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Abstract siffness matrices for axial and bending deformations of a beam having a rectangular cross
sectional area of constant width and linearly varying thickness are developed. A consistant load vector for
a uniformly distributed lateral load is also calulated, using the principal of potential energy. The matrices
are used to obtain numerical results for a variety of beams with non-uniform thickness to show that acceptable
degrees of accuracy can be obtained. A comparison of results given by other finite element solutions is made to
show the effectiveness of the derived stiffness matrices.
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INTRODUCTION

The development of methods of analysis for
framed skeletal structures spread over a period
of more than five decades. As more complex
skeletal configurations were introduced, new
and special analytical methods were developed.
Such methods as virtual work. Slope deflec-
tion, moment distribution, strain energy and
complementary energy, to name a few,
were developed for particular applications
and for time-saving exercises, since slide rulers
and, later, desk calculators were the only
computational aids available. With the advent
of electronic digital computers, the emphasis
turned away from the previous forms of
specialization into a method of generalization.
The fundamentals of formulating conventional

methods in matrix notations were easily
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illustrated and widely accepted. The use of

the resulting matrix methods for the elastic
linear analysis for skeletal structures became
a popular exercise partly because of the exis-
tance of exact relationships -between genera-
lized forces (force and bending moment) and
corresponding generalized displacements (de-
flection and rotation) and also because of the
simplicity of establishing a standard com-
putational procedure for satisfying equilibrium,
compatibility and for the solution of the
resulting linear simultaneous algebraic equa-
tions. On the other hand, for two dimensional
plated types of structures, the exact relation-
ship between generalized forces and corres-
ponding displacements are known only for
special simple cases of loading and geometry.
A unified approach was, therefore, not
generally possible until the advent of the finite
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element method of analysis. In this method,
the continum with an infinite degree of
freedom is approximated by a number of
finite elements, each with a specified finite
number of degrees of freedom.

The dividing line between the matrix and
the finite element method cannot be drawn
as precisely as it appears to have been suggested
previously since the analysis of some skeletal
structures also requires the introduction of
some approximations concerning geometry
and loading. For example, the analysis for
bending of non-prismatic beams having a
variation of thickness along the length is
usually carried out by assuming the beam to
be made up of a number of finite lengths,
each having a different constant thickness.
Such a solution will contain discontinuities
of internal generalized forces at the junctions
between adjacent elements. To eliminate
these discontinuities, an account of the varia-
tion of cross-sectional properties along the
element must be taken into consideration in
the derivation of the stiffness matrix.

If such an element is based on the same
assumed cubic polynomial displacement field
as for the constant thickness element for
bending of beams, it will lead to an assumed
linear variation of curvature along the length
of the element, and the distribution of the
bending moment along the element becomes
complex and does not satisfy equilibrium.
Instead, the element can be based on a curva-
ture (strain) distribution resulting from a
linear variation of the bending moment. The
resulting stiffness matrix will be for an equili-
brium element, in accordance with the strain
based elements suggested by Sabir et al
[1-6] for general plane 'elasticity problems,
arches and shells.

In the present paper two such elements
are developed: one for axially loaded and one
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for laterally

loaded non-prismatic beam
members having a rectangualr cross section
of constant width and a linearly varying
thickness. The stiffness matrices will be
exact provided that the loads are applied
at the ends or the nodes of the element.
In the case of the bending element, a
consistent load vector is also obtained for a
uniformly distributed lateral load by using
the principal of potential energy. The bending
element is used in the present paper to obtain
solutions for statically determinate tapered
beam problems. The results are compared
with those obtained by the use of constant
thickness elements and the load lumping
process. In this way the effect of these
approximations on the convergence of the

results is studied.

DISPLACEMENT FIELDS FOR
LINEARLY VARYING THICKNESS

In this section, the displacement fields for a

beam with a rectangular cross-sectional area,
having a constant width b and having a linearly
varying thickness from t; at one end to t, at
the other, are derived for the two cases of

axial and lateral deformations.

1. Axially Loaded Tapered Element
Consider the element shown in Figure (1). Ifits
length is and the axial coordinate x is measured
along the element, the axial strain e, will be
given by
; dve P P e

X "dx EA_ Ebt_

€

“where u is the axial displacement.

