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A B S T R A C T  
 

 

To enhance the performance of meta-heuristic algorithms, the development of new operators and the 
efficient combination of various optimization techniques are valuable strategies for discovering global 

optimal solutions. In this research endeavor, we introduce a novel optimization algorithm called PGS 

(Particle Swarm Optimization-GA-Sliding Surface). PGS combines the strengths of particle swarm 
optimization (PSO), genetic algorithm (GA), and sliding surface (SS) to tackle both mathematical test 

functions and real-world optimization problems. To achieve this, we adaptively tune the weighting 

function and learning coefficients of the PSO algorithm using the sliding mode control's SS relation. The 
global best particle discovered through the PSO method serves as one of the parents in the GA's crossover 

operation. This new crossover operator is then probabilistically integrated with an improved particle 

swarm optimization algorithm, enhancing convergence speed and facilitating escape from local optima. 
We evaluate the proposed algorithm's performance on both uni-modal and multi-modal mathematical 

test functions, considering un-rotated and rotated cases, thereby testing its effectiveness and efficiency 

against other prominent optimization techniques. Furthermore, we successfully implement the PGS 
algorithm in optimizing the state feedback controller for a nonlinear quadcopter system and determining 

the cross-section for an inelastic compression member. 
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NOMENCLATURE 

𝑋⃗i Randomly selected particle 𝐴𝑔 Cross-section area 

𝑋⃗𝑖
′ Off-spring 𝑏𝑓 Flange width 

𝑋⃗gbest Global best particle 𝑡𝑓 Flange thickness 

𝐹 Fitness function 𝑑 Section depth 

𝑋⃗𝑔𝑤𝑜𝑟𝑠𝑡 Global worst particle   𝑡𝑤 Web thickness 

max𝑡 Maximum number of iterations 𝐾𝑦 Effective length factor 

𝐸 Error signal 𝐿𝑦 Laterally unsupported length 

𝐸̇ Derivative of error signal 𝐹𝑦 Specified minimum yield stress 

𝑁 Population size 𝑟𝑦 Gyration radius 

𝑏 Adaptive parameter 𝐹𝑒𝑦 Euler stress 

𝑇𝑟 Trace of matrix 𝐼𝑦 Moment of inertia 

J1
2
 Bessel function type I Greek Symbols  

𝑒𝑟𝑓 Error function Λ Diagonal elements of the slope matrix 

𝜑 Golden ratio   Lattice relaxation time 

ѡ Inertia weight 𝜁 Maximum number of iterations 

ѡ𝑚𝑖𝑛 Minimum inertia weight 𝛺𝑖 Angular velocities 

ѡ𝑚𝑎𝑥 Maximum inertia weight 𝑀⃗⃗⃗ Vector of external torques 

𝐶1, 𝐶2 Acceleration coefficients 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 
Angular velocities of the quadcopter 

around 

𝑝𝑠𝑑 Popular Standard Deviation  𝑇𝑖 Motor thrust  torques 

𝐷 Dimension size 𝜏𝑖 Blade torques 

𝑐 Thrust parameter 𝛾 Density of steel 

𝑑 Drag parameter 𝜆𝑦 Slenderness ratio 

K Design vector 𝜆𝑒 Limiting value of slenderness ratio 

 
 
1. INTRODUCTION 
 

In the recent decades, there is a growing interest in the 

design of optimization algorithms and their applications 

in the fields of sciences and technologies (1-4). In this 

way, many optimization techniques have been presented 

to solve various real-world problems by researchers in 

the recent years (5-7). Among them, evolutionary 

algorithms have attracted more considerations for 

linear/non-linear, convex/non-convex and 

constrained/non-constrained problems (8-10). In which, 

the Genetic Algorithm (GA) (11) and Particle Swarm 

Optimization (PSO) (12) as the most prominent and well-

known approaches have been broadly implemented in the 

scientific research studies (13-15). 

The genetic algorithm as a metaheuristic method was 

initially inspired by the process of natural selection based 

upon the concept of Darwin’s evolution theory which 

was proposed by Holland (11). The success of this 

algorithm has been demonstrated by numerous studies in 

the literature. For instance, Jozaghi et al. (16) suggested 

optimum design of alumina-forming austenitic stainless-

steel composition through thermodynamic stability and 

oxidation model considerations based on the genetic 

algorithm to have the minimum number of alloying 

additions. Rath et al. (17) designed a hybrid navigational 

controller by the genetic algorithm and neural networks 

for path planning of a humanoid robot in given cluttered 

environments. At first, a genetic algorithm controller was 

used to generate an initial turning angle for a robot, and 

then it was hybridized with a neural network controller to 

create the final turning angle (17). In another study, 

optimum design of a four-layer laminated composite 

plate with quasi-square cut-out was presented for 

maximization of the thermal buckling load by Mahdavi 

et al. (18). They used the genetic optimization algorithm 

to achieve optimum variables such as cut-out orientation, 

fiber angle, bluntness of cut-out corners, cut-out size, 

plate size ratio and stacking sequence. Further, Ehsani 

and Rezaeepazhand (19) studied stacking sequence 

optimization of laminated composite grid plates for 

maximization of the axial buckling load by employing 

the genetic algorithm. In this regard, the calculated elastic 

buckling load was considered as a fitness function using 

the first-order shear deformation and classical laminated 

plate theories while the pattern gird and orientation of the 

layer were taken as the design variables. Le-Manh and 

Lee (20)  proposed optimal fiber orientations of imperfect 

laminated composite plates based on the genetic 

algorithm for maximization of the strength by 

investigating the bending, buckling and post-buckling. 

Moreover, the optimum design of the fiber orientation 

angle and number of layers was investigated for a 

laminated composite submerged cylindrical pressure hull 

through the genetic algorithm by Imran et al. (21). Wei et 

al. (22) developed the genetic algorithm coupled with the 

finite element method for optimally design of 

symmetrical laminated composite cylindrical shells 

under hydrostatic pressures. They solved a stacking 

sequence optimization problem for searching the best 
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laminations with the maximum buckling pressure. 

Moreover, the genetic algorithm was employed to find 

the ideal proportional-integral-derivative gains for speed 

control of a brushless DC motor by Ibrahim et al. (23). 

Furthermore, Sun et al. (24) suggested an optimum 

automatic design method of convolutional neural 

networks based on the genetic algorithm to impressively 

address the image classification tasks. 

Besides, the particle swarm optimization as another 

population-based algorithm was originally intended to 

simulate the behaviors of bird flocks and fish schools by 

Kennedy and Russell (12). After that, this scheme has 

been widely utilized in different research works to name 

but, Zamani et al. (25) used it to design a fractional-order 

proportional-integral-derivative controller considering 

five parameters and a cost function. Ezzeddine (26) 

suggested an improved scheme for reactive power 

analysis and frequency control of a self-excited wind 

induction generator by employing the particle swarm 

optimization algorithm. Hamed et al. (27) optimized 

critical nonuniform axial compressive and shear loads of 

sandwich functionally graded beams with the porous core 

using a particle swarm optimization scheme. They 

applied the parabolic higher-order shear deformation 

theory and generalized variational principle to determine 

the kinematic displacement field and equilibrium 

governing equations, respectively. Furthermore, an 

effective hybrid optimization procedure based on an 

improved particle swarm optimization algorithm was 

proposed by Keshtegar et al. (28) to maximize the 

buckling load of laminated composite plates subjected to 

uniaxial and biaxial compressive loads. Further, for 

buckling maximization design of composite panels, 

Huang et al. (29) applied a multimodal particle swarm 

optimization approach. The solutions of structural 

optimization problems with complex design spaces via 

directly performing the feasibility of constraints were 

found utilizing the particle swarm optimization method 

by Jansen and Perez (30). In another study, Nguyen et al. 

