Extraction of Inclined Exit Ledges in Coal Mines in Presence of Mobile Crushing and Conveyor Complexes

Document Type : Saint Petersburg Mining University 2024 Special Issue (SPMU)

Authors

1 St. Petersburg Mining University, St. Petersburg, Russia

2 Tashkent State Technical University named after Islam Karimov, Uzbekistan

Abstract

This article presents data on main technological fleet of excavation-loading equipment of mining enterprises of Uzbekistan, which traditionally are consumers of open-pit rope excavators of ECG type. Uzbekistan is traditionally consumer of open-pit rope excavators of ECG type. The data on experience of operation of open-pit hydraulic excavators by mining enterprises of Uzbekistan as of 2022 is given. The methodology of determination of time of working out and productivity of excavator at development of inclined exit ledge in conditions of coal mine Angrensky (Uzbekistan) is given. The calculation of time of working of the exit ledge is made and the average operational productivity of the excavator is determined. The technology of ledge mining by longitudinal drifts with the use of mobile excavator-crushing complexes at the lateral location of the bottom-hole conveyor and the presence of a mobile interstage loader with consecutive mining operations on two horizons is presented. According to the given technological scheme the methodology of determination of the full working cycle of the complex is recommended. The estimation of excavator bucket filling coefficient at different face height and different depth of bucket penetration into the face is carried out. A mathematical model for determining the area of the digging segment of a quarry excavator is developed. The mathematical model of definition of the area of excavation volume for a single digging cycle considering the depth of bucket penetration into the face is proposed for the refined estimation of face parameters.

Graphical Abstract

Extraction of Inclined Exit Ledges in Coal Mines in Presence of Mobile Crushing and Conveyor Complexes

