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A B S T R A C T  
 

 

Accurate settlement forecasting is essential for preventing severe structural and infrastructure damage. 
This paper investigates predicting tunneling-induced ground settlements using machine learning models. 

Empirical methods for estimating settlements are often imprecise and site-specific. Developing novel, 

accurate prediction methods is critical to avoid catastrophic damage. The umbrella arch method 
constrains deformations for initial stability before installing primary support. This study develops 

machine learning models to forecast settlements solely from umbrella arch parameters, disregarding soil 

properties. Multilayer perceptron artificial neural networks (MLP-ANN) and support vector regression 
(SVR) are applied. Results demonstrate machine learning outperforms empirical methods. The MLP-

ANN surpasses SVR, with R2 of 0.98 and 0.92, respectively. Strong correlation is observed between 

umbrella arch configuration and settlements. The suggested approach effectively estimates surface 
displacements lacking mechanical properties. Overall, this study supports machine learning, specifically 

MLP-ANN, as an efficient, reliable alternative to empirical methods for predicting tunneling-induced 

ground settlements from umbrella arch design. 

doi: 10.5829/ije.2024.37.08b.05 
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NOMENCLATURE 

tV  Tunnel volume loss (m3) EI Pipe flexural rigidity 

sV  Surface volume loss (m3) EL Forepole embedded length 

,z yS  Settlement at a distance of y and a depth of z0 from the surface 
(mm) 

Ps Tunnel face support pressure 

maxS  Maximum ground surface settlement (mm) K Feature vector of RBF kernel 

zi  Horizontal distance from the tunnel centerline to the inflection 

point of the settlement trough (m) 
xyR  Pearson's correlation coefficient between x and y 

C  Tunnel cover depth (m) Greek Symbols 

D  Tunnel diameter (m)   Symmetric crown coverage angle of the forepoles (degrees) 

Uspacing Spacing between crown forepoles i  Slack variable of the i-th observation 

Lspacing Spacing between shoulder forepoles   Epsilon-tube margin 

 

 

1. INTRODUCTION 
 
Sustainable development in urban areas has substantially 

increased the demand for underground openings. Among 

them, tunnels are of great importance since they are 

constructed to facilitate transportation, sewerage 

disposal, etc. The construction of these facilities is 

intrinsically complex and inevitably induce ground 

settlements due to the tunnel convergence and 

redistribution of in-situ stresses (1, 2). During the 

tunneling excavation process, the volume of soil that is 

being excavated is inevitably greater than the volume of 

soil that represents the theoretical volume of the tunnel. 

This over-excavated volume is considered as tunnel 

volume loss (Vt). Moreover, the factors like creep, 

consolidation and, hydraulic fluctuations can increase the 

volume loss (3). The surface volume loss (Vs) is a 

measure that describes the disturbance of the overall state 

of the ground caused by tunnel excavation. It causes a 

Gaussian settlement curve on the ground as follows: 
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where, Sz,y is the settlement at a transverse distance of y 

and a depth of z from the surface (Figure 1a); iz is the 

horizontal distance from the tunnel centerline to the 

inflection point of the settlement trough (Figure 1b); and 

Smax is the maximum ground surface settlement. The 

geometry of the tunneling-induced settlements profile is 

illustrated in Figure 1. Under undrained conditions, the 

volume of the settlement trough is equal to the tunnel 

volume loss. According to Peck, the iz value of transverse 

tunneling-induced settlement profile can be obtained 

through the following equation: 
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where, z0 is the tunnel axis depth and R is the tunnel 

radius. Vs is mathematically expressed as the ratio of the 

difference between the excavated soil volume and the 

theoretical volume of the tunnel to the practical volume 

of the tunnel. The volume loss per unit meter of the tunnel 

length is defined as settlement curve integration as 

follows (4): 
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In general, excavation-induced ground settlements are 

predicted through different empirical and numerical 

approaches that comprise a variety of factors including 

geological conditions, tunnel depth and geometry of the 

premiere as well as excavation method, etc. (5, 6). 

