K> 11.0) or repulsion from (K> 11.0) the
(K<1.0)

As illustrated by Pusch [22], Equations
23 and 24 may be combined with Equa-

membrane material.

tion 12 and rearranged to give:

,=1+DAMK( 1 ]
f Ax Jyv ’

(26)

Equation 26 predicts a linear relationship
between 1/f and /], Equations 23 and
26 can be fit to experimental data to gene-
rate the two parameters (Dgyq Cpyg Vp/RT
Ax) and (DppK/Ax), both of which are
treated as single quantities. In order to
resolve either of these terms into component
parts, it is necessary to have an independent
measure of some of the terms (see, for ex-
ample [28] on how to measure D am» Pemr
and K, separately).

One restriction of the SD model is thatthe
separation obtained at infinite flux is always
equal to 1.0. However, this limit is not
reached for many solutes. For this reason,
the SD model is appropriate for solute-solvent
menibrane systems where the separation is
close to 1.0. Notwithstanding this restric-
tion the SD model has been applied to many
different inorganic and organic solute systems
with different types of membranes [22, 26-
28]. The primary advantage of this model is
that it is simple and as such has only two

adjustable parameters.

2. 1.2. Other Nonporous Transport Models

Several modifications to the original solution-
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diffusion model have been proposed and two

of these are discussed here briefly.
The solution-diffusion imperfection model.
This model was derived by Sherwood et al.
[29]. The premise of this model is that during

the membrane making process small defects
in the membrane surface structure could
result and these defects would lead to leakage
This

mechanism would account for membranes

of solution through the membrane.

that exhibited lower separation than the
separation calculated based on solubility and
This model has
been used successfully to describe the per-

diffusivity measurements.

formance for a variety of solutes and mem-
branes [15]. A mathematically similar model
was proposed by Eriksson [30}. The main
difference is that in Eriksson’s work the two
modes of transport where interpreted as dif-
fusion in small pores and leakage through
larger defects.

.Extended Solution-Diffusion Relationship.
Both Burghoff et al. [24] and Jonsson [31]
have pointed out that in the original solution-

diffusion model, a pressure term in the solute

chemical potential equation was neglected.

Including this pressure term leads to a some-
what different form of the transport equa-
tions. The differences are primarily important

for the situation when the solute partial
molar volume is large and the solute-water
separation is low. Burghoff et al. [24] found
good agreement between the ESD model and
the observed performance for different organic
solutes with cellulose acetate membranes. The

negative separation observed for phenol was
attributed to a large pressure contribution to

the flux of solute.

‘2. 2. Porous Transport Models

In this section, transport models in which
it is specifically assumed that the membrane
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is porous are presented.

2. 2. 1. Kimura-Sourirajan Analysis

Premises of the model. The Kimura-Sourirajan
analysis (KSA) [5, 11] was developed based
on the “preferential sorption-capillary flow”

mechanism proposed earlier by Sourirajan
[32]. According to the KSA relationship,
the membrane surface is microporous and
transport occurs only through. the pores.
The membrane has a preferential attraction
for water and the resulting sorbed layer of
almost pure water is forced through the
Therefore

solute separation and flux are determined

membrane pores by pressure.

both by physicochemical interaction between
the solutesolvent-membrane system and by
the number, size, and size distribution of
pores.

Mathematical formulation of the model.

The solvent flux is viscous in nature and

therefore the driving force for solvent tran-
sport is given by the effective pressure as in
Equation 6 . The solute flux is diffusive in
nature and is driven by the concentration

gradient:
DK

&7

Np= (Ca2—Ca3)

T
Equations 6, 8, 12, and 27 together make

up the Kimura-Sourirajan analysis. For
dilute solutions these equations can be com-

bined to give the following relationship

between f and Ty

DauK
AM 1
__1_.=1+_______(
f

) (28)

‘Note that this equation is functionally the
same as for the SD model. The two para-
meters are A (from Equation 6
(DAMK/T )
similar to Equation 26 for the solution-

and

Even though Equation 28 is

172 — vol. 1, No. 4, November 1988

diffusion model, the coefficients are inter-

preted differently. In the KSA model, Dy
is the diffusivity of the solute in the mem-
brane pore rather than in the polymer material;
K is the partition coefficient defined based
on the amount of solute in the pores rather
than in the membrane material; and 7 is the
effective length of a pore, rather than the
actual thickness of the membrane surface,
Ax. As in the SD model, Equation 28 pre-
dicts that f approaches 1.0 for infinite flux.
This characteristic is not realistic for the

many solutes that do not approach perfect
separation at high solvent flux rates.