(31) ameliorated the performance of an adaptive neuro-

fuzzy inference system for calculating and optimizing the 

buckling capacity of circular opening steel beams. They 

investigated the most effective parameters of the particle 

swarm optimization procedure, namely the population 

size, the number of iterations, acceleration coefficients, 

initial weight and velocity limits, on the results. To 

achieve more reasonable pricing for designing cold-

formed steels, Ye et al. (32) used the particle swarm 

optimization scheme by considering a crucial factor as 

finding a solution in the constrains of the fabrication and 

construction industries. Besides, to forecast the freezing 

possibility of wind turbine blades, Xu et al. (33) 

considered a particle swarm optimization scheme in the 

kernel function for providing the optimal parameters of a 

support vector machine. 

As it was mentioned, falling in local optima and low 

convergence speed are two main issues related to the 

evolutionary algorithms that can be resolved by 

combining two or more methods of them (34). In this 

regard, the following hybridizations could be noted:  

firefly algorithm, genetic algorithm, ant colony 

optimization algorithm (35), particle swarm optimization 

and cultural algorithm (36), particle swarm optimization 

and ant colony (37), genetic algorithm and particle 

swarm optimization (38), competitive swarm 

optimization and imperialist competitive algorithm (39), 

grey wolf optimization algorithm, particle swarm 

optimization (40), particle swarm optimization and 

simulated annealing method (41), particle swarm 

optimization and whale optimization algorithm (42) 

whale optimization approach and genetic algorithm (43), 

genetic algorithm and teaching-learning-based 

optimization (44), etc. 

As the contribution of this paper, a new combination 

of the particle swarm optimization with the genetic 

algorithm as well as the sliding surfaces is suggested. In 

fact, the adjustable parameters of the PSO algorithm are 

tuned by the SS concepts, while the crossover operator of 

the GA is improved by employing the best solution of the 

population. Hybridization of these strategies, introduced 

as the PGS algorithm, is utilized to find the optimum 

solutions of the mathematical benchmark functions. 

Finally, the performance of the PGS optimization 

approach is challenged to solve two practical problems, 

i.e., tuning the control gains of a nonlinear 4DOF 

quadcopter system and finding the cross-section sizes of 

an inelastic compression member. 

The rest of this paper is organized as follows. Section 

2 represents the preliminary tools to design the 

considered methodology including the genetic algorithm, 

particle swarm optimization and sliding surface relations. 

The proposed PGS optimization algorithm is discussed in 

section 3 in details. Analysis of the algorithm behavior 

on the benchmark functions is presented in section 4. The 

performance of the PGS on the real-world design 

problems is challenged in sections 5 and 6. Finally, 

section 7 briefly concludes the paper. 

 

 

2. PRELIMINARY TOOLS 
 

Recently, genetic algorithms and particle swarm 

optimization technique have attracted attentions of 

researches in the science and engineering fields. The GA 

has been accepted due to its intuitiveness and ease of 

implementation, while the mechanism of the PSO is 

inspired by the swarming behavior of biological systems. 

Because the two techniques are presumed to solve same 

problems but utilize different polices, it would be 

appealing to compose their formulations. 
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2. 1. Genetic Algorithm             The genetic algorithm, 

as a population-based optimization method, mainly 

utilizes three operators i.e., reproduction, mutation, and 

crossover to enhance the situations of the members (45). 

The reproduction operator employs the best members to 

produce the new child. The mutation operator suddenly 

changes the situations of some randomly selected parents 

to escape from local minima. Finally, the crossover 

operator picks up the parents from the mating pool and 

combines them to present the new off-springs. The 

traditional crossover operator is commonly formulized as 

follows (45). 

(1) 
𝑋⃗𝑖(𝑡 + 1)  =  𝑋⃗𝑖(𝑡) + 𝜅1(𝑋⃗𝑖(𝑡)   ̶  𝑋⃗𝑗(𝑡)) 

𝑋⃗𝑗(𝑡 + 1)  =  𝑋⃗𝑗(𝑡) + 𝜅2(𝑋⃗𝑖(𝑡)   ̶  𝑋⃗𝑗(𝑡)) 

where, 𝑡  is the iteration number. 𝑋⃗𝑖  and 𝑋⃗𝑗  represent 

selected members for changing their positions. 𝜅1 and 𝜅2 

denote vectors having random numbers belong to interval 

[0,1]. 

 

2. 2. Particle Swarm Optimization          The particle 

swarm optimization modifies position 𝑋⃗i by applying its 

velocity 𝑉⃗⃗i via the following relations (46). 

(2 ) 

𝑉⃗⃗𝑖(t + 1) = ѡ𝑉⃗⃗𝑖(t) + C1𝑟1(𝑋⃗𝑝𝑏𝑒𝑠𝑡𝑖   ̶ 𝑋⃗𝑖(t)) +

C2𝑟2(𝑋⃗𝑔𝑏𝑒𝑠𝑡   ̶ 𝑋⃗𝑖(t))  

𝑋⃗𝑖(t + 1) = 𝑋⃗𝑖(t) + 𝑉⃗⃗𝑖(t + 1)   

where, ѡ represents the inertia weight parameter that 

identifies the effect of the previous velocity of the particle 

on its current velocity. C1 and C2 denote the acceleration 

coefficients. 𝑟1 and 𝑟2 are vectors having random 

numbers belong to [0,1]. 𝑋⃗𝑔𝑏𝑒𝑠𝑡  is the best solution in the 

whole swarm. Finally, 𝑋⃗𝑝𝑏𝑒𝑠𝑡𝑖  presents the best position 

found by particle 𝑖 (46). 

 

2. 3. Sliding Surface Matrix               The sliding mode 

control approach is a robust and effective methodology 

to handle uncertainties and disturbances in the nonlinear 

systems (47-50). Consider a nonlinear dynamical system 

having the following state-space equations. 

(3 ) 𝑋̇ = 𝑓 (𝑋, 𝑈, 𝑡)  

where, 𝑋 ∈ Rn is the state vector, 𝑈 ∈ Rm denotes the 

control effort vector, and 𝑡 shows time.  

The sliding surface matrix can be written as follows. 

(4 ) S(𝐸, t) = (
𝑑

𝑑𝑡
𝐼𝑛 + Λ)

(𝑛−1)
𝐸 = 0  

where, 𝐼𝑛 denotes the identity matrix, and sloppe matrix 

Λ represents a diagonal positive definite one illustrated as 

follows: 

(5 ) Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑛),     𝜆𝑖 > 0,   𝑖 = 1, 2, 3,… , 𝑛  

For a two dimensional (𝑛 = 2) nonlinear system, the 

sliding surface is re-written as follows. 

(6 ) 𝑆 = 𝐸̇ + Λ𝐸 

As it is clear from this equation, each element of the 

sliding surface matrix is the weighting summation of the 

error and its drivative. 

 

 

3. PROPOSED HYBRID ALGORITHM 
 

In this section, the novel hybrid optimization algorithm, 

namely PGS, as the combination of the PSO, GA and SS 

is described. In fact, the particle swarm optimization is 

considered as the basic approach, and a crossover 

operator as well as a sliding surface would be 

implemented to enhance its performance. 

In this way, the regarded crossover operator utilizes a 

randomly selected particle (𝑋⃗i(t)) as well as the global 

best particle (𝑋⃗gbest(𝑡)) as two parents to produce an off-

spring 𝑋⃗𝑖
′(t) according to the following equation. 

(7 ) 𝑋⃗𝑖
′(𝑡) = (1 + ѵ⃗⃗1)𝑋⃗𝑔𝑏𝑒𝑠𝑡– ѵ⃗⃗2𝑋⃗𝑖(t)  

where, ѵ⃗⃗1 and ѵ⃗⃗2 are two vectors having random numbers 

belong to interval [0,1]. The superior position between 

𝑋⃗𝑖(t) and 𝑋⃗𝑖
′(𝑡) should be transferred to the new 

population as 𝑋⃗i(t + 1). 
Moreover, the defined concept for the sliding surface 

is implemented to introduce new formulae for the inertia 

weight and acceleration coefficients. To this end, the 

error signal and its derivative are calculated via the 

following relations. 