Excessive ground surface settlement may lead to 

considerable damage to nearby structures (7, 8). Hence, 

precautionary considerations should be taken to 

minimize the settlement. The Umbrella Arch Method 

(UAM), also known as Umbrella Pipe Arch or 

Forepoling Umbrella System, is considered as an 

effective measure for improving the operational safety as 

well as mitigating the tunneling-induced ground 

settlements and thus, preventing the structural damage to 

adjacent facilities (1-5, 9-11). Due to its capabilities in 

yielding the stress distribution in small scale analogous 

to a full scale prototype, centrifuge modelling has been 

widely used for studying excavation-induced 

geotechnical problems (12, 13). Numerous researchers 

have investigated the application of geotechnical 

centrifuge in exploring tunneling induced three-

dimensional ground settlements (12, 14-21). Lu et al. 

(21)conducted centrifuge modeling to investigate the 

influence of forepole insertion angles and cover-to-tunnel 

diameter ratios on ground settlement. Their results 

indicate that the major influenced zone along the 

longitudinal direction is ±1.25D, where D is the tunnel 

diameter (21). Juneja et al. (14) investigated the effects 

of forepoles and unsupported length on tunnel face 

stability through 100g centrifuge modelling. They 

suggested that the tunnel stability depends not only on the 

unsupported length of the tunnel but also on the length of 

forepoles (14). 

In order to represent the effects of UAM shell on 

settlement, Divall et al. (16) used stiff resin inclusions 
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Figure 1. Geometry of the tunneling-induced settlement trough in: (a) 3D perspective (10), (b) Transverse settlement profile (after 

(11)) 

 

 

around the annulus of a single tunnel. They monitored the 

deformation zone around the tunnel via image processing 

and displacement transducers. The results of their study 

indicated the influence of forepoling layout on plastic 

collapse mechanism (16). Le and Taylor (20) concluded 

similar modelling, emphasizing on forepoling pipe 

characteristics and arrangement. Owing to the potential 

of tackling the uncertainties and inaccuracies associated 

with almost every engineering project, soft computing 

methods were developed to provide data-driven 

approaches for complex engineering problems with 

robust and precise solutions (22). 

In recent years, soft computing techniques were 

successfully applied in geomechanics and particularly, in 

tunneling (23-26). The use of soft computing in tunneling 

has led to an enhanced understanding of operational 

conditions and the identification of probable parametric 

correlations (27). Machine learning (ML) algorithms 

have been widely used in estimating tunneling-induced 

ground settlements where the empirical methods fail to 

precisely anticipate the ground deformations (28-31). 

Ahangari et al. (30) studied the application of Gene 

Expression Programming (GEP) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) in predicting subway 

settlements for a case study of 53 tunnels excavated with 

the NATM method. Their models included a combination 

of soil strength properties (i.e., angle of internal friction, 

cohesion, and Young’s modulus), tunnel depth and 

diameter. The corresponding settlement which was 

obtained through numerical analysis. The results 

indicated that both models possessed a considerably high 

accuracy in mapping deformations. They have 

acknowledged that the intelligent approaches are 

excellent tools for handling problems with complicated 

systems and various affecting elements like excavation-

induced settlement prediction since there are no 

restrictions on the number of input parameters that can be 

used to forecast geotechnical parameters with these 

approaches (30). Zhang et al. (28) proposed a unique 

hybrid approach that combined wavelet packet 

transformation (WPT) and least-squares support vector 

machines (LSSVMs) to develop a model with improved 

capability for estimating the surface displacements 

caused by tunnel excavation. In this context, they have 

considered the Wuhan metro, China as a case study to 

prove the operational feasibility of the WPT-LSSVM 

model. The results suggested that the intelligent models 

outperform the available analytical methods in terms of 

accuracy. Furthermore, they stated that the WPT-

LSSVM provides higher accuracy and dependability than 

the classic LSSVM approach in calculating tunnel-

induced settlement. They have also concluded that the 

developed method can be used as a decision-making 

technique for time-series analysis and calculation of 

tunnel-induced displacements, which can help to 

improve project safety (28). 