'2.2. 2. Finely-Porous Model

Premises of the model. The finely-porous
model developed by Merten [27], is based
on a balance of applied and frictional forces,

as first proposed by Spiegler [33], in a one-
dimensional pore. A complete derivation of
the model has been given by Jonsson and
Boesen [15] and by Soltanieh and Gill [21].

Mathematical] formulation of the model.

“The general form of this model relates the

volume flux, J,, and the separation, f, as

follows:

1 1 —(1-K3/b)exp[—(r/eDpp) J,]

f (1-K5/b)—(1 K3/b)exp[—(r/eDpp)Jy]

(29)

‘The solvent flux is represented by Equation

6 . The parameters in the relationship are
the pure water permeability, A, the partition
¢oefficients on the high and low pressures
sides of the membrane, K, and K3, res-
pectively, the friction parameter, b, the effec-
tive membrane thickness, 7, and the fractional
pore area of the membrane surface, .

The partition coefficients, Ky and K3, are

defined in a manner similar to that given
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‘earlier in Equation 25, with one difference.
In this case, the concentration of solute in the
membrane is interpreted as the concentration
of solute in the membrane pore. The friction
parameter, b, is defined [15] as:

7b=(XAM+XAB)/XAB (30)

where Xpp represents friction between the
solute and solvent and X represents fric-
tion between the solute and membrane ma-
terial. Therefore, b can be thought of as the
ratio. of the total friction of the solvent plus
membrane upon the solute to the friction
between solute and solvent. The frictional
forces are inversely proportional to the dif-
fusivity of solute within the membrane phase,
Damp and the diffusivity of the solute in the
free solvent, Dpp, so that Equation 30
can be rewritten as:

b=Dpp/Dam (31)

The friction parameter can be estimated
based on the Faxen equation as discussed in
references [15, 34-38].

The effective thickness of the membrane,
7, is a product of the actual thickness of the
membrane surface layer (membrane “skin”
layer) multiplied by the tortuosity of the
membrane pore. The tortuosity factor cor-
rects the actual membrane skin thickness to
an effective thickness that includes the non-
linearity of the pore geometry. e is the
fractional pore area of the membrane surface.
For an asymmetric membrane, the value
of € is much less than that calculated from
the water content of the whole mem-
brane.

The finely-porous model as represented by
Equations 6 and 29, is a four parameter
model; the four grouped parameters are A,

b/Kz, K3/Ko, and r/e which can be obtained

“Journa! of Engineering, Islamic Republic of iran

by fitting experimental reverse osmosis data

to the model. The parameter, 7/¢, is a measure
of the size and number of pores only, and
should be a constant for a given membrane
sample.

In principle, K, and K3 may be different,
but it is often assumed [15, 24, 28] that
K,=K ;=K.
should be independent of concentration, pres-
When the
above assumption is made, Equation 29 re-

In order for this to be true, K
sure, and membrane structure.

duces to:

1 1=(1-K/b) exp[—(r/eDpp)J,]

T (1-K/b) {l—exp[—(r/eDAB) Jv]‘f

‘which is a three-parameter model. The three

parameters are A, b/K, and 7/e.

Several authors [15, 24, 25, 27] have suc-
cessfully used this model (usually in the three-
parameter form) to describe the transport
of various electrolyte and nonelectrolyte

solutes through reverse osmosis membranes.

‘2. 2. 3. Modified Surface Force-Pore Flow

Model

Premises of the model. Several authors have

considered transport of solute and solvent in
2-dimensional right cylindrical pores. The
advantage of using a model of this type is
that the model should more accurately des-
cribe the transport in a porous membrane.
The disadvantages are that the models are
considerably more complex (usually involving
advanced numerical techniques to solve the
governing equations) and the models are still
considerable simplifications of the real situa-
tion. Nonetheless these models can be useful
and therefore a description is given here.

The original work in this area was concerned
with the transport in electrodialysis type
membranes so that electrical potential driving
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and therefore can be dropped; the term
becomes important when there is strong
attraction between the solute and membrane.
If the last term is dropped and if (1—exp
(~®(p)) is approximately 1, then the solution
of equation 48 is the Poiseuille equation with
pressure replaced by the effective pressure
(AP—A7); in other words apparabolic velo-
city profile.

The water flux and the solute flux can be

calculated as:

' 2D 1 )
Ng=—2B crap)ndp  (44)
B™"re 0
Ny =2PaB 1% p(C
A rle o A2
_ —®
alp) _q1 7 ble)

Then Equation 11 can be used to calculate

the permeate concentration, Cp 3.