(8 ) 

𝐸 = 𝑚𝑒𝑎𝑛 |𝐹 (𝑋⃗𝑖(t))|   

𝐸̇ = 𝑚𝑒𝑎𝑛 |
|𝐹(𝑋⃗⃗𝑖(t))|−|𝐹(𝑋⃗⃗𝑖(t−1))|

𝑡
| ,         𝑖 =

1, 2, 3,… , 𝑁    

where, 𝑁 is the population size, and 𝐹 represents the 

fitness function. Moreover, the diagonal elements of the 

slope matrix are defined as follows. 

(9 ) λ =
𝑡

max 𝑡
(|𝑋⃗𝑔𝑏𝑒𝑠𝑡 − 𝑋⃗𝑔𝑤𝑜𝑟𝑠𝑡|)  

where, max 𝑡 denotes the maximum number of iterations, 

and 𝑋⃗𝑔𝑤𝑜𝑟𝑠𝑡 represents the worst solution in the whole 

swarm. Now, the following strategy is introduced for 

calculation of adaptive parameter 𝑏 to find the inertia 

weight and the acceleration coefficients. 

(a) If 𝑇𝑟(𝑆) < 1, then the adaptive parameter is defined 

as follows. 
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(10 ) 𝑏 = −J1
2

(𝑇𝑟(𝑆)) + 1   

where, 𝑇𝑟(𝑆) signifies trace of matrix 𝑆, and J1
2

 

represents Bessel function type I with order 0.5 

(51). 

(b) If condition (a) is not satisfied and 𝑇𝑟(S−1) < 1, 

then the adaptive parameter is calculated as follows. 

(11 ) 𝑏 = 𝑒𝑟𝑓(𝑇𝑟(S−1))    

where, 𝑒𝑟𝑓 is the error function. 

(c) If conditions (a) and (b) are not satisfied, then the 

adaptive parameter would be computed via the 

following equation. 

(12 ) 𝑏 = 𝑒𝑟𝑓(𝑡𝑎𝑛−1(𝑇𝑟(S−1)) − 𝜑 + 1)  

(d) where, 𝜑 represents the golden ratio. 

(e) When the adaptive parameter is identified, the 

inertia weight and the acceleration coefficients 

would be determined by employing the following 

relations. 

(13 ) 

ѡ = ѡ𝑚𝑎𝑥 − (ѡ𝑚𝑎𝑥 −ѡ𝑚𝑖𝑛)𝑏  

𝐶1 = 𝐶1𝑖 − (𝐶1𝑖 − 𝐶1𝑓)𝑏   

𝐶2 = 𝐶2i − (𝐶2i − 𝐶2f)𝑏   

 
 

 
Figure 1. Flowchart for calculation of the parameters related 

to the PGS algorithm 

where, ѡ𝑚𝑖𝑛 and ѡ𝑚𝑎𝑥  respectively illustrate the 

minimum and maximum values for the inertia weight, 𝐶1𝑖 
and 𝐶2𝑖  correspondingly denote the initial values for the 

first and second acceleration coefficients, while 𝐶1𝑓 and 

𝐶2𝑓 represent their final values. Figure 1 illustrates the 

flowchart for computation of the adaptive parameter, 

inertia weight and acceleration coefficients. Besides, 

Figure 2 depicts the proposed hybrid optimization 

algorithm having the modified crossover operator and 

adaptive parameters. 

 

 

4. RESULTS ON MATHEMATICAL TEST FUNCTIONS 
 

At first, the searching manners of the PGS algorithm are 

investigated on Sphere and Griewank test functions. 

Figures 3(a), 3(b), 4(a) and 4(b) respectively depict 

changings of the adaptive parameters over iterations for 

the two test functions. As it is clear from these figures, 

the adaptive parameter starts from zero and reaches to 

0.85 at about iteration 70 and converges to 1 duuring the 

following iterations. Figures 3(c), 3(d), 4(c) and 4(d) 

represent changings the inertia weight over iterations for 

these test functions. It can be seen from these figures that 

the inertia weight starts from ѡ𝑚𝑎𝑥  and converges to 

 

 

 
Figure 2. Flowchart of the PGS algorithm 
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ѡ𝑚𝑖𝑛  respectively set at 0.65 and 0.1. These values for 

the inertia weight guide the algorithm from a global 

searching to a local one. Moreover, Figures 3(e), 3(f), 

4(e) and 4(f) display the manner of the acceleration 

coefficients for the considered test functions based on the 

introduced relations. These diagrams show that the value 

of 𝐶1 is decreasing while the value of 𝐶2 is increasing 

versus the iteration. This means that the effect of 𝐶1 is 

more than that of 𝐶2 at the beginning of the search 

process. This helps to have the local searching at the first 

iterations, and the particles utilize the information found 

by 𝑋⃗𝑝𝑏𝑒𝑠𝑡𝑖  instead of that for 𝑋⃗𝑔𝑏𝑒𝑠𝑡 . However, when the 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Searching behavior of the PGS algorithm on 

Sphere function. Mean value of (a) adaptive parameter 

during 70 iterations, (b) adaptive parameter during 1000 

iterations, (c) inertia weight during 70 iterations, (d) inertia 

weight during 1000 iterations, (e) acceleration coefficients 

during 70 iterations and (f) acceleration coefficients during 

1000 iterations 

 

 

process is continued, 𝑋⃗𝑔𝑏𝑒𝑠𝑡  reaches to the positions near 

to the global optimum point and could guide the swarm 

to this situation. Hence, the value of 𝐶2 is more than that 

for 𝐶1 at the final iterations. It is noticeable that 
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acceleration coefficient 𝐶1 is varied between 𝐶1𝑖 and 𝐶1𝑓 , 

respectively regarded as 2.1 and 0.4; while acceleration 

coefficient 𝐶2 is rising from 𝐶2𝑖 to 𝐶2𝑓 correspondingly 

considered as 0.4 and 2.1. 

Furthermore, one of the most important abilities of an 

optimization algorithm is preservation of the population 

diversity to avoid falling into the local optimum trap. 

This capability could be calculated using the Popular 

Standard Deviation (𝑝𝑠𝑑) criteria mentioned as the 

following relation (52). 

(14 ) 𝑝𝑠𝑑 = √[∑ ∑ (𝑥𝑖
𝑗
− 𝑥̅𝑗)

2
𝐷
𝑗=1

𝑁
𝑖=1 ] (𝑁 − 1)⁄       

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Searching behavior of the PGS algorithm on 

Griewank function. Mean value of (a) adaptive parameter 

during 70 iterations, (b) adaptive parameter during 1000 

iterations, (c) inertia weight during 70 iterations, (d) inertia 

weight during 1000 iterations, (e) acceleration coefficients 

during 70 iterations and (f) acceleration coefficients during 

1000 iterations 
 

 

where, 𝑁 , 𝐷  and 𝑥̅  respectively denote the population 

size, dimension number and mean position of the whole 

swarm. Figure 5(a) illustrates the mean values of the 𝑝𝑠𝑑 

parameter found for the Griewank function by the 

introduced method and compares it with that of the 

Standard PSO (S-PSO) algorithm. It is observable that 
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(a) 

 
(b) 

Figure 5. Performance of the PGS algorithm on Griewank 

function and its comparison with the standard PSO during 

100 iterations, (a) popular standard deviation (b) best cost 

 

 

the PGS algorithm is able to hold the 𝑝𝑠𝑑 parameter at a 

higher level in comparison with the S-PSO approach. It 

is noticeable that the high values for the 𝑝𝑠𝑑 may be due 

to the weakness of an algorithm to converge to the global 

optimum solution. Hence, it is suggested that the fitness 

value of the objective function is also investigated with 

the 𝑝𝑠𝑑 parameter. Therefore, Figure 5(b) is presented to 

depict the best cost values of the Griewank test function 

found by the PGS and S-PSO algorithms. When both 

diagrams 5(a) and 5(b) are carefully examined, the 

effectiveness of the introduced strategy in preserving 

population diversity, escaping fromT local optimum 

points, and reaching the global minimum solution is 

clearly evident. 