Criticizing the limited and time-consuming nature of 

the empirical methods, Moghaddasi and Noorian-Bidgoli 

(32) provided a predictive model based on an artificial 

neural network optimized with the Imperialist 

competitive algorithm (ICA) for predicting the maximum 

surface settlement. They obtained a dataset comprising 

the lateral stress ratio, the modulus of elasticity, 

cohesion, and their corresponding maximum settlement 

that occurred on the ground surface from a case study 

tunnel in Karaj subway, Iran. The results demonstrated 

the significant efficiency of the trained models with 

0.9806 and 0.9402 R2 scores for the ICA-ANN and ANN 

models, respectively. Since the developed models relied 

on the mechanical properties of the ground in the Karaj 
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subway, they suggested the researchers to modify their 

models with respect to the geological conditions inherent 

to the tunnel project being studied. In addition, they have 

encouraged the researchers to incorporate further input 

parameters including tunnel operational parameters in 

developing settlement prediction models (32). In order to 

estimate ground settlement during shield tunneling, 

Zhang et al. (33) suggested using artificial intelligence to 

take into account interactions among several aspects, 

such as geological formations, construction variables, 

construction phases, and grout properties. Their 

methodology employed a hybrid ANN model that 

integrated an artificial neural network with a differential 

evolutionary (DE) optimization algorithm (ANN-DE). 

The optimum architecture and ANN hyperparameters 

were chosen using the DE technique. Their suggested 

hybrid model was utilized for settlement prediction in a 

real-world scenario involving mechanized tunneling in 

Guangzhou subway, China. The findings of the 

sensitivity analysis showed that the three key operational 

factors influencing settlement at the surface were face 

pressure, excavation deviation, and shield thrust. They 

also addressed that their proposed hybrid intelligent 

model with a R2 score of 0.9123 can be a good alternative 

to the empirical methods (33). However, their model 

cannot be applied to real-time engineering practices due 

to insufficient accuracy, which is valid not only in the 

field of underground and tunnel construction but also in 

many other engineering projects. It is necessary to find 

models of natural variables with a higher degree of 

adequacy (34). 

The aforementioned researches were engaged with 

the application of machine learning algorithms in 

predicting the ground displacements caused by tunneling 

based on soil properties and operational parameters. The 

aftermath of these researches proved the superiority of 

the machine learning algorithms over empirical methods. 

Nevertheless, the influence of UAM design parameters 

on settlement prediction has not been investigated yet. 

The aim of this study is to evaluate the performance of 

artificial neural networks and support vector regression 

in tunneling-induced ground settlement prediction 

incorporating the UAM characteristics. In order to 

maintain the independence of the proposed models 

against the site-specific soil mechanical properties and 

make an all-inclusive deduction of the UAM effects on 

controlling the settlements, the mechanical properties of 

the soil were excluded in the modeling procedure. 

 

1. 1. The Theoretical Background of the Umbrella 
Arch Method of Reinforcement          In UAM, in order 

to maintain tunnel heading stability, the longitudinal 

pipes are installed through the periphery of the face, 

typically over the upper third or quarter of the excavated 

profile (Figure 2) (35). Several researches have been 

conducted to assess the influence of the umbrella arch 

method on minimizing ground settlements regarding the 

ground-pipe interaction (11, 36-38). The reinforcement 

mechanism of UAM is to provide stability in both 

longitudinal and transverse directions of tunnel face 

through an arch-shaped support system. The term “steel-

pipe-reinforced UAM” refers to the reinforcement 

mechanism in which the forepoles (steel pipes) are 

applied circumferentially through the tunnel face in the 

umbrella arch method. The reinforcement mechanism of 

this method is comprised of two critical phases: (1) 

structural reinforcement provided by pipes, and (2) the 

cement-shell formed by grouting improves the 

mechanical properties of the ground (39). According to 

Song et al. (40), the forepoles installed circumferentially 

through the tunnel face transfer the pressure of the earth 

to the primary support. In the longitudinal direction, the 

overall behavior of the pipes in terms of axial force, 

bending moment, and structural deformations are 

mechanically analogous to free-end beams with the other 

end engaged in the ground (41). Thus, in order to carry 

the earth pressure, one end of the UAM rests on the 

primary support system and, the other end is anchored to 

the ground in front of the tunnel face. 

