Potential of High-Carbon Domanik (Upper Devonian) Shale Deposits: Timan-Pechora Oil and Gas Province Assessment

Document Type : Saint Petersburg Mining University 2024 Special Issue (SPMU)

Authors

Department of Geology of Oil and Gas, Saint Petersburg Mining University, Saint-Petersburg, Russia

Abstract

The development of oil and gas production technologies has made it possible to take a new look at the prospects of increasing the raw material base of oil in areas with developed production infrastructure. The projects of exploration and preparation for development of high-carbon low-permeability strata, primarily shale formations, occupy a special position today, as the world experience has shown their potential for oil and gas production. High-carbon shale formations are widely spread in Russia. The most significant of them include the Bazhenov Formation of Western Siberia and the Domanik sediments of the Eastern European Platform, the hydrocarbon potential of which is estimated ambiguously. The ambiguity of hydrocarbon potential estimation is related to the uneven distribution of organic matter determined by the variability of sedimentation conditions. The paper presents the results of the study of Upper Devonian sediments, based on analytical geochemical data of well cores and extracts of bitumoids from them. The analysis of the confinement of zones of increased concentration of organic matter to certain sedimentary conditions and facies zones made it possible to estimate the volume of mobile hydrocarbons in the amount of 5.3 billion tonnes preserved in the high carbonaceous strata. The obtained data on HC volumes were compared with the reservoir properties, studied using X-ray tomography, of low-permeability hydrocarbon-bearing clay-siliceous strata, which allowed us to consider the Upper Devonian carbonaceous strata as an important reserve for maintaining oil production in the future in one of the developed oil-producing regions of the European part of Russia.

Graphical Abstract

Potential of High-Carbon Domanik (Upper Devonian) Shale Deposits: Timan-Pechora Oil and Gas Province Assessment