Moreover, in order to challenge the performance of 

the PGS algorithm on the solution accuracy and 

convergence speed, nine well-known un-rotated test 

functions are utilized. Table 1 lists the formulations of 

these functions as well as their searching domains, 

threshold values and global optimum solutions. The 

obtained results by the introduced scheme are compared 

with those of twelve prominent optimization algorithms, 

i.e. Genetic Algorithm with Traditional Crossover (GA-

TC) (53), Genetic Algorithm with Multiple Crossover 

(GA-MC) (53), Standard Particle Swarm Optimization 

(S-PSO), Fuzzy combination of Genetic Algorithm and 

Particle Swarm Optimization (F-GA&PSO) (54), 

Modified Particle Swarm Optimizer (MPSO) (55), Local-

version Particle Swarm Optimization (LPSO) (56), Von 

Neumann Particle Swarm Optimization (VPSO) (56), 

Fully Informed Particle Swarm (FIPS) algorithm (57), 

self-organizing Hierarchical Particle Swarm Optimizer 

with Time-Varying Acceleration Coefficients (HPSO-

TVAC) (58), Dynamic Multi-Swarm Particle Swarm 

Optimizer (DMS-PSO) (59), Comprehensive Learning 

Particle Swarm Optimizer (CLPSO) (60) and Adaptive 

Particle Swarm Optimization (APSO) (61). For this part 

of the simulations, the population size is set at 𝑁 = 20, 

the maximum number of iterations is regarded as 𝜁 =
10000, and the dimension size is considered as 𝐷 = 30. 

The mean values of thirty independent runs are reported 

as the final optimum solutions. The settings of the 

comparative algorithms are set at according to heir 

literature ((53) throgh (61)) and represented in Table 2. 

The results for the nine un-rotated test functions obtained 

by employing the proposed PGS algorithm and the other 

twelve optimization approaches are reported in Tables 3  

and 4. In fact, the mean values of thirty independent runs 
 

 

TABLE 1. Un-rotated test functions for challenging the optimization algorithms 
Search space Formulation Name (Comment) 

[−100,100] 𝑓1(𝑥) = ∑ 𝑥𝑖
2𝐷

𝑖=1   Sphere (Uni-modal) 
[−10,10] 𝑓2(𝑥) = ∑ |𝑥𝑖|

𝐷
𝑖=1 +∏ |𝑥𝑖|

𝐷
𝑖=1   Schwefel’s P2.2  (Uni-modal) 

[−100,100] 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )

2𝐷
𝑖=1   Schwefel’s P1.2  (Uni-modal) 

[−10,10] 𝑓4(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]𝐷−1
𝑖=1   Rosenbrock (Uni-modal) 

[−100,100] 𝑓5(𝑥) = ∑ (⌊𝑥𝑖 + 0.5⌋)
2𝐷

𝑖=1   Step  (Uni-modal) 
[−1.28,1.28] 𝑓6(𝑥) = ∑ 𝑖𝑥𝑖

4𝐷
𝑖=1 + random[0,1]  Quadric Noise  (Uni-modal) 

[−32,32] 𝑓7(𝑥) = −20 exp(−0.2√
1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 ) + 20  − exp (

1

𝐷
∑ 𝑐𝑜𝑠𝐷
𝑖=1 (2𝜋𝑥𝑖)) + 𝑒  Ackley  (Multi -modal) 

[−600,600] 𝑓8(𝑥) =
1

4000
∑ 𝑥𝑖

2 −∏ cos(
𝑥𝑖

√𝑖
) + 1𝐷

𝑖=1
𝐷
𝑖=1   Griewank (Multi -modal) 

[−50,50] 𝑓9(𝑥) =
𝜋

𝐷
{10𝑠𝑖𝑛2(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)

2𝐷−1
𝑖=1 [1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)]}  Generalized Penalized (Multi -modal) 
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TABLE 2. Settings of the algorithms applied for the performance comparison 

Parameters Algorithm 

𝑃𝑟 = 0.2, 𝑃𝑡𝑐 = 0.4, 𝑃𝑚 = 0.1, 𝑠 = 0.05, tournament method for selection GA-TC 

𝑃𝑟 = 0.2, 𝑃𝑚𝑐 = 0.4, 𝑃𝑚 = 0.1, 𝑠 = 0.05, tournament method for selection GA-MC 

ѡ = 0.9, 𝐶1 = 𝐶2 = 2.0 S-PSO 

ѡ1 = 0.9, ѡ2 = 0.4, 𝐶1𝑖 = 𝐶2𝑓 = 2.5, 𝐶1𝑓 = 𝐶2𝑖 = 0.5, ζ𝑚 = 0.001, ξ𝑡𝑐 = ξ𝑚𝑐 = 0.2 F-GA&PSO 

ѡ:0.9 − 0.4, 𝐶1 = 𝐶2 = 2.0 PSOM 

ѡ:0.9 − 0.4, 𝐶1 = 𝐶2 = 2.0 LPSO 

ѡ:0.9 − 0.4, 𝐶1 = 𝐶2 = 2.0 VPSO 

𝑥 = 0.729,∑ 𝐶𝑖 = 4.1  FIPS 

ѡ:0.9 − 0.4, 𝐶1: 2.5 − 0.5, 𝐶2: 0.5 − 2.5 HPSO-TVAS 

ѡ: 0.9 − 0.2, 𝐶1 = 𝐶2 = 2.0,𝑚 = 3,𝑅 = 5 DMS-PSO 

ѡ:0.9 − 0.4, 𝐶 = 1.49445,𝑚 = 7 CLPSO 

ѡ: adaptive relation, 𝐶1 and 𝐶2: fuzzy systems APSO 

 

 

TABLE 3. Mean values of the best solutions found in 30 independent runs by the PGS and other algorithms for un-rotated test functions 

Algorithm 𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒇𝟔 𝒇𝟕 𝒇𝟖 𝒇𝟗 

GA-TC 3.28×10-14 1.83×10-6 774 133 210 5.10×10-2 15.7 7.16×10-1 13.63 

GA-MC 2.56×10-18 8.16 314 82.5 34 8.64×10-2 18 4.86×10-1 3.59×108 

S-PSO 2.25×10-98 3.15×10-26 6.73×10-5 20.4 0.10 1.06 2.81×10-1 2.15×10-2 5.71×107 

FGAPSO 1.58×10-119 9.11×10-25 2.14×10-11 5.34×10-1 0 3.38×10-3 4.30×10-8 2.03×10-2 3.46×10-3 

PSOM 3.16×10-52 2.04×10-29 1.11×10-1 26.93 0 8.29×10-3 1.15×10-14 2.79×10-3 2.28×10-32 

LPSO 4.77×10-29 2.03×10-20 18.60 21.86 0 1.49×10-2 1.85×10-14 1.10×10-2 2.18×10-30 

VPSO 5.11×10-38 6.29×10-27 1.44 37.65 0 1.08×10-2 1.40×10-14 1.31×10-2 3.46×10-3 

FIPS 3.21×10-30 1.32×10-17 0.77 22.54 0 2.55×10-3 7.69×10-15 9.04×10-4 1.22×10-31 

HPSO 3.38×10-41 6.90×10-23 2.89×10-7 13 0 5.54×10-2 2.06×10-10 1.07×10-2 7.07×10-30 

DMS-PSO 3.85×10-54 2.61×10-29 47.5 32.3 0 1.10×10-2 8.52×10-15 1.31×10-2 2.05×10-32 

CLPSO 1.89×10-19 1.01×10-13 395 11 0 3.92×10-3 2.01×10-12 6.45×10-13 1.59×10-21 

APSO 1.45×10-150 5.15×10-84 1.00×10-10 2.84 0 4.66×10-3 1.11×10-14 1.67×10-2 3.76×10-31 

PGS 0 0 1.35×10-24 17.54 0 9.82×10-5 7.67×10-15 0 2.91×10-31 

 