By carrying the earth pressure in this way, UAM 

provides the following advantages (42): 

• Constraining settlements ahead of the tunnel face 

• Increasing stability of the face 

• Reducing the total cost of tunnel support 

• Accelerating the excavation by enlarging the cutter 

face for machinery 

Hence, as shown in Figure 3, the UAM technique 

adequately improves the stability of unsupported span 

prior to tunnel primary support installation (39). 

 
 
2. DATA PREPARATION AND PRE-PROCESSING 
 

The training and evaluation of MLP-ANN and SVR is 

carried out on a dataset from a series of centrifuge test 

reported by Le (18). The details of the centrifuge 
 

 

 
Figure 2. Schematic of umbrella arch implementation (35) 
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Figure 3. UAM ground reinforcement mechanism (40) 

 

 

experiments can be found in Le (18) and briefly described 

below. 

A typical model of a centrifuge experiment 

simulating a UAM, consisting of modelled pipes 

(forepoles), is depicted in Figure 4. The dimensions of 

the model are 550mm long, 200mm wide and the height 

of either 157mm or 257mm depending on the cover depth 

C. The models were tested at 125g. By the means of the 

advantageous capabilities of centrifuge modelling 

technique in replicating soil-structure interaction and the 

well-established scaling laws, at 125g the model 

represents a corresponding tunnel of 6.25m diameter at 

the depths of z0 = 9.4m (for C/D = 1 cases) or z0 = 22m 

(for C/D=3 cases). The experiments were conducted by 

gradually reducing the tunnel support pressure to 

simulate the tunnel excavation process. During the tests, 

important data such as tunnel support pressure, 

subsurface ground deformations and surface settlement 

were recorded for later analysis. The dataset considered 

in this paper comprises seven variables and the resulting 

maximum surface settlement (Smax). The variables cover 

the following: 

• The forepoles characteristics: the spacing (Uspacing, 

Lspacing), the symmetric crown coverage angle of the 

forepoles (α), the pipe flexural rigidity (EI), the 

ratio of the forepole embedded length (EL) to tunnel 

diameter (EL/D),  

• The tunnel face support pressure (Ps), and  

• the ratio of cover depth to tunnel diameter (C/D).  

A schematic description of the model parameters is 

demonstrated in Figure 5. Due to the limited nature of 

physical modeling, the experiments were conducted in 

specific scenarios (see Table 1). Uspacing and Lspacing are the 

spacing between crown (upper) and shoulder (lower) 

forepoles, respectively. The values of Uspacing and Lspacing 

were identical in the case of =90o, due to the uniform 

distribution of pipes through tunnel periphery. 

In the case of =75o, the crown pipes were spatially 

concentrated compared to the shoulder pipes with 1.7 

mm and 3.4 mm for crown and shoulders, respectively.  

 
Figure 4. A typical model for centrifuge test (After (18)) 

 

 

 
Figure 5. Schematic description of model parameters (21) 

 

 

TABLE 1. Experimental configuration for adopted data (18) 

Feature Values Comment 

Uspacing 0, 1.7, 3 value depends on  

Lspacing 0, 3.4, 3 value depends on  

 0, 75°, 90° - 

EI 0, 1.32, 2.52 
zero indicates no forepoles were 

installed 

EL/D 0, 0.5, 1 - 

Ps varied 
pressure decreased from 175 kPa to 0 

(to simulate face collapse) 

C/D 1, 3 - 

Smax varied - 

 

 

In order to facilitate the extraction of meaningful 

insights from the dataset, the preprocessing procedure is 

necessary. For this purpose, the MinMax scaler of the 

Scikit library of Python package version 3.7 was used. 
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The aftermath of the above procedure is a high-

resolution dataset, where the variation of each feature is 

in the range of [0, 1]. Upon normalization, the order of 

observations was shuffled to maintain the dynamicity of 

feature space while segregating the data into the train, test 

and, validation subsets. 

Pearson's correlation coefficient is a covariance-

based statistical measure to express the statistical 

relationship or association between two continuous 

variables. This procedure provides the magnitude of 

sensitivity (correlation) as well as its direction. Pearson's 

R method is generally utilized in linear regression. The 

basic formula of R for classic linear regression problems 

is given in the equation below (43).  

