Analysis of Nucleation Time of Gas Hydrates in Presence of Paraffin During Mechanized Oil Production

Document Type : Saint Petersburg Mining University 2024 Special Issue (SPMU)

Authors

Petroleum Engineering Department, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia

Abstract

The objective of this study is to investigate the nucleation timing of gas hydrate molecules in oil flows. This research focuses on examining how paraffin particles impact the formation timing of hydrate deposits during the mechanical production of oil. A thorough comprehension and control over the formation of organic deposits within the wellbore can substantially mitigate equipment maintenance expenses, enhance the safety and consistency of production, and bolster the economic viability of extracting hydrocarbons. The initial segment of the paper outlines a methodology for identifying the formation depths of gas hydrates and asphaltene-resin-paraffin deposits (ARPD) in operational oil wells through the resolution of thermobaric differential equation systems. Subsequent laboratory experiments were conducted to assess the nucleation timing of gas hydrates in the presence of paraffin. These tests were performed in a specialized high-pressure autoclave that enables the establishment of requisite thermobaric conditions. An internal agitator in the autoclave facilitates the needed dispersion within the system to emulate well flow conditions. Experimental findings revealed that paraffin particles impede the formation of gas hydrate deposits and decelerate their nucleation process. Notably, a 3% increase in paraffin concentration within the mixture was observed to prolong the nucleation timing of gas hydrates by a factor of nine. Based on the review of available literature, it is deduced that further comprehensive investigations are essential for the advancement of a temporal model governing the operational dynamics of production wells under the influence of gas hydrate and ARPD formation.

Graphical Abstract

Analysis of Nucleation Time of Gas Hydrates in Presence of Paraffin During Mechanized Oil Production