 

 

of the functions are represented in Table 3, while the 

related standard deviation values are demonstrated in 

Table 4. The bold values in these tables indicate the best 

found solutions. As it could be seen, the PGS algorithm 

presents the best results for all unimodal and multimodal 

mathematical functions except for 𝑓4 and 𝑓9.  
Furthermore, in order to provide a more accurate 

assessment on the performance of PGS, six rotated test 

functions summarized in Table 5 are regarded to be 

minimized. In this way, statistical comparisons between 

the results founed by the PGS and seven famous 

evolutionary algorithms (S-PSO, SS-BLX (62), SS Arith 

(62), DE-Exp (63), DE-Bin (63), SaDE (64), HEPSO 

(65)) on these benchmarks are illustrated in Table 6. 

These functions are evaluated with dimension 10 with 10 

particles, while all algorithms are independently run 

thirty times having the maximum number of evaluation 

100000. The results related to these examinations are 

reported in Table 6 that illustrate the capability of the 

PGS to find the global optimum solution on the rotated 

test functions in comparison with the other optimization 

approaches. 

In order to track the performance of the PGS 

algorithm, the diagrams in Figure 6 are plotted for 



 

dimensions 10, 20 and 30. These diagrams clearly 

illustrate that the considered scheme could easily scape 

from local minimum points and converges to the global 

optimum solutions. Besides, the convergence speeds of 

the F-GA&PSO, APSO and PGS algorithms are 

compared with each other on the previous introduced 

mathematical functions in Table 7. In this table, the mean 

values of the iterations required to reach the thresholds of 

the benchmarks are denoted for thirty independent runs. 

The results reported in this table obviously prove that the 

introduced optimization algorithm has a very high speed, 

and the proposed combination of the PSO with the GA 

and sliding mode concept is a valid method. 

 
 

5. OPTIMUM CONTROL FOR A QUADCOPTER 
 

Recently, quadcopters have received significant attention 

from researchers across various fields of science and 

technology. The quadcopters have four rotors which are 

directed upwards and located in a square formation with 

equal distances from the mass center of the quadcopter 

effective length. These flying robots are controlled 

through regulating the angular velocities of the rotors that 

are rotated by electrical motors. Heretofore, various 

control techniques such as optimal fuzzy controllers (66, 

67), PID controllers (68, 69), backstepping approaches 

(70, 71), nonlinear 𝐻∞  methods (72), linear quadratic  

 

TABLE 4. Standared deviation values of the best solutions found in 30 independent runs by the PGS and other algorithms for un-

rotated test functions 

Algorithm 𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒇𝟔 𝒇𝟕 𝒇𝟖 𝒇𝟗 

GA-TC 4.58×10-14 4.32×10-6 416 132 327 1.88×10-2 1.13 2.87 8.91 

GA-MC 1.34×10-17 31.3 199 55.1 132 2.48×10-2 6.23×10-1 1.44 267.20 

S-PSO 6.54×10-98 1.73×10-25 9.40×10-5 25.3 0.305 3.12×10-1 5.92×10-1 2.31×10-2 1.86×107 

FGAPSO 8.58×10-119 4.99×10-24 6.91×10-11 1.38 0 1.47×10-3 9.90×10-8 2.21×10-2 1.89×10-2 

MPSO 6.11×10-52 4.05×10-29 1.27×10-1 30.33 0 1.74×10-3 3.55×10-15 4.15×10-3 1.64×10-32 

LPSO 1.13×10-28 2.89×10-20 30.71 11.15 0 5.66×10-3 4.80×10-15 1.60×10-2 5.14×10-30 

VPSO 1.91×10-37 8.68×10-27 1.55 24.94 0 3.24×10-3 3.48×10-15 1.35×10-2 1.89×10-2 

FIPS 3.60×10-30 7.86×10-18 0.86 0.31 0 6.25×10-4 9.33×10-16 2.78×10-3 4.85×10-32 

HPSO 8.5×10-41 6.89×10-23 2.97×10-7 16.5 0 2.08×10-2 9.45×10-10 1.14×10-2 4.05×10-30 

DMS-PSO 1.75×10-53 6.60×10-29 56.4 24.1 0 3.94×10-3 1.79×10-15 1.73×10-2 8.12×10-33 

CLPSO 1.49×10-19 6.51×10-14 142 14.5 0 1.14×10-3 9.22×10-13 2.07×10-12 1.93×10-21 

APSO 5.73×10-150 1.44×10-83 2.13×10-10 3.27 0 1.70×10-3 3.55×10-15 2.41×10-2 1.20×10-30 

PGS 0 0 4.33×10-24 0.94 0 5.93×10-5 9.01×10-16 0 1.68×10-30 

 

 

TABLE 5. Rotated test functions for challenging the optimization algorithms 

Name (comment) Formulation Optimum point Search range 

Shifted Sphere (Uni-modal) 
𝑓10(𝑥) = ∑ 𝑧𝑖

2𝐷
𝑖=1 + 𝑓_𝑏𝑖𝑎𝑠  

𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, . . . , 𝑜𝐷]  

𝑥∗ = 𝑜,  

𝑓10(𝑥
∗) = 𝑓_𝑏𝑖𝑎𝑠 = −450

  

𝑥 ∈ [−100,100]𝐷
  

Shifted Schwefel (Uni-
modal) 

𝑓11(𝑥) = ∑ (∑ 𝑧𝑗
𝑖
𝑗=1 )

2𝐷
𝑖=1 + 𝑓_𝑏𝑖𝑎𝑠  

𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, . . . , 𝑜𝐷]

  

𝑥∗ = 𝑜,  

𝑓11(𝑥
∗) = 𝑓_𝑏𝑖𝑎𝑠 = −450

  

𝑥 ∈ [−100,100]𝐷
  

Shifted Rosenbrock (Uni-

modal) 

𝑓12(𝑥) = ∑ (100(𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)𝐷−1

𝑖=1 + 𝑓_𝑏𝑖𝑎𝑠  

𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, . . . , 𝑜𝐷]

  

𝑥∗ = 𝑜,  

𝑓12(𝑥
∗) = 𝑓_𝑏𝑖𝑎𝑠 = 390

  

𝑥 ∈ [−100,100]𝐷
  

Shifted Rastrigen (Multi-
modal) 

𝑓13(𝑥) = ∑ (𝑧𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10)

𝐷
𝑖=1 + 𝑓_𝑏𝑖𝑎𝑠  

𝑧 = 𝑥 − 𝑜, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, . . . , 𝑜𝐷]

  

𝑥∗ = 𝑜,  

𝑓13(𝑥
∗) = 𝑓_𝑏𝑖𝑎𝑠 = −330  

𝑥 ∈ [−5,5]𝐷
  

Shifted Rotated Ackley 
(Multi-modal) 

𝑓14(𝑥) = −20 𝑒𝑥𝑝( − 0.2√
1
𝐷⁄ ∑ 𝑧𝑖

2𝐷
𝑖=1 ) 

−𝑒𝑥𝑝( 1 𝐷⁄ ∑ 𝑐𝑜𝑠( 2𝜋𝑧𝑖)
𝐷
𝑖=1 + 20 + 𝑒 + 𝑓_𝑏𝑖𝑎𝑠 

𝑧 = (𝑥 − 𝑜) × 𝑀, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, . . . , 𝑜𝐷]