1 1 1

2 2

2 2

1 1 1 1
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n n n

i i i i
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(4) 

where Rxy and n are Pearson's coefficients indicating the 

correlation between variables x and y and, number of 

observations, respectively. The calculated value for Rxy 

can range from +1 to -1. 

 

 

3. AI ANALYSIS ON DATASET 
 
3. 1. Artificial Neural Networks (ANNs)         Artificial 

neural networks are intelligent dynamic systems based on 

experimental data that do not require any presumptions 

and transfer the knowledge or law behind the data to the 

network structure through processing on the train data. 

ANNs are amongst the most popular machine learning 

algorithms in geotechnics (28, 44, 45). A multilayer 

perceptron artificial neural network (MLP-ANN) was 

applied to analyze the nonlinear relationship between the 

aforementioned input variables and corresponding 

induced settlement. Initially, a subset comprising 439 

observations of the normalized dataset was chosen to 

train the model, while the remnant 50 data were 

designated for validation. A sequential model with three 

dense layers was created in the Tensorflow-Keras library 

of Python version 3.7. The layers had 7, 12 and, 8 nodes, 

respectively. A schematic representation of the model 

network is shown in Figure 6. The activation functions of 

the two first layers were rectified linear unit (ReLU) and 

Sigmoid for the third layer. A 5-fold cross-validation 

technique was adopted to train the model in 150 epochs, 

with one-third of the data dedicated to testing the model 

performance at each iteration. 

A stochastic gradient descendant (SGD) compiler 

with a momentum of 0.97 at 0.01 learning rate was 

utilized to specify the efficient weights. Mean-squared-

error (MSE) and mean-absolute-error (MAE) metrics 

were employed to assess the total performance of the 

model while training. Also, the model loss was evaluated 

via MSE after each iteration. 

 

3. 2. Support Vector Regression (SVR)     Support 

vector regression is a type of support vector machine 

(SVM) that has been particularly developed for 

regression analysis. In SVR, efforts are taken to find a 

hyperplane (a line in two dimensions) and tune it in a 

manner that fits the data. The objective function of the 

SVR is to minimize the l2-norm of the coefficient vector 

while subjecting it to a specific margin so-called epsilon-

tube (46). In addition, for any values exceeding the 

thresholds of the epsilon-tube, a penalty (slack variable) 

is defined. The slack variable denotes the derivation of 

the penalized value from the closest margin. An extended 

form of the objective function of SVR is as follows (47): 

2

1

1

2

n

i

i

MIN w C 
=

+   
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Subjected to: 

i i i iy w x  −  +  (6) 

where wi, C, εi, yi, xi and ε are the coefficient, 

regularization factor, slack variable, target value (label), 

input value (features) and epsilon-tube margin of the i-th 

observation, respectively. The SVR module of sklearn 

library of Python version 3.7 was used to conduct support 

vector regression analysis. A radial basis function (RBF) 

was adopted as a kernel to compile the support vector-

driven model. The RBF kernel represents feature vectors 

in feature space. This feature vector (K) for a pair of two 

samples x1 and x2 is defined as follows (48): 

2

1 2

1 2 2
( , ) exp

2

x x
K x x



 −
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(7) 

where the term 2

1 2x x−  is the squared Euclidean distance 

between x1 and x2, and σ is a free parameter. The values 

of 0.1 and 10 were configured to epsilon-tube margin (ε) 

 

 

 
Figure 6. MLP-ANN network structure of the used model 
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and coefficient of regularization (C), respectively. 

Similar to ANN model, the SVR model was fitted for a 

subset comprising 439 observations of the normalized 

dataset and, the remnant 50 data were designated for 

validation. 
 