Keywords

Main Subjects


  1. Mastronardo E, La Mazza E, Palamara D, Piperopoulos E, Iannazzo D, Proverbio E, et al. Organic salt hydrate as a novel paradigm for thermal energy storage. Energies. 2022;15(12):4339. https://doi.org/10.3390/en15124339
  2. Zhang J, Li C, Shi L, Xia X, Yang F, Sun G. The formation and aggregation of hydrate in W/O emulsion containing different compositions: A review. Chemical Engineering Journal. 2022;445:136800. https://doi.org/10.1016/j.cej.2022.136800
  3. Semenov AP, Stoporev AS, Mendgaziev RI, Gushchin PA, Khlebnikov VN, Yakushev VS, et al. Synergistic effect of salts and methanol in thermodynamic inhibition of sII gas hydrates. The Journal of Chemical Thermodynamics. 2019;137:119-30. https://doi.org/10.1016/j.jct.2019.05.013
  4. Borisova NN, Rozhin II. Method for determining the mass flow for pressure measurements of gas hydrates formation in the well. Журнал Сибирского федерального университета Серия «Математика и физика». 2021;14(2):193-203. https://doi.org/10.17516/1997-1397-2021-14-2-193-203
  5. Raupov I, Burkhanov R, Lutfullin A, Maksyutin A, Lebedev A, Safiullina E. Experience in the application of hydrocarbon optical studies in oil field development. Energies. 2022;15(10):3626. https://doi.org/10.3390/en15103626
  6. Nikolaichuk L, Ignatiev K, Filatova I, Shabalova A. Diversification of Portfolio of International Oil and Gas Assets using Cluster Analysis. International Journal of Engineering, Transactions A: Basics. 2023;36(10):1783-92. https://doi.org/10.5829/IJE.2023.36.10A.06
  7. Tananykhin D, Struchkov I, Khormali A, Roschin P. Investigation of the influences of asphaltene deposition on oilfield development using reservoir simulation. Petroleum Exploration and Development. 2022;49(5):1138-49. https://doi.org/10.1016/S1876-3804(22)60338-0
  8. Duryagin V, Nguyen Van T, Onegov N, Shamsutdinova G. Investigation of the selectivity of the water shutoff technology. Energies. 2022;16(1):366. https://doi.org/10.3390/en16010366
  9. Raupov I, Rogachev M, Sytnik J. Design of a polymer composition for the conformance control in heterogeneous reservoirs. Energies. 2023;16(1):515. https://doi.org/10.3390/en16010515
  10. Cherepovitsyn AE, Tsvetkov PS, Evseeva OO. Critical analysis of methodological approaches to assessing sustainability of arctic oil and gas projects. Записки Горного института. 2021;249:463-78. https://doi.org/10.31897/PMI.2021.3.15
  11. Litvinenko VS, Tsvetkov PS, Dvoynikov MV, Buslaev GV. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Записки Горного Института. 2020;244:428-38. https://doi.org/10.31897/PMI.2020.4.5
  12. Van TN, Aleksandrov AN, Rogachev MK. An extensive solution to prevent wax deposition formation in gas-lift wells. Journal of Applied Engineering Science. 2022;20(1):264-75. https://doi.org/10.1007/s13202-022-01598-8
  13. Nguyen VT, Pham TV, Rogachev MK, Korobov GY, Parfenov DV, Zhurkevich AO, et al. A comprehensive method for determining the dewaxing interval period in gas lift wells. Journal of Petroleum Exploration and Production Technology. 2023;13(4):1163-79.
  14. Martins JR, da Cunha Ribeiro D, Pereira FdAR, Ribeiro MP, Romero OJ. Heat dissipation of the Electrical Submersible Pump (ESP) installed in a subsea skid. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles. 2020;75:13. https://doi.org/10.2516/ogst/2020009
  15. Manabe R, Wang Q, Zhang H-Q, Sarica C, Brill JP, editors. A mechanistic heat transfer model for vertical two-phase flow. SPE Annual Technical Conference and Exhibition?; 2003: SPE.
  16. Gao Y, Cui Y, Xu B, Sun B, Zhao X, Li H, et al. Two phase flow heat transfer analysis at different flow patterns in the wellbore. Applied thermal engineering. 2017;117:544-52. https://doi.org/10.1016/j.applthermaleng.2017.02.058
  17. Serbin DV, Dmitriev AN. Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter. Записки Горного института. 2022;257:833-42. https://doi.org/10.31897/PMI.2022.82
  18. Wang X, Wang Z, Deng X, Sun B, Zhao Y, Fu W. Coupled thermal model of wellbore and permafrost in Arctic regions. Applied Thermal Engineering. 2017;123:1291-9. https://doi.org/10.1016/j.applthermaleng.2017.05.186
  19. Merey S, Aydin H, Eren T. Design of electrical submersible pumps in methane hydrate production wells: A case study in Nankai trough methane hydrates. Upstream Oil and Gas Technology. 2020;5:100023. https://doi.org/10.1016/j.upstre.2020.100023
  20. Mardashov DV, Bondarenko АV, Raupov IR. Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover. Записки Горного института. 2022;258:881-94. https://doi.org/10.31897/pmi.2022.16
