Synchronous Generator Dual Estimation Using Sigma Points Kalman Filter

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran

Abstract

In this article, the central difference Kalman filter (CDKF) has been used to estimate the parameters of two different models of synchronous generator (SG) in the presence of noise. It should be mentioned that there are different models of synchronous generators with different levels of accuracy for use in estimation algorithms. The estimation algorithm in this paper uses a smaller number of measurement inputs to estimate the states and unknown parameters for two exact models of the synchronous generator. The central difference Kalman filter (CDKF) is a member of the Kalman filter family, which, like the unscented Kalman filter (UKF), uses sigma points to model nonlinear equations. The differential Kalman filter (CDKF) provides better results than the unscented Kalman filter. In this research, by using two synchronous generator models with different parameters in three scenarios, the ability of the Kalman filter of the central difference is challenged, which shows that this method is very efficient and reliable.

Graphical Abstract

Synchronous Generator Dual Estimation Using Sigma Points Kalman Filter

Keywords

Main Subjects


  1. Yaghobi H, Ansari K, Mashhadi HR. Stator turn-to-turn fault detection of synchronous generator using total harmonic distortion (THD) analyzing of magnetic flux linkage. Iranian Journal of Science and Technology Transactions of Electrical Engineering. 2013;37(E2):161. https://doi.org/10.22099/IJSTE.2013.1886
  2. Mouni E, Tnani S, Champenois G. Synchronous generator modelling and parameters estimation using least squares method. Simulation Modelling Practice and Theory. 2008;16(6):678-89. https://doi.org/10.1016/j.simpat.2008.04.005
  3. Mahdavi Tabatabayee N, Kenarangui R. On line electric power systems state estimation using kalman filtering (research note). International Journal of Engineering. 1995;8(4):233-5.
  4. Chowdhury SD, Senroy N, editors. PMU data based online parameter estimation of synchronous generator. 2016 IEEE 6th International Conference on Power Systems (ICPS); 2016: IEEE.
  5. Ghahremani E, Kamwa I. Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements. IEEE Transactions on Power Systems. 2011;26(4):2556-66. https://doi.org/10.1109/tpwrs.2011.2145396
  6. Ren P, Lev-Ari H, Abur A, editors. Robust continuous-discrete extended Kalman filter for estimating machine states with model uncertainties. 2016 Power Systems Computation Conference (PSCC); 2016: IEEE.
  7. Huang M, Li W, Yan W. Estimating parameters of synchronous generators using square-root unscented Kalman filter. Electric Power Systems Research. 2010;80(9):1137-44. https://doi.org/10.1016/j.epsr.2010.03.007
  8. Geraldi Jr EL, Fernandes TC, Ramos RA. A UKF-based approach to estimate parameters of a three-phase synchronous generator model. Energy Systems. 2018;9(3):573-603. https://doi.org/10.1007/s12667-018-0280-1
  9. Zhao J, Mili L. A decentralized H-infinity unscented Kalman filter for dynamic state estimation against uncertainties. IEEE Transactions on Smart Grid. 2018;10(5):4870-80. https://doi.org/10.1109/tsg.2018.2870327
  10. Valverde G, Kyriakides E, Heydt GT, Terzija V. Nonlinear estimation of synchronous machine parameters using operating data. IEEE Transactions on Energy Conversion. 2011;26(3):831-9. https://doi.org/10.1109/tec.2011.2141136
  11. Rouhani A, Abur A. Constrained iterated unscented Kalman filter for dynamic state and parameter estimation. IEEE Transactions on Power Systems. 2017;33(3):2404-14. https://doi.org/10.1109/tpwrs.2017.2764005
  12. González-Cagigal M, Rosendo-Macías J, Gómez-Expósito A. Parameter estimation of fully regulated synchronous generators using unscented Kalman filters. Electric power systems research. 2019;168:210-7. https://doi.org/10.1016/j.epsr.2018.11.018
  13. Li Y, Li J, Qi J, Chen L. Robust cubature Kalman filter for dynamic state estimation of synchronous machines under unknown measurement noise statistics. IEEE Access. 2019;7:29139-48. https://doi.org/10.1109/access.2019.2900228
  14. Bai X, Qin F, Ge L, Zeng L, Zheng X. Dynamic state estimation for synchronous generator with communication constraints: An improved regularized particle filter approach. IEEE Transactions on Sustainable Computing. 2022. https://doi.org/10.1109/TSUSC.2022.3221090
  15. Siddharth D, Saini D, Singh P. An efficient approach for edge detection technique using kalman filter with artificial neural network. International Journal of Engineering, Transactions C: Aspects. 2021;34(12):2604-10. https://doi.org/10.5829/ije.2021.34.12c.04
  16. Van Der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models: Oregon Health & Science University; 2004.
  17. Hooshmand M, Yaghobi H, Jazaeri M. Irradiation and Temperature Estimation with a New Extended Kalman Particle Filter for Maximum Power Point Tracking in Photovoltaic Systems. International Journal of Engineering, Transactions C: Aspects. 2023;36(6):1099-113. https://doi.org/10.5829/IJE.2023.36.06C.08
  18. Nejati Z, Faraji A, Abedi M. Robust three stage central difference kalman filter for helicopter unmanned aerial vehicle actuators fault estimation. International Journal of Engineering, Transactions B: Applications. 2021;34(5):1290-6. https://doi.org/10.5829/ije.2021.34.05b.23
  19. Dehghani M, Nikravesh S. Nonlinear state space model identification of synchronous generators. Electric Power Systems Research. 2008;78(5):926-40. https://doi.org/10.1016/j.epsr.2007.07.001
  20. Sahel Hanane K, Abderrazak L, Adlene R, Mohamed A, Mohamed K. Fuzzy Logic Control of Maximum Power Point Tracking Controller in an Autonomous Hybrid Power Generation System by Extended Kalman Filter for Battery State of Charge Estimation. International Journal of Engineering, Transactions B: Applications. 2023;36(2):199-214. https://doi.org/10.5829/IJE.2023.36.02B.02
  21. Niazi S. Estimation of LOS rates for target tracking problems using EKF and UKF algorithms-a comparative study. International Journal of Engineering, Transactions B: Applications. 2015;28(2):172-9. https://doi.org/10.5829/idosi.ije.2015.28.02b.02
  22. Nasab MR, Yaghobi H. A real-time out-of-step protection strategy based on instantaneous active power deviation. IEEE Transactions on Power Delivery. 2020;36(6):3590-600. https://doi.org/10.1109/TPWRD.2020.3045276
  23. Krause PC, Wasynczuk O, Sudhoff SD, Pekarek S. Analysis of electric machinery and drive systems: Wiley Online Library; 2002.
  24. Ebrahimi F, Abedi M. Design of a robust central difference Kalman filter in the presence of uncertainties and unknown measurement errors. Signal processing. 2020;172:107533. https://doi.org/10.1016/j.sigpro.2020.105733
  25. Qi J, Sun K, Wang J, Liu H. Dynamic state estimation for multi-machine power system by unscented Kalman filter with enhanced numerical stability. IEEE Transactions on Smart Grid. 2016;9(2):1184-96. https://doi.org/10.1109/tsg.2016.2580584