 

4. MODEL PERFORMANCE EVALUATION 
 

Mean-absolute-error (MAE), mean-squared-error 

(MSE), Nash-Sutcliffe (NSE), Kling-Gupta (KGE), and 

median-absolute-error (MedAE) were chosen to evaluate 

the efficiency of both models in training and testing 

process. MAE denotes the 1 norm fraction of all absolute 

error vectors per the total number of samples and is 

defined as follows (49): 

1
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n

i i

i

x x

MAE
n

=

−

=
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where the term ( )i ix x− refers to the absolute error vector 

between the observed xi and predicted 
ix  values and n is 

the number of total samples. Similarly, the MSE indicates 

the mean of the squared absolute error vectors per the 

total number of samples within the dataset and is defined 

as follows (50): 
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 (9) 

NSE is the model goodness-of-fit evaluation index that 

has been proposed by Nash and Sutcliffe (51). NSE 

formula is expressed in Equation 10 (50). 
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(10) 

where iY


, 
iY  and Y  are predicted, observed, and mean 

of observed values, respectively. Since the NSE was 

unbiased, Gupta et al. (51) developed a novel criterion for 

model performance assessment that comprises a bias 

component. They proposed an improved version of the 

Nash-Sutcliffe efficiency index as follows (51). 

1KGE ED= −  (11) 

2 2 2( 1) ( 1) ( 1)ED r  = − + − + −  (12) 

where ED, r, α and β are the Euclidean distance from the 

ideal point; the linear correlation coefficient between 

observed and predicted values; the coefficient that 

describes relative variability within predicted and 

observed values; the ratio of mean predicted to mean 

observed values (bias), respectively. 

The median-absolute-error is a loss criterion 

calculated by taking the median of all absolute 

differences between the predicted and observed values. 

One of the considerable advantages of MedAE is its 

robustness to outliers. MedAE is defined as the following 

(52): 

1 1
ˆ ˆ ˆ( , ) ( ,..., )n nMedAE y y median y y y y= − −  (13) 

 

 

5. RESULTS AND DISCUSSION 
 

The experimental data of the geotechnical centrifuge of 

the City University of London were used to train and 

validate the predictive models (18). A statistical 

description of the normalized dataset for this study is 

given in Table 2. In addition, the histograms of 

normalized values are shown in Figure 7. The histograms 

depict the distribution of the values of each parameter on 

a normalized scale between 0 and 1. According to these 

histograms, the variation of C/D ratio, forepole spacing 

(USpacing, LSpacing), EL/D ratio, α, and pipe EI were solely 

limited to 2, 3, 3, and 3 values, respectively. This was due 

to the limitations of the physical modeling of this study 

since the tests were conducted in certain scenarios (i.e., 

C/D=1, C/D=3, etc.). Pearson's correlation coefficient 

was employed to assess the parameter-wise sensitivity of 

features in this study. The correlation heatmap of the 

variables of this study is demonstrated in Figure 8. 

According to Figure 8, the Ps, C/D ratio, pipe EI, spacing 

of crown forepoles (Uspacing), α had the most significant 

correlation with maximum surface settlement while the 

spacing of shoulder forepoles (Lspacing) and EL/D ratio had 

relatively low correlation with the maximum surface 

settlement. Among all the input variables, solely the C/D 

ratio had a direct relationship with the maximum surface 

settlement. Also, the results indicate a considerable 

correlation between input variables which may be 

typically due to the test configuration of this study. For  

 

 
TABLE 2. Statistical description of the normalized dataset 

 Uspacing Lspacing α 
Pipe 

EI 
EL/D Ps C/D Smax 

count 489 489 489 489 489 489 489 489 

mean 0.74 0.80 0.82 0.67 0.57 0.33 0.67 0.21 

std 0.35 0.32 0.33 0.34 0.31 0.24 0.47 0.24 

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

25% 0.57 0.88 0.83 0.52 0.5 0.15 0.0 0.035 

50% 1.0 0.88 1.0 0.52 0.5 0.26 1.0 0.1 

75% 1.0 1.0 1.0 1.0 1.0 0.48 1.0 0.33 

Max 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Figure 7. Histograms of normalized values 

 

 

 

 
Figure 8. The heatmap of Pearson's correlation coefficients 

calculated for studied variables 

 

 

instance, the R coefficient values of α addressing the 

correlation between the Uspacing and Lspacing were 0.94 and 

0.92, respectively. In order to overcome these 

inconveniences, further investigations incorporating 

numerical finite element simulations are suggested. 