The solution procedure is iterative and
ca~ be summarized as follows:

1. Assume that the parameters in the model
and the operating conditions are known or
determined by an optimization code.

2. Guess the permeate concentration, Cp 3.

3. Solve Equation 41 subject to Equations

42 and 43 for the velocity profile a(p)

by a numerical technique (e.g.‘* orthogonal

collocation”).

4. Calculate the water and solute flux from
Equation 44 and 45 and hence the
permeate concentration Cp 3 from Equation

11 (ilsing numerical integration).

5. Check Cp 3 with guessed value and iterate if
necessary.

Note that the only adjustable parameters in
the: model are the average pore size, Ry, a
parameter depended on the thickness of the
membrane and number of pores 7/e, and the
potential parameters 61 and 9 5.
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3. Summary and Comparison of Transport
Models

It is interesting to note that several of the
models presented or discussed above have
similar mathematical forms; particularly in
terms of the predicted relationship between
flux and separation. For instance, both the
the Kimura-
Sourirajan analysis, and the irreversible ther-

solution-diffusion model and

modynamics-Kedem Spiegler model and the
finely-porous model are mathematically iden-
tical.
discussed previously [15, 21]. Yet each of
these models is based on substantially dif-
ferent assumptions. What this tells us is
that simple agreement between experimental

Some of these similarities have been

data and a model is not proof that the model
is correct. In this light, care must be exercised
in interpreting model parameters calculated
from these models. For a membrane maker,
using a porous model will give information
about the porous nature of the membrane,
and using a solution diffusion model will give
information about the diffusion and solu-
Until
the nature of the membrane structure is

resolved the decision of which model to use,

bility coefficients in the membrane.

is, in part, a matter of personal choice.

For the person who is only interestediin
the application of a membrane, using the
following equation (originally suggested, in
this form, by Soltanieh and Gill [21]) is a
reasonable compromise:

T =E1-Egexp (B3 J,) (46)
‘This equation is mathematically equivalent to
the Kedem-Spiegler and the finely-porous
models. The coefficients, Eq, E,, and Eq
can then be treated as empirical parameters
that must be determined for each new solute

and membrane system.
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SYSTEM DESIGN

The transport equations discussed above are
useful for relating the membrane performance
(flux and separation) in terms of the operating
variables and some transport parameters. How-
ever, these models all assume that the amount
of permeate collected is small compared to
the feed rate (~zero recovery). In a mem-
brane module or membrane plant the permeate
is a significant fraction of the feed rate
(finite recovery). The transport equations
are valid at any point within the membrane
module, but to describe the overall module
(or system) behaviour it is necessary to inte-
grate this solution over the length of the mem-
brane system. In this section, two of the
methods of handling this problem are re-
viewed.

In general the problem is handled by first
assuming a model to describe the membrane
mass transfer, and then the model is integrated
over the length of the membrane system.
This ultimately relates the choice of membrane
module, number and arrangement of modules,
and the operating conditions to the system
performance in terms of permeate recovery
and separation.

1. Membrane Module Configuration

Several different technologies have been deve-
loped to but a large membrane area into a
relatively small volume. The most popular of
these designs are: spiral wound, hollow fibre,
and tubular. The relative merits of each of
these designs is dependent on the particular
application. A review of the merits of the
different designs is presented elsewhere [47].

‘2. Method of Saltonstall and Lawrence

In this method [48]
assumptions are made.

several simplifying
The membrane is

assumed to have a constant separation in-
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‘dependent

of operating conditions (f=
constant), the mixing on the high pressure
side of the membrane is sufficiently high
that k —» ° (no concentration polarization),
there is no pressure drop in the feed channel,
and the physical properties of the solution
are constant (Constant density and viscosity).

The equations are summarized as follows:

f i W,
CA1=C Al (1-Y)

1- (1 -y)1-f
Y

Ca3=C’al

f
where C Al is the final concentrate concentra-
-]

tion, C Al is the inlet feed concentration, f is
the constant separation, and Y is the recovery

defined as:

where Q°1, Qfl, and Q3 are volumetric flow

rates of the feed, concentrate and permeate,

respectively. By material balance:

Q; +Qf; +Qs (50)

These equations give simple relationships bet-
ween the separation and recovery and the
operating conditions for a system. The app-
roach breaks down if the separation varies
too much through out the system under

consideration.