  21. Mardashov DV. Development of blocking compositions with a bridging agent for oil well killing in conditions of abnormally low formation pressure and carbonate reservoir rocks. Записки Горного института. 2021;251:667-77. https://doi.org/10.31897/pmi.2021.5.6
  22. Fu W, Wang Z, Sun B, Ji C, Zhang J. Multiple controlling factors for methane hydrate formation in water-continuous system. International Journal of Heat and Mass Transfer. 2019;131:757-71. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.025
  23. Aman ZM, Di Lorenzo M, Kozielski K, Koh CA, Warrier P, Johns ML, et al. Hydrate formation and deposition in a gas-dominant flowloop: Initial studies of the effect of velocity and subcooling. Journal of Natural Gas Science and Engineering. 2016;35:1490-8. https://doi.org/10.1016/j.jngse.2016.05.015
  24. Zhou S, Chen X, He C, Wang S, Zhao S, Lv X. Experimental study on hydrate formation and flow characteristics with high water cuts. Energies. 2018;11(10):2610. https://doi.org/10.3390/en11100000
  25. Guimin Y, Hao J, Qingwen K. Study on hydrate risk in the water drainage pipeline for offshore natural gas hydrate pilot production. Frontiers in Earth Science. 2022;9:816873. https://doi.org/10.3389/feart.2021.816873
  26. Kuzmin AM, Buslaev GV, Morenov VA, Tseneva SN, Gavrilov NА. Improving the energy-efficiency of small-scale methanol production through the use of microturboexpander units. Записки Горного института. 2022;258:1026-37. https://doi.org/10.31897/PMI.2022.104
  27. Ilyushin P, Vyatkin K, Kozlov A. Development of a method for estimating thermal conductivity of organic deposits on the wax flow loop laboratory installation. International Journal of Engineering, Transactions C: Aspects 2022;35(6):1178-85. https://doi.org/10.5829/IJE.2022.35.06C.09
  28. Rogachev MK, Aleksandrov AN. Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highly paraffinic oil by electric submersible pumps from multiformation deposits. Записки Горного института. 2021;250:596-605. https://doi.org/10.31897/PMI.2021.4.13
  29. Petrakov D, Loseva A, Alikhanov N, Jafarpour H. Standards for selection of surfactant compositions used in completion and stimulation fluids. International Journal of Engineering, Transactions C: Aspects 2023;36(9):1605-10. https://doi.org/10.5829/IJE.2023.36.09C.03
  30. Khaibullina KS, Sagirova LR, Sandyga MS. Substantiation and selection of an inhibitor for preventing the formation of asphalt-resin-paraffin deposits. Periodico Tche Quimica. 2020;17(34). https://doi.org/10.52571/ptq.v17.n34.2020.565_p34_pgs_541_551.pdf
  31. Nurgalieva KS, Saychenko LA, Riazi M. Improving the efficiency of oil and gas wells complicated by the formation of Asphalt–Resin–Paraffin deposits. Energies. 2021;14(20):6673. https://doi.org/10.3390/en14206673
  32. Бельский А, Моренов В, Купавых К, Сандыга М. Электроснабжение станции нагрева нефти в скважине от ветроэлектрической установки. Энергетика Известия высших учебных заведений и энергетических объединений СНГ. 2019;62(2):146-54. https://doi.org/10.21122/1029-7448-2019-62-2-146-154
  33. Li R, Huang Q, Zhu X, Zhang D, Lv Y, Larson RG. Investigation of delayed formation of wax deposits in polyethylene pipe using a flow-loop. Journal of Petroleum Science and Engineering. 2021;196:108104. https://doi.org/10.1016/j.petrol.2020.108104
  34. Юдин П, Богатов М. Моделирование процесса выпадения асфальтосмолопарафиновых веществ на внутренней поверхности насосно-компрессорных труб с покрытием и без на лабораторном циркуляционном стенде. Нефтегазовое дело. 2021;19(2):97-103. https://doi.org/10.17122/ngdelo-2021-2-97-103
  35. Bai J, Jin X, Wu J-T. Multifunctional anti-wax coatings for paraffin control in oil pipelines. Petroleum Science. 2019;16(3):619-31. https://doi.org/10.1007/s12182-019-0309-7
  36. Kovrigin L, Kukharchuk I. Automatic control system for removal of paraffin deposits in oil well in permafrost region by thermal method. Chemical Engineering Research and Design. 2016;115:116-21. https://doi.org/10.1016/j.cherd.2016.09.028
  37. Голубев И, Голубев А, Лаптев А. Практика применения аппаратов магнитной обработки для интенсификации процессов первичной подготовки нефти. Записки Горного института. 2020;245:554-60. https://doi.org/10.31897/PMI.2020.5.7
  38. Sizikov AA, Vlasov VA, Stoporev AS, Manakov AY. Decomposition kinetics and self-preservation of methane hydrate particles in crude oil dispersions: experiments and theory. Energy & fuels. 2019;33(12):12353-65. https://doi.org/10.1021/acs.energyfuels.9b03391