 

5. 1. Artificial Neural Networks (ANNs)          During 

the model training procedure, the score of each fold was 

specified as model loss and MSE criteria. The score-per-

fold values are given in Table 3. The average scores for 

all folds were 0.035 and 0.003 for MSE and loss criterion, 

respectively. Diagram histories of the trained model 

accuracy and loss criterion are illustrated in Figure 9. 

Considering the model loss diagrams in train and test 

steps, it is apparent that the model yields ultimate 

convergence amid the implementation of the assumed 

network setup. The overall values of MAE and MSE were 

0.026 and 0.001, respectively. 

For the sake of comparison, a simple linear regression 

analysis was utilized to assess the correlation between  

 

TABLE 3. Score-per-fold values for ANN model 

Fold No. Loss MSE 

1 0.0028 0.0354 

2 0.0024 0.0334 

3 0.0026 0.0352 

4 0.0024 0.0345 

5 0.0026 0.0353 

 

 

predicted and observed values. The plot of linear 

regression analysis for the ANN predictory model is 

illustrated in Figure 10a. In addition, the predicted values 

for validation data are compared with the observed data 

in Figure 10b. 

 

5. 2. Support Vector Regression (SVR)          A similar 

validation configuration was evaluated for the SVR 

model. Since the specification of hyperplane geometry 

(tuning) conveys solely in one iteration, this process acts 

independently from iteration-based error analysis. 

Hence, unlike the MLP-ANN model, only the model's 

overall performance will be assessed in terms of MAE 

and MSE. The linear regression plot for SVR model is 

shown in Figure 11a. Additionally, Figure 11b illustrates 

a comparative analysis between observed and predicted 

values of maximum surface settlement. The MAE and 

MSE values for the trained model were 0.063 and 0.006, 

respectively. As represented in Figure 11b, the majority 

of validation data were inside the epsilon tube. 

 

5. 3. Comparative Analysis for Trained Models        
The calculated NSE, KGE and, MedAE values for 

developed MLP-ANN and SVR models are summarized 

in Table 4. Respectively, the closer the NSE, KGE, and 

MedAE values are to 1, 1, and, 0, the more efficient the 

model performance. Therefore, according to Table 4, the 

MLP-ANN model is relatively more efficient than the 

SVR model in terms of NSE, KGE, and, MedAE. The 

aftermath of the comparative analysis indicates the 

superiority of the MLP-ANN model compared to the 

SVR model. The results of comparative analysis for both 

models were in alignment with the results of similar 

studies in terms of performance (28, 29, 31). 

 

 
TABLE 4. Model performance evaluation for ANN and SVR 

Criterion 
Value 

MLP-ANN SVR 

NSE 0.977 0.92 

KGE 0.971 0.89 

MedAE 0.0177 0.067 
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Figure 9. ANN-model performance evaluation diagrams: (a) Model training accuracy in terms of MAE and MSE; (b) Model loss 

for train/test data 
 

 

 
Figure 10. (a) Linear regression analysis and (b) comparison between MPL-ANN predicted and observed values for maximum 

surface settlement 
 

 

 
Figure 11. (a) Linear regression analysis and (b) comparison between MPL-ANN predicted and observed values for maximum 

surface settlement 

 

 

6. CONCLUSIONS 
 
Since the drastic tunneling-induced ground surface 

settlements can inevitably lead to catastrophic damage to 

adjacent structures, appropriately constraining the 

ground deformations to a tolerable extent is vital. For this 

purpose, a proper estimation of the settlement trough is 

required. The literature review of this study suggested 

that the empirical methods of settlement estimation fail 

to perform accurately and provide reliable outputs. Since 

the influence of UAM characteristics in developing the 

predictory models was not evaluated, a novel approach 

was suggested to predict the maximum ground surface 

settlement caused by tunneling, incorporating the 

characteristics of the umbrella arch method. In this 

context, the laboratory data were adopted from the City 
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University of London geotechnical centrifuge and 

utilized to train and validate MLP-ANN and SVR 

predictory models. The mechanical properties of the soil 

model were disregarded to provide a non-site-specific 

behavior to the trained models. The salient findings of 

this study are as follows. 