‘3. Method of Sourirajan and Ohya

In the method of Sourirajan and Ohya [49]
again several simplifying assumptions are made,
but the approach is more general than the one
above. The required assumptions are: the
membrane mass transfer is described by the
KSA model, molar density is constant, osmotic
pressure is linear with concentration, solute
flux is small compared to solvent flux, trans-

port parameters are constant, and no longitu-
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“dinal diffusion of the solute in the feed flow
direction.  Although these assumptions are
lengthy, the model is much more general
than assuming constant separation as by -the
above method. Although an analytical solu-
tion is reached, the solution requires the
solution' of several simultaneous equations
including a double integral. The design equa-

tions are given on p. 72 of reference 49.

CONCLUSIONS

The main conclusions of this paper are as
follows.  There have been many models
proposed to describe and to predict the per-
formance of reverse osmosis type membranes.
These models are built on different assump-
tions and have different degrees of complexity,
but all of them are successful at describing
simple performance data. It is necessary to
in.tegrate the transport equations over the
length of the system for large RO systems with
finite permeate recovery. Two methods of
doing this integration are presented. In part
two of this paper, the predicted behaviour of
transport models will be demonstrated and the
effect of operating conditions on membrane
performance will be presented.
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'APPENDIX I. NOMENCLATURE

a . Empirical coefficient defined by
Equation 9,

A Pure solvent permeability coef-
ficient, kmol/m?2 s kPa. '

b Friction parameter defined by
Equation 30.

b Emirical coefficient defined by
Eauaiton 9.
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(Cij) In

Ey, Ey, Ej

Molar density, kmol/ m3,

Molar concentration of species
A at location i, kmol/m>3.

Molar concentration_of species i
in solution, kmol/m3.

Molar concentration of com-
ponent i in phase j, kmol/m?.
Logarithmic mean concentration
of i in phase j, kmol/m3.
Diffusivity of component i in
component j, m“/s.

Solute transport parameter for
solute i, m/s.

Generalized transport parameters
in Equation 46.

Generalized thermodynamic force
defined by Equation (13).
Separation.

Separation based on the boun-
dary layer concentration.

Generalized thermodynamic flux
defined by Equation 13.

Solvent volume flux, m3 /m2 S.
Solute partition coefficient.

Solute partition coefficient at
location i.

Mass transfer coefficient, m/s.

Generalized thermodynamic phe-
nomenological coefficients de-
fined by Equation 13.

Hydraulic permeability coeffici-
cient, m/s kPa.

Osmotic permeability coefficient,
m/s kPa.

Molality of species i at location

J kmol/m3.

Molar® flux of component i,
kmol/m2 5.

Schmidt number.
Sherwood number.
Reynolds number.
Hydrostatic pressure, kPa.

Pressure difference across the
membrane, kPa.

Dimensionless pressure difference
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defined by Equation 36.

PA Solute permeability coefficient,
m*/s.

PB Water permeab1hty coefficient,
m2/s kP

R Gas constant, kJ/kmol K.

Ry Radius of pore, m.

r Radial position in a pore m.

T Temperature, K. -

up Velocity of solvent in a pore, m/s.

V; Partial molar3 volume of com-
ponent i, m”/kmol.

Mole fraction of solute A at
location i.

Xp Mole fraction of solvent.

x Coordinate direction perpendi-
cular to the membrane, m.

Ax Membrane thickness, m.

Greek Symbols

a Dimensionless solvent velocity in
a pore as defined by Equation
34,

81 Dimensionless ratio defined by

' Equation 35.

€ Fractional pore area.

m o Solution viscosity, kPa s.

64 ‘ Potential parameter in Equation
38, m.

0, Potential parameter in Equation
38, dimensionless.

A Ratio of solute radius to pore
radius.

™ Chemical potential of component
i, kJ/kmol.

Ay Chemical potential difference
across the membrane for com-
ponent i, kJ/kmol.

m Osmotic pressure of solution at
location 1, kPa.

An Osmotic  pressure difference
acrass the membrane, kPa.

Am Dimensionless osmotic pressure

difference defined by Equation
37.
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'Dimensionless radla.l position in
a pore as by Equation

33:
Reflection coefficient.

Effective thickness of a mem-
brane, m.

Dimensionless potential function
of force exerted on a solute
molecule by a pore wall.

XlJ Friction coefficient between com-

ponents i and j, kJ s/kmol m?.

w Transport parameter | defined by
Equation 18, kmol/m?2 s kPa.
Subscripts
Solute

B Solvent

M Membrane

ref Reference

T Total solution

w Wall

1 Feed solution

2 Boundary layer solution

3 Permeate solution
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