  

𝑥∗ = 𝑜,  

𝑓14(𝑥
∗) = 𝑓_𝑏𝑖𝑎𝑠 = −140

  

𝑥 ∈ [−32,32]𝐷  

Shifted Rotated Griewank 

(Multi-modal) 

𝑓15(𝑥) = ∑
𝑧𝑖
2

4000
−−∏ 𝑐𝑜𝑠(

𝑧𝑖

√𝑖

𝐷
𝑖=1

𝐷
𝑖=1 ) + 1 + 𝑓_𝑏𝑖𝑎𝑠  

𝑧 = (𝑥 − 𝑜) × 𝑀, 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, . . . , 𝑜𝐷]

  

𝑥∗ = 𝑜,  

𝑓15(𝑥
∗) = 𝑓_𝑏𝑖𝑎𝑠 = −180  

𝑥 ∈ [0,600]𝐷  
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TABLE 6. Mean values of the best solutions found in 30 independent runs by the PGS and other algorithms for rotated test functions 

Algorithm f10 f11 f12 f13 f14 f15 

S-PSO 1.27×10+03 6.61×10+03 1.32×10+07 8.7 2.13×10 2.81×10 

SS-BLX 3.40×10 1.73 1.14×10+02 4.19 2.03×10 1.96×10+03 

SS-Arith 1.06 5.28 4.94×10+02 5.96 2.03×10 1.90×10+03 

DE-Exp 8.26×10-9 8.18×10-9 8.39×10-9 8.15×10-9 2.03×10 1.26×10+03 

DE-Bin 7.71×10-9 8.34×10-9 7.95×10-9 4.54 2.03×10 1.26×10+03 

SaDE 8.41×10-9 8.20×10-9 1.61×10-2 8.33×10-9 2.03×10 1.26×10+03 

HEPSO 0 4.02×10-04 4.86×10-03 2.37×10-9 2.14×10 6.18×10-01 

PGS 0 8.21×10-14 1.77×10-03 4.12 1.32 6.99×10-02 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 
(i) 

Figure 6. Convergence trajectory of the PGS algorithm on 

the test functions, (a) 𝑓1; (b) 𝑓2 (c) 𝑓3; (d) 𝑓4; (e) 𝑓5; (f) 𝑓6; 

(g) 𝑓7; (h); (i) 𝑓9. 

 

 

regulation schemes (73, 74), and nonlinear controllers 

(75, 76) have been introduced to stabilize these nonlinear 

unstable systems. 

The configuration of the quadcopter regarded in this 

study is illustrated in Figure 7, and its physical 

parameters are displayed in Table 8. The following 

assumptions are considered for its dynamics. 

TABLE 7. Mean values of the iteration numbers required to 

reach the threasholds found in 30 independent runs to illustrate 

the convergence speed of the PGS, APSO and F-GA&PSO 

F-GA&PSO APSO  PGS Test function 

2328 354 91 𝑓1  

2323 395 93 𝑓2  

4 1059 308 𝑓3  

2054 267 23 𝑓4  

3585 246 39 𝑓5  

6136 3906 699 𝑓6  

7244 2037 96 𝑓7  

2263 379 82 𝑓8  

2841 1077 884 𝑓9  

 

 

 
Figure 7. General view of the investigated quadrotor system 

 

 
TABLE 8. Numerical values of the physical parameters related 

to the quadcopter (77) 

Physical 

parameter 
Explanation Value 

𝑚 Total mass 0.335 kg 

𝐿 Effective length 0.18 m 

𝐼𝑥 Moment of inertia around axis 𝑥 0.0018 kgm2 

𝐼𝑦 Moment of inertia around axis 𝑦 0.0018 kgm2 

𝐼𝑧 Moment of inertia around axis 𝑧 0.0047 kgm2 

𝑐 Thrust coefficient 5.7231× 10−6 Ns2 

𝑑 Drag coefficient 1.7169× 10−7 Nms2 

𝐽𝑟 Rotor inertia 1.85× 10−5 kgm2 

 

 

• The mass center and origin of the body coordinate 

system are coincided on the symmetry center. 

• The body coordinate axes are coincided on the 

principle axes of the quadcopter. 

• The thrust forces of the blades are proportional to 

the square angular velocity. 

• The structure of the quadcopter and blades are 

rigid. 
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• The structure is symmetric. 

• The earth is flat. 

The inertia coordinate system XYZ and body 

coordinate system xyz are illustrated in Figure 8. The 

difference between the clockwise and counter-clockwise 

velocities is utilized to calculate the total angular velocity 

as follows. 

𝛺 = 𝛺1 −𝛺2 + 𝛺3 − 𝛺4  (15) 

where, 𝛺𝑖  (𝑖 = 1,2,3,4) are the angular velocities of the 

four blades. The vector of external torques (𝑀⃗⃗⃗) is 

computed by applying the Newton second law as follows  

(77): 

𝑀⃗⃗⃗ = [

𝐼𝑥𝜔̇𝑥 + 𝜔𝑦𝜔𝑧(𝐼𝑧 − 𝐼𝑦) + 𝐽𝑟𝛺𝜔𝑦
𝐼𝑦𝜔̇𝑦 + 𝜔𝑥𝜔𝑧(𝐼𝑥 − 𝐼𝑧) + 𝐽𝑟𝛺𝜔𝑥

𝐼𝑧𝜔̇𝑧 + 𝜔𝑥𝜔𝑦(𝐼𝑦 − 𝐼𝑥)

]  (16) 

where, 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 are the angular velocities of the 

quadcopter around 𝑥, 𝑦 and 𝑧 axes, respectively. 𝐼𝑥, 𝐼𝑦  

and 𝐼𝑧 are the inertia moments of the quadcopter around 

𝑥, 𝑦 and 𝑧 axes, correspondingly. Moreover, 𝐽𝑟 denotes 

the inertia moment of the rotor. The motor thrust forces 

(𝑇𝑖) and the torques implemented by air on the blades (𝜏𝑖) 
could be calculated by the following equations. 

𝑇𝑖 = 𝑐𝛺𝑖
2  and 𝑖 = 1,2,3,4 (17) 

𝜏𝑖 = 𝑑𝛺𝑖
2 and 𝑖 = 1,2,3,4 (18) 

where, 𝑐 and 𝑑 respectively represent the thrust and drag 

parameters. Moreover, torques 𝑀𝑥, 𝑀𝑦 and 𝑀𝑧 would be 

determined by applying Equation (19). 

𝑀⃗⃗⃗ = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = [
(𝑇4 − 𝑇2)𝐿
(𝑇1 − 𝑇3)𝐿

𝜏2 − 𝜏1 + 𝜏4 − 𝜏3

] =

[

(𝑇4 − 𝑇2)𝐿
(𝑇1 − 𝑇3)𝐿

𝑑

𝑐
(𝑇2 − 𝑇1 + 𝑇4 − 𝑇3)

]  

(19) 

The following equation is obtained by employing 

Equations 15 through 19. 