E is the Young’s modulus, P,,t and A, are
the load,

area at x respectively, and b is the constant

thickness and cross-sectional
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‘width. For the element to be in equilibrium,
px must be constant everywhere along the

beam and t, will be given by
' ty —t a -
tx=t1+——1x=t1+’t———x (2)
1 x
1
,pl— c
P
Y t, °
— X
—u, —> U,

Figure 1. Axially loaded tapered element.

‘where 2is the length of the element and
a =ty —tq. Hence from (1) and (2)

Cdu P

. X )
X ' a

Eb(t1+—i—x)
e M @)
dx o o4a g

1 X

‘where A, is a constant

Integrating (4) will result into an expression
for the displacement field for this element,
hence

ax

ln(t1+r ) (5)

ALl
u=A1+ 2
d

‘This expression is in terms of two constants
A]. and Az.
mode of displacement and A, is due to

Aq represents the rigid body

straining. The element is thus to have two
degrees of freedom, namely, the axial dis-

placement at each and or node.

2. Laterally Loaded Tapered Element

Consider the element shown in Figure (2). If
W denotes the lateral deflection due to the
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“applications of nodal shearing forces and

bending moments, and the element is to be
in equilibrium, the variation of the bending
moment along the element must be linear
and will be given by

M, =—M; +F_

. )

‘where Fq and M; are the applied shear force

and bending moment at node 1.

F F
2| 1-X L X 1
Y v
t t
. —
|
(o
X «—
‘Figure 2. Laterally loaded tapered element.

M, will be given from the simple bending
theory by

d?w -
EIX dxz Mx (7)

where I, is the second moment of area of the

cross-section and is given by Ebt3x/ 12.

Hence dzw ,_Ml + le 7
S (8)
dx* Eb - axy
d A+ A ]
2W A3 T AgX 9)

dX2 (t1+ ax \y

‘where Az and A, are constants. Equation

(9) can be integrated once to give the variation
of the slope of the deflected shape along the

beam. Hence

dwop 4 Ajl .\ Agl%y
dx 2a(ty + )2 2a%(ty + 252
A4l?
,az (tl +7_) \iv)
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‘and the final displacement field, w, for the
element, will be given by

2 3
w=A1 +A2x+ A31 _ A41 tl
2 -
| 2a%(ty+ alx_) 2a3(t1+1£)
ALl 7 ]
4 In (e + %) (11)
a

‘Expression (11) contains four independent
constants. Aq and A, represent the two
strain-free rigid body modes of displacements,
and A3 and Ay are due to straining of the
element. The element is therefore to have

four degrees of freedom, namely, w and
dw
dx

at each node.

'STIFFNESS MATRICES FOR
TAPERED ELEMENT

‘Having obtained the displacement fields for
the axially and laterally loaded tapered ele-
ments, the stiffness matrices are obtained
from the well-known expression (see Zienkie-
wicz [7]).

K=[c—1]T{ff[B]T (D] [B]dV}[C]"1

119\

‘where [K], [C], [B] and [D] are the stiffness,

transformation, strain and rigidity matrices.

1. Stiffness Matrix for Axilly Loaded Tapered
Element

In this case, the strain matrix [B] will be
given by [4] and in matrix notations

[B]=[0 /() +-55)] (13

and D=EA, =Eb(ty + S

The bracketted integral part of equation (12)
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where 5y
7h1 =1(ty +tq) 2t1t2

for an element of length will be given by

0 0

S|
f BT D] [Bldx=| (14)
0 Eb

0
a tl

‘The transformation matrix [C] and its invers

When these are
introduced into (12), the resulting stiffnes:

are given in Appendix I

matirx [K] will be in the explicit form giver

below
] E - T i
Kp=—E2 1 -1y
In —2 -1 1
tz L -

It is of interest to note that the above matrix
will reduce to the well-known stiffness matrix

for a constant thickness element since limit

‘2. Stiffness Matrix for Laterally Loadec
Tapered Element

In this case, [B] is given by [9], hence

[B1=[00 1/(t; + %5)3 x /(] + 253

1
(16)

and D = EI, = Eb (¢ + 2%)3/12 (17)

‘When (16) and (17) are substituted into (12),

the necessary matrix multiplications are carried
out and the integrations are performed, we