Keywords

Main Subjects


  1. Chirkin A. A. KVD. Rationale for mobile crushing plants design methodology. . Mining Journal,. 2020;7(7):33-40. 10.21440/0536-1028-2020-7-33-40
  2. Annakulov T. Improvement of cyclic-flow technology for the development of overburden in the Angrenskiy section using mobile complexes.“EuropeanAppliedSciences” ORT Publishing. Stuttgart, Germany. 2015;6:58-60.
  3. Sidorenko AA, Dmitriev PN, Sirenko YG. Predicting Methane Emissions from Multiple Gas-Bearing Coal Seams to Longwall Goafs at Russian Mines. ARPN Journal of Engineering and Applied Sciences. 2021;16(8):851-7. 10.59018/arpn
  4. Глебов А, Семенкин А, Кармаев Г, Берсенев В. Новые подходы и решения по применению циклично-поточной технологии на карьерах. Горный журнал. 2017(6):48-52. 10.17580/gzh.2017.06.09
  5. Власов АВ, Шадрунов АГ, Кливер СЯ, Лукьянов ЮА. К обоснованию условий перехода на циклично-поточную геотехнологию в глубоких карьерах. Известия Тульского государственного университета Науки о земле. 2020(4):428-40.
  6. Usmanov N, Tsoi I, Irkabaev U. The experience of introducing cyclic-flow technology at the overburden complex of the Angrensky section. Gorny Vestnik of Uzbekistan-Navoi. 2015(1):82-6.
  7. Агагена А, Михайлов А. ВЛИЯНИЕ ЖЕЛЕЗОРУДНОЙ ПЫЛИ НА ИЗНАШИВАНИЕ ПОВЕРХНОСТИ ШТОКОВ ГИДРОЦИЛИНДРОВ КАРЬЕРНОГО ЭКСКАВАТОРА. 2023. 10.25018/0236_1493_2023_111_0_5
  8. Sverchkov I, Gembitskaya I, Povarov V, Chukaeva M. Method of reference samples preparation for X-ray fluorescence analysis. Talanta. 2023;252:123820. 10.1016/j.talanta.2022.123820
  9. Kharko PA, Matveeva VAe. Bottom sediments in a river under acid and alkaline wastewater discharge. Ecological Engineering & Environmental Technology. 2021;22. 10.12912/ 27197050 /134870
  10. Панфилов И, Антамошкин О, Федорова Н, Дерюгин Ф, Бянкин В. ПРОФИЛАКТИКА ЗАГРЯЗНЕНИЯ ВОЗДУШНОЙ СРЕДЫ ПРИ ОТКРЫТОЙ РАЗРАБОТКЕ РУДНЫХ МЕСТОРОЖДЕНИЙ. 10.25018/0236_1493_2023_111_0_252
  11. BSI B. 6069 Part 2. Characterisation of air quality, Part 2. Glossary. British Standards Institution; 1994.
  12. Babyr N. Topical Themes and New Trends in Mining Industry: Scientometric Analysis and Research Visualization. International Journal of Engineering. 2024;37(2):439-51.
  13. Li C, Zhao C, Ren J, Tao L. The Influence of Overburden Structure on Mine Ground Pressure Appearance in Working Face with Super-large Mining Height: a Case Study in Shendong Mining Area. International Journal of Engineering. 2021;34(1):283-91.
  14. Chaulya S. Emission rate formulae for surface iron ore mining activities. Environmental Modeling & Assessment. 2006;11(4):361-70. 10.1007/s10666-005-9026-2
  15. Mohammadi M, Hashemi S, Moosakazemi F, editors. Review of in-pit crushing and conveying (IPCC) system and its case study in Copper Industry. World Copper Conference; 2011.
  16. Bulatov G, Annakulov T, editors. Investigation of the width of the entry of an excavator when loading a mobile crushing plant in the conditions of the Angren coal mine of Uzbekistan. IOP Conference Series: Earth and Environmental Science; 2021: IOP Publishing.
  17. Жариков С. Совершенствование расчета производительности карьерного экскаватора. Записки Горного института. 2018;229:56-61. 10.25515/PMI.2018.1.56
  18. Kurganov VM, Gryaznov MV, Kolobanov SV. Assessment of operational reliability of quarry excavator-dump truck complexes. Записки Горного института. 2020;241:10-21. 10.31897/PMI.2020.1.10
  19. Tulkin A, Dostonbek M, Kamoljon E. Application of belt conveyors and determination of the main parameters of mobile complexes for the transportation of overburden rocks of the Angren coal mine. International Journal of Emerging Trends in Engineering Research Available Online at http://www warse org/IJETER/static/pdf/file/ijeter08942021 pdf. 2021;9(4). https://doi.org/10.30534/ijeter/2021/08942021
  20. Oraee Mirzamani S. Optimization of Longwall Panel Location with Regards to the Gradient of Coal Seams. International Journal of Engineering. 2003;16(1):89-98.
  21. Gabov VV, Van Xuan N, Zadkov DA, Tho TD. Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts. Записки Горного института. 2022;257:764-70. 10.31897/PMI.2022.66
  22. Alexandrov VI, Vatlina AM, Makharatkin PN. Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings. Записки Горного института. 2023(262 (eng)):541-51. https://doi.org/10.31897/PMI.2022.68
  23. Mikhailov A. Kazakov Yu. A., Garufullin DR, Korotkova O. Yu., Agaguena A. Analysis of the mobile complex structure for organogenic materials mining by in-pit method. MIAB Mining Inf Anal Bull. 2022(6-1):317-30. 10.25018/0236_1493_2022_61_0_317
  24. Михайлов А, Казаков Ю. МЕТОДОЛОГИЯ ОЦЕНКИ МНОГОКРАТНОЙ ПРОХОДИМОСТИ ГОРНОТРАНСПОРТНОГО АГРЕГАТА ПО СЛАБЫМ ГРУНТАМ. 2022. 10.25018/0236_1493_2022_8_0_95
  25. Артур С. Техническое обслуживание и ремонт цапф барабанной мельницы плавучего комплекса горного оборудования. 2023. 10.I7580/tsm.2022.07.04
  26. Mikhailov AV, Fedorov AS. Analysis of the screw press mouthpiece parameters for 3D extrusion of peat pieces of tubular type. Записки Горного института. 2021;249:351-65. 10.31897/PMI.2021.3.4
  27. Toshov J, Annaqulov T, Quvondiqov O, Eshonqulov K. Calculation of the service life and assessment of the reliability of conveyor rollers under the conditions of the Angren coal mine. Asian Journal of Multidimensional Research (AJMR). 2021;10(3):365-70. http://doi.org/10.5958/2278-4853.2021.00139.7
  28. Tulkin A, Raxim S, Oybek K. Mathematical modeling of determining the productivity of mobile complexes in exercise of inclined connecting accessories. International Journal of Emerging Trends in Engineering Research. 2020;8(6):2695-700. https://doi.org/10.30534/ijeter/2020/77862020
  29. Fomin SI, Ivanov VV, Semenov AS, Ovsyannikov MP. Incremental open-pit mining of steeply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020;15(11):1306-11.
  30. Belikov A, Belyakov N. Method of predicting the stress-strain state of interchamber pillars lined with a compliant rope fastener. MIAB Mining Inf Anal Bull. 2023(4):20-34. 10.25018/0236_1493_2023_4_0_20
  31. Agaguena A, Chishegorov D, Ivanov S, Mikhailov A, editors. Influence of the main operational factors on the working capacity of a mining hydraulic excavator. E3S Web of Conferences; 2021: EDP Sciences. 10.1051/e3sconf/202132600007