 

 

 
Figure 8. Body and inertial frames for the studied quadrotor 

system 
 

[

𝜑̈

𝜃̈
𝛹̈

] = [

𝑎1(𝜃̇𝛹̇) − 𝑎4(𝜃̇ + 𝜑𝛹̇)𝛺 + 𝑏3𝑀𝑧𝜃 + 𝑏1𝑀𝑥

𝑎2(𝜑̇𝛹̇) + 𝑎5(𝜑̇ − 𝜃𝛹̇)𝛺 − 𝑏3𝑀𝑧𝜑 + 𝑏2𝑀𝑦

𝑎3(𝜃̇𝜑̇) + (𝑎5𝛺𝜑̇ + 𝑏2𝑀𝑦)𝜑 + 𝑏3𝑀𝑧

]  (20) 

where, 

𝑎1 =
𝐼𝑦−𝐼𝑧

𝐼𝑥
+ 1, 𝑎2 =

𝐼𝑧−𝐼𝑥

𝐼𝑦
− 1, 𝑎3 =

𝐼𝑥−𝐼𝑦

𝐼𝑧
+ 1,  

𝑎4 =
𝐽𝑟

𝐼𝑥
, 𝑎5 =

𝐽𝑟

𝐼𝑦
, 𝑏1 =

1

𝐼𝑥
, 𝑏2 =

1

𝐼𝑦
, 𝑏3 =

1

𝐼𝑧
   

(21) 

In this research work, the state-space variables for the 

system are considered as follows: 

{
  
 

  
 
𝑥1(𝑡) = 𝜑(𝑡)

𝑥2(𝑡) = 𝜑̇(𝑡)

𝑥3(𝑡) = 𝜃(𝑡)

𝑥4(𝑡) = 𝜃̇(𝑡)

𝑥5(𝑡) = 𝛹(𝑡)

𝑥6(𝑡) = 𝛹̇(𝑡)

and{

𝑈2(𝑡) = 𝑀𝑥

𝑈3(𝑡) = 𝑀𝑦

𝑈4(𝑡) = 𝑀𝑧

   (22) 

Hence, the state-space form of Equation 20 could be 

rewritten as follows: 

{
 
 

 
 
𝑥̇1 = 𝑥2                                                                                 

𝑥̇2 = 𝑎1(𝑥4𝑥6) − 𝑎4(𝑥4 + 𝑥1𝑥6)𝛺 + 𝑏3𝑈4𝑥3 + 𝑏1𝑈2
𝑥̇3 = 𝑥4                                                                                  

𝑥̇4 = 𝑎2(𝑥2𝑥6) + 𝑎5(𝑥2 − 𝑥3𝑥6)𝛺 − 𝑏3𝑈4𝑥1 + 𝑏2𝑈3
𝑥̇5 = 𝑥6                                                                                  

𝑥̇6 = 𝑎3(𝑥2𝑥4) + 𝑎5(𝑥1𝑥2)𝛺 + 𝑏2𝑈3𝑥1 + 𝑏3𝑈4         

   (23) 

The following equation is defined for movement in the 

direction of 𝑧 axis in the inertia system with regard to the 

weight and thrust forces. 

𝑧̈ = −𝑔 +
cos 𝜃 cos𝜑

𝑚
𝑈1  (24) 

If 

[𝑥7, 𝑥8]
𝑇 = [𝑧, 𝑧̇]𝑇  (25) 

with considering Equation 22, Equation 24 can be 

rewritten as follows: 

𝑥̇7 = 𝑥8  

𝑥̇8 = −𝑔 +
cos 𝜃 cos𝜑

𝑚
𝑈1  

(26) 

It is noticeable that 𝑈𝑖, 𝑖 = 1,2,3,4 are the outputs of 

control systems that should be converted to the 

dynamical model inputs, i.e. the angular velocities of the 

propellers (𝛺𝑖  , 𝑖 = 1,2,3,4). Therefore, the following 

equations are defined to simply express the control 

outputs. 

{
 
 

 
 
𝑈1 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4       
𝑈2 = (𝑇4 − 𝑇2)𝐿                    
𝑈3 = (𝑇1 − 𝑇3)𝐿                    

𝑈4 =
𝑑

𝑐
(𝑇2 + 𝑇4 − 𝑇1 − 𝑇3)

  (27) 

Moreover, the following equations are introduced to find 

the angular velocities of the propellers. 
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[
 
 
 
 
𝛺1

2

𝛺2
2

𝛺3
2

𝛺4
2]
 
 
 
 

=
1

𝑐
[

𝑇1
𝑇2
𝑇3
𝑇4

] =
1

𝑐

[
 
 
 
1 1 1 1
0 −𝐿 0 𝐿
𝐿 0 −𝐿 0

−
𝑑

𝑐

𝑑

𝑐
−
𝑑

𝑐

𝑑

𝑐 ]
 
 
 

[

𝑈1
𝑈2
𝑈3
𝑈4

]   (28) 

Finally, a control output based on the state feedback 

formulation can be defined as follows (78): 

𝑈 = −[

0 0 0 0 0 0 𝐾7 𝐾8
𝐾1 𝐾2 0 0 0 0 0 0
0 0 𝐾3 𝐾4 0 0 0 0
0 0 0 0 𝐾5 𝐾6 0 0

]

[
 
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8]
 
 
 
 
 
 

    (29) 

where, design vector K = [𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6, 𝐾7, 𝐾8] 

has the positive constant components regarded as the 

control gains that would be optimally determined by 

applying the PGS optimization algorithm. Generally, the 

performance of a closed loop control system could be 

evaluated via different objectives. In this paper, the 

summation of integral of absolute values of 

𝜑(𝑡), 𝜃(𝑡), 𝛹(𝑡) and 𝑧(𝑡) is considered as the cost 

function that must be minimized. 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∫|𝜑(𝑡)|𝑑𝑡 + ∫|𝜃(𝑡)|𝑑𝑡 +

∫|𝛹(𝑡)|𝑑𝑡 + ∫|𝑧(𝑡)|𝑑𝑡   
(30) 

Figure 9 depicts the optimization diagrams obtained 

using the proposed optimization approach for optimum 

design of the state feedback controller for the quadrotor 

through five independent runs. The design variables and 

objective function corresponding to the best optimum 

design point are listed in Table 9. Figure 10 displays the 

behavior of the quadrotor and the comparison with the 

optimum LQR based controller developed by Parhizkar 

and Naghash (77). It is obvious from these results that the 

optimal controller of this study is preferred due to its 

higher convergence and shorter settling time. 

 

 

6. OPTIMUM DESIGN OF AN INELASTIC MEMBER 
 

Compression members are widely encountered in many 

practical applications such as structures, columns, frames 

and trusses. In this example, the objective is minimizing 

the weight of the compression members to satisfy the 

AISC manual requirements (79). Different cross-

sectional shapes of steel members could be employed for 

the compression members, such as wide-flange sections 

(W-shape), angle sections, channel sections, tee sections, 

hollow circular/square sections, solid circular or 

square/sections. Here, a W-shape cross-section shown in 

Figure 11 is considered for optimum design of its sizes 

with considering inequality constraints. The load for the 

member is calculated based on its application and in the 

regarded region while the specified material is ASTM 

A992 Grade 50 steel.  

The objective function is defined as the minimization 

of the weight per unit length given as the cross-sectional 

area density: 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 12𝛾𝐴𝑔 (31) 

where, 𝛾 denotes the density of steel which is equal to 

0.283 Ib/in3, and 𝐴𝑔 is the cross-section area formulated 

as follows: 

𝐴𝑔 = 2𝑏𝑓𝑡𝑓 + (𝑑 − 2𝑡𝑓)𝑡𝑤                                                                                                                        (32) 

where, 𝑏𝑓 and 𝑡𝑓 respectively denote the width and 

thickness of the flange, 𝑑 represents the depth of the 

section, and 𝑡𝑤 is the thickness of the web. These four 

parameters are considered as the design variables having 

the following upper and lower bounds. 