Keywords

Main Subjects


  1. Elmabrouk SK, Mahmud WM. Production data analysis techniques for the evaluation of the estimated ultimate recovery (eur) in oil and gas reservoirs. HighTech and Innovation Journal. 2022;3(1):85-101. 10.28991/HIJ-2022-03-01-09
  2. Amuda YJ. Impact of COVID-19 on Oil and Gas Sector in Nigeria: A Condition for Diversification of Economic Resources. Emerging Science Journal. 2023;7:264-80. 10.28991/ESJ-2023-SPER-019
  3. Liang X, Jin Z, Philippov V, Obryadchikov O, Zhong D, Liu Q, et al. Sedimentary characteristics and evolution of Domanik facies from the Devonian–Carboniferous regression in the southern Volga-Ural Basin. Marine and Petroleum Geology. 2020;119:104438. 10.1016/j.marpetgeo.2020.104438
  4. Abrams MA, Apanel AM, Timoshenko OM, Kosenkova NN. Oil families and their potential sources in the northeastern Timan Pechora Basin, Russia. AAPG bulletin. 1999;83(4):553-77.
  5. Ahlbrandt TS, Charpentier RR, Klett TR, Schmoker JW, Schenk CJ, Ulmishek GF. Global Resource Estimates from Total Petroleum Systems: AAPG Memoir 86: AAPG; 2005.
  6. Гильманов АЯ, Шевелёв АП. Физико-математическое моделирование парогравитационного дренажа месторождений тяжелой нефти на основе метода материального баланса. Вестник Тюменского государственного университета Серия: Физико-математическое моделирование Нефть, газ, энергетика–2017–Т 3,№ 3. 2017. 10.21684/2411-7978-2017-3-3-52-69
  7. Anishchenko L, Shanina S. Amino Acids in Natural Objects of the Timan–Pechora Basin. Ori gin of Biosphere and Coevolution of Mineral and Biologi cal Worlds. 2007:95-116.
  8. Prischepa O, Nefedov Y, Nikiforova V, Ruiming X. Raw material base of Russia’s unconventional oil and gas reserves (hydrocarbons shale strata). Frontiers in Earth Science. 2022;10:958315. https://doi.org/10.3389/feart.2022.958315
  9. Averyanova O, Morariu D. Variability of estimates of the hydrocarbon potential of oil and gas systems. Pet Geol—Theor Appl Stud. 2016;11(3). http://www.ngtp.ru/rub/6/32_2016.pdf
  10. Bazhenova T. Oil and gas source formations of ancient platforms of Russia and oil and gas potential. Oil Gas Geol Theory Pract. 2016;11:1-29. http://www.ngtp.ru/rub/1/45_2016.pdf
  11. Bazhenova T, Shimansky V, Vasilyeva V, Shapiro A, Gembitskaya L, Klimova A. Organic Geochemistry of the Timan–Pechora Basin. VNIGRI, St Petersburg. 2008.
  12. Liu Q, Li P, Jin Z, Sun Y, Hu G, Zhu D, et al. Organic-rich formation and hydrocarbon enrichment of lacustrine shale strata: A case study of Chang 7 Member. Science China Earth Sciences. 2022:1-21. 10.1007/s11430-021-9819-y
  13. Kondrasheva N, Saltykova S, Nazarenko MY. Evaluation of the effectiveness of using oil shale. Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects: CRC Press; 2018. p. 213-22.
  14. Ilinova A, Chanysheva A. Algorithm for assessing the prospects of offshore oil and gas projects in the Arctic. Energy Reports. 2020;6:504-9. 10.1016/j.egyr.2019.11.11
  15. Prischepa O, Nefedov Y, Nikiforova V. Arctic shelf oil and gas prospects from lower-middle paleozoic sediments of the timan–pechora oil and gas province based on the results of a regional study. Resources. 2021;11(1):3. https://doi.org/10.3390/resources11010003
  16. Kontorovich A, Ponomareva E, Burshtein L, Glinskikh V, Kim N, Kostyreva E, et al. Distribution of organic matter in rocks of the Bazhenov horizon (West Siberia). Russian Geology and Geophysics. 2018;59(3):285-98. https://doi.org/10.1016/j.rgg.2018.03.007
  17. Neruchev S, Bazhenova T, Smirnov S, Andreeva O, Klimova L. Assessment of potential hydrocarbon resources based on modeling of their generation, migration and accumulation. St Petersburg: Nedra. 2006:363.
  18. Sazonov YA, Mokhov MA, Bondarenko AV, Voronova VV, Tumanyan KA, Konyushkov EI. Interdisciplinary Studies of Jet Systems using Euler Methodology and Computational Fluid Dynamics Technologies. HighTech and Innovation Journal. 2023;4(4):703-19. 10.28991/HIJ-2023-04-04-01
  19. Carayannis E, Ilinova A, Chanysheva A. Russian Arctic offshore oil and gas projects: Methodological framework for evaluating their prospects. Journal of the Knowledge Economy. 2020;11:1403-29. 10.1007/s13132-019-00602-7
  20. Putikov O, Kholmyanski M, Ivanov G, Senchina N. Application of geoelectrochemical method for exploration of petroleum fields on the Arctic shelf. Geochemistry. 2020;80(3):125498. https://doi.org/10.1016/j.geoch.2019.02.001
  21. Stoupakova A, Kalmykov G, Korobova N, Fadeeva N, Gatovskii YA, Suslova A, et al. Domanic deposits of the Volga-Ural basin-types of section, formation conditions and prospects of oil and gas potential. Georesursy. 2017;19:112-24. http://dx.doi.org/10.18599/grs.19.12
  22. Khalimov E, Melik-Pashaev B. On the search for industrial accumulations of oil in the Bazhenov formation. Geology of oil and gas. 1980;6:1-10.
  23. Lopatin N, Zubairaev S, Kos I, Emets T, Romanov E, Malchikhina O. Unconventional oil accumulations in the Upper Jurassic Bazhenov black shale formation, West Siberian Basin: A self‐sourced Reservoir System. Journal of Petroleum Geology. 2003;26(2):225-44.
  24. Jarvie DM. Shale resource systems for oil and gas: Part 2—Shale-oil resource systems. 2012.
  25. Magoon LB, Valin ZC. Overview of Petroleum System Case Studies: Chapter 20: Part V. Case Studies--Western Hemisphere. 1994.
  26. Peters K, Kontorovich AE, Moldowan J, Andrusevich V, Huizinga B, Demaison G, et al. Geochemistry of selected oils and rocks from the central portion of the West Siberian Basin, Russia. AAPG bulletin. 1993;77(5):863-87.
  27. Belonin M, Prishchepa O, Teplov E, Budanov G, Danilevskii S. The Timan–Pechora province: geology, hydrocarbon potential and development prospects. Nedra, St Petersburg (in Russian). 2004.