  39. Stoporev AS, Manakov AY, Altunina LK, Bogoslovsky AV, Strelets LA, Aladko EY. Unusual self-preservation of methane hydrate in oil suspensions. Energy & fuels. 2014;28(2):794-802. https://doi.org/10.1021/ef401779d
  40. Wang W, Huang Q, Zheng H, Wang Q, Zhang D, Cheng X, et al. Effect of wax on hydrate formation in water-in-oil emulsions. Journal of Dispersion Science and Technology. 2020;41(12):1821-30. https://doi.org/10.1080/01932691.2019.1637751
  41. Liu Y, Meng J, Lv X, Ma Q, Shi B, Wang C, et al. Investigating hydrate formation and flow properties in water-oil flow systems in the presence of wax. Frontiers in Energy Research. 2022;10:986901. https://doi.org/10.3389/fenrg.2022.986901
  42. Zi M, Wu G, Wang J, Chen D. Investigation of gas hydrate formation and inhibition in oil-water system containing model asphaltene. Chemical Engineering Journal. 2021;412:128452. https://doi.org/10.1016/j.cej.2021.128452
  43. Hang J, Bai L, Zhou L, Jiang L, Shi W, Agarwal R. Inter-stage energy characteristics of electrical submersible pump under gassy conditions. Energy. 2022;256:124624. https://doi.org/10.1016/j.energy.2022.124624
  44. Bulgarelli NAV, Biazussi JL, Verde WM, Perles CE, de Castro MS, Bannwart AC. Experimental investigation of the electrical submersible pump's energy consumption under unstable and stable oil/water emulsions: A catastrophic phase inversion analysis. Journal of Petroleum Science and Engineering. 2022;216:110814. https://doi.org/10.1016/j.petrol.2022.110814
  45. Zhou L, Hang J, Bai L, Krzemianowski Z, El-Emam MA, Yasser E, et al. Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review. Applied Energy. 2022;318:119211. https://doi.org/10.1016/j.apenergy.2022.119211
  46. Zhang M, Jia A, Lei Z, Lei G. A Comprehensive Asset Evaluation Method for Oil and Gas Projects. Processes. 2023;11(8):2398. https://doi.org/10.3390/pr11082398
  47. Tomescu SG, Mălăel I, Conțiu R, Voicu S. Experimental Validation of the Numerical Model for Oil–Gas Separation. Inventions. 2023;8(5):125. https://doi.org/10.3390/inventions8050125
  48. Arzhanov MM, Malakhova VV, Mokhov II. Modeling thermal regime and evolution of the methane hydrate stability zone of the Yamal peninsula permafrost. Permafrost and Periglacial Processes. 2020;31(4):487-96. https://doi.org/10.1002/ppp.2074
  49. Yakushev V, Semenov A, Bogoyavlensky V, Medvedev V, Bogoyavlensky I. Experimental modeling of methane release from intrapermafrost relic gas hydrates when sediment temperature change. Cold Regions Science and Technology. 2018;149:46-50. https://doi.org/10.1016/j.coldregions.2018.02.007
  50. Semenov A, Mendgaziev R, Stoporev A, Istomin V, Tulegenov T, Yarakhmedov M, et al. Direct Measurement of the Four-Phase Equilibrium Coexistence Vapor–Aqueous Solution–Ice–Gas Hydrate in Water–Carbon Dioxide System. International Journal of Molecular Sciences. 2023;24(11):9321. https://doi.org/10.3390/ijms24119321
  51. Lekomtsev A, Kozlov A, Kang W, Dengaev A. Designing of a washing composition model to conduct the hot flushing wells producing paraffin crude oil. Journal of Petroleum Science and Engineering. 2022;217:110923. https://doi.org/10.1016/j.petrol.2022.110923
  52. Liu Y, Wu C, Lv X, Xu X, Ma Q, Meng J, et al. Evolution of morphology and cohesive force of hydrate particles in the presence/absence of wax. RSC advances. 2022;12(23):14456-66. https://doi.org/10.1039/D2RA02266D
  53. Semenov AP, Medvedev VI, Gushchin PA, Yakushev VS. Effect of heating rate on the accuracy of measuring equilibrium conditions for methane and argon hydrates. Chemical Engineering Science. 2015;137:161-9. https://doi.org/10.1016/j.ces.2015.06.031
  54. Liu Y, Wu C, Lv X, Du H, Ma Q, Wang C, et al. Hydrate growth and agglomeration in the presence of wax and anti-agglomerant: A morphology study and cohesive force measurement. Fuel. 2023;342:127782. https://doi.org/10.1016/j.fuel.2023.127782
  55. Tong S, Li P, Lv F, Wang Z, Fu W, Zhang J, et al. Promotion and inhibition effects of wax on methane hydrate formation and dissociation in water-in-oil emulsions. Fuel. 2023;337:127211. https://doi.org/10.1016/j.fuel.2022.127211
  56. Liu Z, Wang Z, Chen L, Chen L, Li X, Sun B. Experimental and modeling investigations of hydrate phase equilibria in natural clayey-silty sediments. Chemical Engineering Journal. 2022;449:137557. https://doi.org/10.1016/j.cej.2022.137557
  57. Gao Q, Zhao J, Guan J, Zhang C. Influence of the memory effect during CO2/CH4 mixed gas hydrate reformation process. Fuel. 2023;353:129249. https://doi.org/10.1016/j.fuel.2023.129249
  58. Wen Z, Yao Y, Luo W, Lei X. Memory effect of CO2-hydrate formation in porous media. Fuel. 2021;299:120922. https://doi.org/10.1016/j.fuel.2021.120922