The parametric sensitivity analysis indicates that the 

Ps, C/D ratio, pipe flexural rigidity (pipe EI), spacing of 

crown forepoles (Uspacing), and symmetric crown 

coverage angle (α) have the most significant correlation 

with the maximum ground surface settlement while the 

spacing of shoulder forepoles (Lspacing) and EL/D ratio 

have a relatively low correlation. Among all the input 

variables, solely the C/D ratio has a direct relationship 

with the Smax. 

Both trained models yield promising results. 

Nevertheless, a negligible derivation was observed 

between the predicted values of the two models. The 

MLP-ANN model performed relatively more accurately 

than the SVR model. The aftermath of error analysis in 

terms of Nash-Sutcliffe efficiency, Kling-Gupta 

efficiency, and median-absolute-error was analogous for 

both models. The NSE, KGE, and MedAE indicate the 

relative superiority of MLP-ANN over SVR. 

The yielded R2 value of the regression analysis for 

SVR and MLP-ANN were 0.92 and 0.98, respectively. 

Thus, the MLP-ANN can be regarded as one of the 

adequate approaches for tunneling-induced settlement 

predictions. 

With respect to the considerable correlation between 

UAM characteristics and the Smax, the suggested 

approach can be effectively used for estimating ground 

surface displacements where contextual mechanical 

properties are absent. 

Although a significant correlation was observed 

between the implemented UAM characteristics and the 

corresponding maximum surface settlement, further 

researches comprising the supplementary numerical 

analysis are recommended on this subject, in order to 

cope with the limitations associated with the test 

configuration of this study. 
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Persian Abstract 

 چکیده 
  ی از تونل ساز ی ناش  نینشست زم  ی نیب ش یپ ی مقاله به بررس ن یاست. ا ی ضرور یامر ی رساختیو ز  یساختار دیشد یها بیاز آس  یری جلوگ یبرا نی نشست زم  قیدق ی نیب شیپ

و  دیجد ی راستا، توسعه روش ها  نی. در اندمحور هست تیو موقع  قیدق ر یاغلب غ نی نشست زم ین یب شیپ  یتجرب یپردازد. روش ها ی م نی ماش یریادگ ی یبا استفاده از مدل ها

 ستم یس یقبل از اجرا هیاول یداریپا جادیرا به منظور ا  نیزم یشکل ها رییتغ  یقوس چتر یاست. روش نگهدار یاتیفاجعه بار ح ی ها بیاز آس یریجلوگ یبرا ینیب شیپ قیدق

و بدون در نظر گرفتن    ی قوس چتر  ستمیس   یپارامترها  قیصرفا از طر   نی نشست زم  ین یب  شیپ   یبرا  ن یماش  ی ریادگی  یمقاله مدل ها  ن یکند. در ا  یمحدود م  یاصل  ینگهدار

( استفاده شده است.  SVR) بانیبردار پشت ونی( و رگرسMLP-ANN) هیپرسپترون چند لا ی مصنوع یعصب یمنظور از شبکه ها  نیخاک توسعه داده شده اند. بد یها یژگیو

دارد.    یبرتر  ۰.۹2و    ۰.۹۸  بیبه ترت   2Rبا    SVRبر    یاز مدل مبتن   ANN-MLPبر    ی کند. مدل مبتن  یعمل م   یتجرب  یبهتر از روش ها  نیاش م  یریادگیدهند که    ینشان م  جینتا

در دسترس نبودن مشخصات   طیتواند در شرا  یم  یشنهادیمشاهده شد. روش پ  نیو نشست حاصله در سطح زم   یقوس چتر  ستم یس   یطراح  ن یب  یقو  یهمبستگ  نیهمچن

کارآمد و    ن یگزی جا  کی، به عنوان  MLP-ANN تمیالگور  ژهیبه و  ن،ی ماش  یری ادگیمطالعه از    نی ا  ،یطور کل. به  بینی نمایدپیش  ینشست را به طور موثر  زان یم  ط یمح  ی کیانمک

 کند. یم تی حما یقوس چتر ی طراح یپارامترهاطریق از  یاز تونل ساز یناش  نینشست زم ینیب شی پ ی برا یتجرب یروش ها یقابل اعتماد برا
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