 

 

 
Figure 9. Optimization diagrams for the optimum design of 

the state feedback controller related to the quadrotor 

 

 
TABLE 9. Design variables and objective functions 

corresponding to the optimum design point for control of the 

quadcopter 

Quantity Optimum value 

K1 0.2896 

K2 0.0329 

K3 0.2971 

K4 0.0265 

K5 0.9844 

K6 0.0822 

K7 1.3082 

K8 0.9038 

Objective function by this work 7.3822 

Objective function by the method in (77) 10.3707 
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Figure 10. Behavoiur of the quadrotor handled by the 

optimal state feedback of this research and the comparison 

with the optimum LQR based controller developed in (77) 
 

 
Figure 11. Cross-section and design parameters of the 

considered inelastic member 

 

 

6.0 ≤ 𝑏𝑓 ≤ 11.7 (33) 

0.425 ≤ 𝑡𝑓 ≤ 2.5 (34) 

17.7 ≤ 𝑑 ≤ 21.1 (35) 

0.30 ≤ 𝑡𝑤 ≤ 1.16 (36) 

Moreover, it is supposed that the buckling of the 

member occurs about the weak axis (𝑦) that imposes the 

following inequality constraints: 

𝜆𝑦 ≤ 𝜆𝑒 (37) 

𝑃𝑎 ≤ 0.6𝐹𝑐𝑟𝑦𝐴𝑔 (38) 

where, 𝜆𝑦 represents the slenderness ratio for buckling 

with respect to weak axis 𝑦, 𝜆𝑒 denotes the limiting value 

of the slenderness ratio for inelastic buckling, and 𝐹𝑐𝑟𝑦 is 

the critical stress. These quantities could be respectively 

computed by applying the following relations. 

𝜆𝑦 =
𝐾𝑦𝐿𝑦

𝑟𝑦
  (39) 

𝜆𝑒 = 4.71√
𝐸

𝐹𝑦
  (40) 

𝐹𝑐𝑟𝑦 = (0.658
𝐹𝑦/𝐹𝑒𝑦)𝐹𝑦  (41) 

where, 𝐾𝑦 denotes the effective length factor for the 

buckling with respect to weak axis 𝑦 set at 1.0, 𝐿𝑦 is the 

laterally unsupported length of the member for buckling 

with respect to weak axis 𝑦 set at 180 (in), 𝐸 illustrates 

the modulus of elasticity set at 29,000 (Ksi) , and 𝐹𝑦 is 

the specified minimum yield stress set at 50 (Ksi). 

Besides, 𝑟𝑦  and 𝐹𝑒𝑦 respectively present the radius of the 

gyration and the Euler stress for buckling with respect to 

weak axis 𝑦 that would be calculated by applying the 

following equations. 
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𝑟𝑦 = √𝐼𝑦 𝐴𝑔⁄     (42) 

𝐹𝑒𝑦 =
𝜋2𝐸

𝜆𝑦
2                                                                                                                                                     (43) 

where, 𝐼𝑦  denotes the moment of inertia about weak 

axis 𝑦 computed as follows. 

𝐼𝑦 = 2(
1

12
𝑡𝑓𝑏𝑓

3) +
1

12
(𝑑 − 2𝑡𝑓)𝑡𝑤

3   (44) 

Furthermore, to avoid the local buckling for the 

flange and web, the following inequality constraints 

should be imposed: 

(𝑑−2𝑡𝑓)

𝑡𝑤
≤ 0.56√

𝐸

𝐹𝑦
  (45) 

𝑏𝑓

2𝑡𝑓
≤ 1.49√

𝐸

𝐹𝑦
  (46) 

By considering the mentioned descriptions, the 

optimum design of the inelastic member is performed by 

utilizing the suggested PGS optimization approach, and 

the optimization trajectories for five independent runs are 

depicted in Figure 12. The design variables and objective 

function corresponding to the best optimum design point 

are presented in Table 10. It is obvious from these results 

that the optimum design found by this study is preferred  

 

 

 
Figure 12. Optimization diagrams for the optimum design 

of the inelastic member 

 
 

TABLE 10. Design variables and objective functions 

corresponding to the best solution for the optimum design of the 

inelastic member 

Quantity Optimum value 

𝑏𝑓  11.69688 (in) 

𝑡𝑓  2.2123 (in) 

𝑡𝑤  0.9853 (in) 

𝑑  17.7003 (in) 

Objective function by this work 220.1813 

Objective function by the method in (75) 223.8494 

in comparison with data reported in literature (79) due to 

its minimum weight. 

 

 

7. CONCLUSIONS AND FUTURE WORKS 
 

This paper introduces a new particle swarm optimization 

algorithm that combines an adaptive inertia weight and 

acceleration coefficients with a novel crossover operator. 

Specifically, a second-order sliding surface is employed 

to dynamically calculate algorithm parameters 

throughout iterations. The proposed crossover operator 

utilizes both the global best position of the swarm and the 

current position of the particle under consideration to 

generate a new chromosome. The performance of the 

introduced optimization algorithm is evaluated through 

various mathematical test functions, and the results are 

compared against those of other well-known approaches. 

The analysis demonstrates the superiority of the 

suggested strategy in terms of solution accuracy and 

convergence speed. Moreover, the proposed optimization 

algorithm is successfully applied to designing the state 

feedback controller for a nonlinear quadrotor system, as 

well as determining the cross-section dimensions of an 

inelastic compression beam. The feasibility and 

efficiency of the PGS strategy are assessed in comparison 

with recently introduced schemes for these real-world 

problems. The most important limmitations of the PGS 

are as: (1) It is not applicable, in this version, to handle 

the multi-objective problems; (2) Selection proper values 

for the parameters of the algorithm for different 

problems. 

As part of future research, the following directions are 

suggested: 

• Developing the introduced PGS algorithm for 

solving multi-objective optimization problems.  

• Applying the suggested adaptive parameter for 

computing coefficients of other algorithms. 

• Employing the proposed scenario for combination 

of other optimization algorithms. 

• Utilizing the PGS algorithm for optimum design of 

other complicated nonlinear constrained problems.  
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Persian Abstract 

 چکیده 
 یهاحلکشف راه یبرا  یارزشمند  یهایمختلف، استراتژ  یسازنهیبه  یهاکیکارآمد تکن  بیو ترک دیجد  یتوسعه عملگرها  ،یفراابتکار یهاتمیعملکرد الگور شیافزا  به منظور

قاط  شرده اسر   این رون ن یعرفم سرح  لززنده، الکوریتم ژنتیک  ازدحام ذرات  یسرازنهیبه به نام دیجد یسرازنهیبه تمیالگور  کی  ،یقاتیتحق مقاله  نیهسرتند  در ا سرراسرری نهیبه

  نی به ا  دنیرسر  یکند  برا  یم  بیترک یواقع  یایدر دن یسراز  نهیو مسرالل به  یاضر یتوابع آزمون ر  تحلیل  یرا بران و سرح  لزز کیژنت  تمیازدحام ذرات، الگور  یسراز نهیقوت به

ازدحام  رون  قیکشرف شرده از  ر سرراسرریذره   نی  بهترشروند یم  میتنظ  یکنترل حال  لززشر  با اسرتااده از رابحه ازدحام ذرات  تمیالگور یریادگی  بیهدف، تابع وزن و ضررا

ادغام   افتهیازدحام ذرات بهبود   یسازنهیبه  تمیبا الگور  تیسپس به  ور احتمالا دیاپراتور جد  نیکند  ا یعمل م ادغام الگوریتم ژنتیک ات یدر عمل نیاز والد  یکیبه عنوان   ذرات 

با  ،یو چند وجه یتک وجه  یاضر یدر هر دو توابع آزمون ر یشرنهادیپ  تمی  عملکرد الگورکندیم  لیرا تسره یمحل نهیو فرار از به داده شیرا افزاآن  ییسررع  همگرا و شرودیم

می    شیآزما  معروف و پرکاربرد  یسرازنهیبه  یهاکیر تکنیآن در برابر سرا  ییو کارا  یاثربخشر  های ،در ن  می شروند   یابیشرده ارزدر نظر گرفتن موارد چرخش نشرده و چرخش

 کی  یسرح  مقحع برا  نییو تع   یرخحیکوادکوپتر غ سرتمیسر  کی یکننده بازخورد حال  براکنترل یسرازنهیدر به پیشرنهادی تمیالگور قابل توجهی،  یبا موفق ن،یبر ا   علاوهشرود

 .استااده شده اس  کیرالاستیغ تح  فشارعضو 
 