“obtain ]
1 00 00
f[B]T[D1[B1dx=E—b 00 00
0 1210 0 hy hy
0 0 hyhy
(18)

h2 = 12/2t1t§

h3 ={ 13/(1:2 - t1)2 }{ In :—f- / (tz —tl)
7 2
(3ty —tq) / 2t2 }

“Journal of Engineering, Islamic Republic of Iran



PL

Displaccment/

2.4

2.2 P
) t
2.0 ]

Ebtl

1.0
0.8
0.6
0.4

0.2

‘The transformation matrix for this element is
given in appendix II. The necessary matrix
inversions and multiplications are then carried
out to obtain the explicit form of the stiffness
matrix [K] for bending. The non zero terms
of this stiffness matrix are also given explicity
in Appendix IL

=
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-
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Constant
thickness
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12 314 I

7Figure 3. Variation of axial displacement along the

beam for a series of constant Values of t;/t,.

'CONSISTENT LOAD VECTOR

A consistent load vector for a tapered element

subjected to a uniform lateral load of q per
unit length is calculated using the principal
of potential energy, i.e. by equating the work
done by the applied load on the deformation
of the element to the work done by the
equivalent nodal forces on the nodal dis-
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‘where [P]

(Pi=[c1)Tq

placements. Hence

, 1
5, T{P}=waqux (19)

10 KN.
10. 0 m. 0

1
l 1.0m
Ju

A

E = 30 x 10% KN/m2

"Figure 4. A cantilever tapered beam with point load.

is the consistent load vector,
[8¢] are the nodal displacements (deflec-
tion and rotation) and W is the displacement
field given by equation (11). It can be shown
that equation (19) will yield

,_l ;
1212

2a3 t1

3
- _:3_ {—%- (tplnty—tqlnty)

| al

‘where [C] is given in Appendix 1L

'NUMERICAL RESULTS

All the results given in the present paper

were obtained by the use of the NODAL
solution routine, Sabir [8]. As a primary
example, the stiffness matrix as given in
expression (15), for the case of axially loaded
tapered member, is used to obtain a solution
to a beam fixed at one end and loaded by a
tensile axial force Pat the other end. Figure (3)

gives the distribution of the axial displace-
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‘ment u along the length of the beam for a
series of values of tq/t, ranging from 0.02 to
50. Since the stiffness matrix is exact for
this case of loading, the entire beam is idealised
by element. The results show that linear
behaviour is exhibited only for the case of
t1/tp, and that the degree of nonlinearity
increases with the taper of the beam. It is
of interest to note that, if a finite element

based on an assumed linear displacement
field had been used for the analysis of such

tapered beams, it would have been necessary
to idealise the beam by several constant
thickness elements: The effectiveness of the
tapered beam element in bending is demon-
strated by the analysis of the cantilever beam,
as shown in Figure (4). The ratios of the
thickness at both ends t;:t, were taken to be
as those given in Table 1. In all cases, exact
results for deflection and the rotation at the
loaded end were, as expected, obtained by
idealising the beam by one tapered element.

These results also show that no numerical

difficulties existed when t;:t, was made to

be nearly one (7.99:8).

The same problem is analysed by idealising

‘Table 1. Deflection and slope at free and for
several values of t]:to

the beam by a series of constant thickness

beam elements, and the results for the case
t1:t,=48 are given in Table 2. In all cases,
the beam is divided into elements of equal
lengths.

The table shows that the beam needs to be
divided into more than six elements to ensure

results with less than 1% error.

10 KN,
4.0 m.

Ne—\
0.5 m.

Figure 5. A cantilever beam with non-linearly varying

depth

“In many practical cases, for example in girder

bridges, the thickness of the beams may
vary in such a way that their bottom surface
follows a smooth curve. We therefore analysed.
the beam shown in Figure (5). The thickness
of the beam was taken to vary according to

‘Table 2. Convergence of deflection and slope
at free end.

Deflection at No. deflection
. o 1
t1ity freeend Slope at free ; at free and % error z_rzgi 2:1 % error
(mm) end ni :I;t (mm)
4:8 42.60 0781 1 6173 449 0926 186
7:8 28.77 0.477 2 5140 207 0.885 13.3
7.99:8 26.05 ~0.390 3 44.65 4.8 0.809 3.6
8 42.88 0.7 0.785 0.5
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‘the following equation.
the beam was taken to vary according to the

following equation.