  28. Nikonov N, Bogatskiy V, Martynov A, Larionova Z. Atlas geologicheskikh kart «Timano-Pechorskiy sedimentatsionnyy basseyn»[Atlas of geological maps" Timan-Pechora sedimentary basin"]. Ukhta: OOO «Regional'nyy dom pechati. 2000.
  29. LV P. Verhnedevonskiy kompleks Timano-Pechorskoy provintsii (stroenie, usloviya obrazovaniya, zakonomernosti razmeshcheniya kollektorov i neftegazonosnost')[The Upper Devonian complex of the Timan-Pechora province (structure, conditions of formation, patterns of distribution of reservoirs and oil-andgas content)]. Saint Petersburg: Nedra. 2007.
  30. Belozerov IP, Gubaidullin MG. Concept of technology for determining the permeability and porosity properties of terrigenous reservoirs on a digital rock sample model. Записки Горного института. 2020;244:402-7. 10.31897/PMI.2020.4.2
  31. Burdel'naya N, Derevesnikova A, Bushnev D. Offline piroliz kerogena domanikovyh otlozhenii Timano-Pechorskogo osadochnogo basseina (Offline pyrolysis of kerogen of Domanik deposits of Timan-pechora sedimentary basin). Vestnik IG Komi SC UB RAS. 2016(9-10):3-8. 10.19110/2221-1381-2016-10-3-7
  32. Bushnev D, Burdel’naya N. Modeling of oil generation by Domanik carbonaceous shale. Petroleum Chemistry. 2013;53:145-51. 10.1134/S096554411303002X
  33. Fortunatova N, Varlamov A, Kanev A, Poroskun V, Baranova A, Bushueva M. Structure and assessment of the oil potential of carbonaceous carbonate-siliceous Domanik deposits in the Volga–Ural oil and gas province. Russian Geology and Geophysics. 2021;62(08):929-46. 10.2113/RGG20214351
  34. Lindquist SJ. The Timan-Pechora Basin province of northwest arctic Russia: Domanik-Paleozoic total petroleum system: US Department of the Interior, US Geological Survey; 1999.
  35. Timonin N. Pechora plate: history of geological development in the Phanerozoic. RAS Urals Branch, Ekaterinburg (in Russian). 1998.
  36. Gusev EA. Results and prospects of geological mapping of the Arctic shelf of Russia. Записки Горного института. 2022;255:290-8. 10.31897/PMI.2022.50
  37. Litvinenko VS, Kozlov AV, Stepanov VA. Hydrocarbon potential of the Ural–African transcontinental oil and gas belt. Journal of Petroleum Exploration and Production Technology. 2017;7:1-9.
  38. Ulmishek G. Upper Devonian-Tournaisian facies and oil resources of the Russian craton’s eastern margin. 1988.
  39. Martirosyan V, Popova L, Vepreva M. The petroleum systems of the Pechora Platform foreland, Russia. Petroleum Geoscience. 1998;4(4):339-48. 10.1007/s13202-016-0248-4
  40. Espitalie J, Marquis F, Drouet S. Critical study of kinetic modelling parameters. Basin modelling: Advances and applications: Special publication. 1993;3:233-42.
  41. Prishchepa OМ, Borovikov IS, Grokhotov EI. Oil and gas content of the understudied part in the northwest of the Timan-Pechora oil and gas province according to the results of basin modeling. Записки Горного института. 2021;247:66-81. https://doi.org/10.31897/PMI.2021.1.8
  42. Kiryukhina T, Bol'shakova M, Stoupakova A, Korobova N, Pronina N, Sautkin R, et al. Lithological and geochemical characteristics of domanic deposits of Timan-Pechora Basin. Georesursy. 2015;61(2):87-100. http://dx.doi.org/10.18599/grs.61.2.8
  43. Jarvie DM. Components and processes affecting producibility and commerciality of shale resource systems. Geologica Acta: an international earth science journal. 2014;12(4):307-25. http://dx.doi.org/10.1344/GeologicaActa2014.12.4.3
  44. Klimenko S, Anischenko L, Antoshkina A. Chapter 13 The Timan–Pechora sedimentary basin: Palaeozoic reef formations and petroleum systems. Geological Society, London, Memoirs. 2011;35(1):223-36. http://dx.doi.org/10.1144/M35.13
  45. Sannikova I, Bolshakova M, Stoupakova A, Sautkin R, Suslova A, Kozlova E. Modeling of hydrocarbon generation by Domanic source rock of the Timan-Pechora basin using different kinetics of kerogen decomposition. Georesursy. 2017;19:65-79. http://doi.org/10.18599/grs.19.8
  46. Фортунатова Н, Швец-Тэнэта-Гурий А, Канев А, Баранова А, Асташкин Д, Дахнова М, et al. Обоснование методики комплексного изучения отложений доманикового типа по материалам новых скважин Ухтинского района (Южный Тиман). Геология нефти и газа. 2020(4):45-64. 10.31087/0016-7894-2020-4-45-64
  47. Neruchev S, Vassoevich N, Lopatin N. On the scale of catagenesis in connection with oil and gas formation. Trudy XXV sessii Mezhdunarodnogo geologicheskogo kongressa. 1976:47-62.
  48. Mufrodi Z, Shitophyta L, Sulistyo H, Aziz M. Reaction of carbon dioxide gas absorption with suspension of calcium hydroxide in slurry reactor. Emerging Science Journal. 2023;7(2):328-38. 10.28991/ESJ-2023-07-02-02
  49. Aleksandrova T, Nikolaeva N, Afanasova A, Romashev A, Aburova V, Prokhorova E. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023;13(1):84. https://doi.org/10.3390/min13010084
  50. Nazarenko MY, Saltykova SN, Rudko VA, Pihl O. Production of isotropic coke from shale tar at various parameters of the delayed coking process. ACS omega. 2021;6(34):22173-9. http://dx.doi.org/10.1021/acsomega.1c02842
  51. Фортунатова Н, Швец-Тэнэта-Гурий А, Бушуева М, Канев А, Лучина С, Авдеева А, et al. Методика прогноза структурно-литологических и литологических ловушек нефти и газа в верхнедевон-турнейском и нижнепермском карбонатных нефтегазоносных комплексах востока Волго-Уральской НГП. Геология нефти и газа. 2019(3):23-38. 10.31087/0016-7894-2019-3-23-38
  52. Henderson J. Tight oil developments in Russia: Oxford Institute for Energy Studies; 2013.
  53. Tananykhin D, Palyanitsina A, Rahman A. Analysis of Production Logging and Well Testing Data to Improve the Development System for Reservoirs with Complex Geological Structure. Procedia Environmental Science, Engineering and Management. 2020;7(4):629-48.