The beam was analysed by dividing it into
2, 4, 6, 8 and 16 tapered and constant
thickness elements. The results for the shearing
stresses at the neutral axis and the bending
stress at the extreme fibres from the neutral
axis were calculated by first multiplying the
nodal generalised displacements by the element
stiffness matrix to obtain the internal genera-

lised forces. These calculated values of the

2‘
E

Constant thickness
element

[+]
(=]
N

tapered element

I
<

Maximum shearing stress KN/m
3 2

° 1z %] 3174 1

Figure 6. Distribution of maximum shearing stress

along the beam.

e~ 10001

E Constant thickness
ﬁ 800 element
é N\
= 600

;g

2 400 capered element
g

=

E

% 200

=

0

V4 V2 34 !

7Figure 7. Distribution of maximum bending stress

along the beam.
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Vertical deflection at free end/t

shearing forces and bending moments were
then used to calculate the corresponding

stresses in the usual way.

Static lumping of loads

1o
N

1KN/m

N

Aashal

b=0.3m
t2/tl =1.5

Consistent L=6.0

Loading of
Stepped Cuntilever

N

0 2 4 6 8
No. of elements

Figure 8. Comarison of results for deflection at free

0.

=

Consistant loading for tapered beam

end for different lateral load idealisations.

Figure 6 gives a sample of such results for
distribution of the maximum shearing stress,
along the beam when the beam is idealised
by four elements of equal length. This figure
shows the dependence of the results obtained
from the constant thickness element on the
discontinuities in order to obtain the variation
along the beam, while the results obtained,
using the tapered elements, follow a smoot
curve. Figure. 7 gives a sample of such results
for the same idealisation. Again we see that a
considrable amount of discontinuities exist
for the solution obtained by using elements
with constant thickness.

From the comprehensive results obtained
for this problems, it can be concluded that
acceptable converged results can be obtained
by the use of the tapered element when the
beam is divided into six elements. It is to be
noted that the maximum bending stress occurs
at about 0.375 of the span from the free end.
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* The maximum bending stress would occur at
the fixed end when the cantilever has a uni-
form constant thickness.

Finally, the usefulness of employing a
consistent load vector is illustrated by the
comparison of the results given in Figure (8).The
tapered cantilever shown in this figure is
subjected to a uniformly distributed load over
the entire length. Figure 8 also gives the
results for the vertical deflection at the free
end when the cantilever is divided into 2, 4,
6 and 8 elements by using a static lumping
process, a consistent load vector for a uni-
form beam element and the consistent load
vector derived in the previous section for the
tapered element. These results show the
effectiveness of using an appropriate load
vector; exact results are obtained regardless
of number of elements used. In the case of
the other two load idealisations, it appears
that the results converge to a value differing
by about 18%.

'APPENDIX

‘Axially loaded tapered element
The transformation matrix [C] for this case

is given by

1 -ll— ln tl
- a
[C] =

1 L— In t2

‘and its inverse [c1—1is given by

- _1 1 In t-z ~In tl
€l —-
In t2 —In tl li_ —__a_
t
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7K(2, 4)=—(1+

"APPENDIX 11

‘The transformation matrix [C] is

3 3

1 0 12 _ 1 + 21 11’1 tl

2t1(t2 —tl)z 2(t2 - t1)3
] ] - 12
1 o 1 2

262 ’ 3

l(tz—-tl 2t1(ty —tq)
,1 71—2_ _ 13t1+213t21nt2

72t2 (tp—t1)3 2ty (ty —1tq)3

, 1 212, - 12¢;
o 1 ) 2 2
2t2 (ta—tq) 2t2 (ty —tq)

‘The terms of the (4 x 4) stiffness matrix |

are given by

K(1, 1) = a3DEb
' S
K(1,2)= -2L x(1,1)

K(1,3)=-K(1,1)

K(1, 4) = 21 (A+ ZD)K(L 1)
a

2
K(2, 2) =_2;12§ K(1, 1)

K(2, 3) = —K(1, 2)

aA
C

)K(2,2)

K(3,3)=K(1,1)

K(3,4)=-K(1,4)
azeb
K(4,4)= ——— "
61(2Q zD)

11

1
t2 21:1 2t2
. 2

t 2t t2

C=ln—2 +1 12
t ty 2t

2
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1.

1 t2
2
1
Q= 1) _ + 1
2t2 tl 2t2
1 2
L T L T
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