Accurate Analytical Modeling of Drain Current of Heterojunction Tunneling Field Effect Transistor

Document Type : Original Article

Authors

Department of Electrical Engineering, Ferdowsi University of Mashhad, Iran

Abstract

An accurate analytical model is presented for drain current of the heterojunction tunneling field effect  transistor, taking into account the source depletion region, mobile charges and the effect of the drain voltage. This model accurately predicts the potential distribution not only on the surface but also within the semiconductor depth by utilizing newly formulated mathematical relationships. Using the tangent line approximation method and considering the channel region as well as the source depletion region’ We analytically calculate the band-to-band tunneling current from the source to the channel by integrating the tunneling generation rate. Compared to simulation results, the proposed model demonstrates significant accuracy in predicting drain current.

Graphical Abstract

Accurate Analytical Modeling of Drain Current of Heterojunction Tunneling Field Effect Transistor

Keywords

Main Subjects


  1. Maity N, Maity R, Baishya S. An analytical model for the surface potential and threshold voltage of a double-gate heterojunction tunnel FinFET. Journal of computational electronics. 2019;18:65-75. 10.1007/s10825-018-1279-5
  2. Pan A, Chui CO. A quasi-analytical model for double-gate tunneling field-effect transistors. IEEE electron device letters. 2012;33(10):1468-70. 10.1109/LED.2012.2208933
  3. Abdulwahid AH. Artificial intelligence-based control techniques for hvdc systems. Emerging Science Journal. 2023;7(2):643-53. 10.28991 /ESJ-2023- 07-02-024
  4. Divayana DGH, Suyasa PWA, Santiyadnya N, Andayani MSL, Sundayana IM, Astawa IND, et al. Utilization of the Weighted Product-Based CIPP Evaluation Model in Determining the Best Online Platform. HighTech and Innovation Journal. 2023;4(1):233-48. 10.28991/HIJ-2023-04-01-0155
  5. Zhang L, Chan M. SPICE modeling of double-gate tunnel-FETs including channel transports. IEEE Transactions on Electron Devices. 2014;61(2):300-7. 10.1109/TED.2013.2
  6. Graef M, Holtij T, Hain F, Kloes A, Iniguez B. A 2D closed form model for the electrostatics in hetero-junction double-gate tunnel-FETs for calculation of band-to-band tunneling current. Microelectronics Journal. 2014;45(9):1144-53. 10.1016/j.mejo.2014.04.033
  7. Horst F, Graef M, Hosenfeld F, Farokhnejad A, Hain F, Luong GV, et al., editors. Implementation of a DC compact model for double-gate Tunnel-FET based on 2D calculations and application in circuit simulation. 2016 46th European Solid-State Device Research Conference (ESSDERC); 2016: IEEE. 10.1109 /ESSDERC.2016.7599684
  8. Dutta R, Sarkar SK. Analytical modeling and simulation-based optimization of broken gate TFET structure for low power applications. IEEE transactions on electron devices. 2019;66(8):3513-20. 10.1109/TED.2019.2925109
  9. Devi WV, Bhowmick B, Pukhrambam PD. N+ pocket-doped vertical TFET for enhanced sensitivity in biosensing applications: modeling and simulation. IEEE Transactions on Electron Devices. 2020;67(5):2133-9. 10.1109/TED.2020.2981303
  10. Vishnoi R, Kumar MJ. An accurate compact analytical model for the drain current of a TFET from subthreshold to strong inversion. IEEE Transactions on Electron Devices. 2015;62(2):478-84. 10.1109/TED.2014.2381560
  11. Guan Y, Li Z, Zhang W, Zhang Y, Liang F. An analytical model of gate-all-around heterojunction tunneling FET. IEEE Transactions on Electron Devices. 2018;65(2):776-82. 10.1109/TED.2017.2783911
  12. Kumar S, Singh K, Baral K, Singh PK, Jit S. 2-D analytical model for electrical characteristics of dual metal heterogeneous gate dielectric double-gate TFETs with localized interface charges. Silicon. 2021;13:2519-27. 10.1007/s12633-020-00564-5
  13. Gholizadeh M, Hosseini SE. A 2-D analytical model for double-gate tunnel FETs. IEEE Transactions on Electron Devices. 2014;61(5):1494-500. 10.1109/TED.2014.2313037
  14. Ponnian J, Pari S, Ramadass U, Ooi CP. A Unified Power-Delay Model for GDI Library Cell Created Using New Mux Based Signal Connectivity Algorithm. Emerging Science Journal. 2023;7(4):1364-94. 10.28991/ESJ-2023-07-04022
  15. Bardon MG, Neves HP, Puers R, Van Hoof C. Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Transactions on Electron Devices. 2010;57(4):827-34. 10.1109/TED.2010.2040661
  16. Jain P, Yadav C, Agarwal A, Chauhan YS. Surface potential based modeling of charge, current, and capacitances in DGTFET including mobile channel charge and ambipolar behaviour. Solid-State Electronics. 2017;134:74-81. 10.1016/j.sse.2017.05.012
  17. Keighobadi D, Mohammadi S. Physical and analytical modeling of drain current of double-gate heterostructure tunnel FETs. Semiconductor Science and Technology. 2018;34(1):015009. 10.1088/1361-6641/aaeeeb
  18. Kaur S, Raman A, Sarin RK. Analytical modeling of surface potential, capacitance and drain current of heterojunction TFET. Applied Physics A. 2020;126:1-11. 10.1007/s00339-020-03945-0
  19. Lin S, Kuo J. Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Transactions on Electron Devices. 2003;50(12):2559-64. 10.1109/TED.2003.816910
  20. Kane E. Zener tunneling in semiconductors. Journal of Physics and Chemistry of Solids. 1960;12(2):181-8. 10.1016/0022-3697(60)90035-4
  21. Mohammadi S, Keighobadi D. A universal analytical potential model for double-gate Heterostructure tunnel FETs. IEEE Transactions on Electron Devices. 2019;66(3):1605-12. 10.1109/TED.2019.2895277
  22. Ranjith R, Suja K, Komaragiri RS. An analytical model for a TFET with an n-doped channel operating in accumulation and inversion modes. Journal of Computational Electronics. 2021;20:1125-36. 10.1007/s10825-021-01683-x
  23. Howldar S, Balaji B, Srinivasa Rao K. Design and Analysis of Hetero Dielectric Dual Material Gate Underlap Spacer Tunnel Field Effect Transistor. International Journal of Engineering, Transactions C: Aspects. 2023;36(12):2137-44. 10.5829/ije.2023.36.12c.01
  24. Howldar S, Balaji B, Srinivasa Rao K. Design and qualitative analysis of hetero dielectric tunnel field effect transistor device. International Journal of Engineering, Transactions C: Aspects. 2023;36(6):1129-35. 10.5829/ije.2023.36.06c.11
  25. Keighobadi D, Mohammadi S, Fathipour M. An analytical drain current model for the cylindrical channel gate-all-around heterojunction tunnel FETs. IEEE Transactions on Electron Devices. 2019;66(8):3646-51. 10.1109/TED.2019.2922232
  26. Dong Y, Zhang L, Li X, Lin X, Chan M. A compact model for double-gate heterojunction tunnel FETs. IEEE Transactions on Electron Devices. 2016;63(11):4506-13. 10.1109/TED.2016.2604001
  27. Mostefai A. Basic Characteristics of Gallium Indium Arsenide Antimonide (GaxIn1–xAsySb1–y) Semiconductors Using MATLAB. Journal of Nano-and Electronic Physics. 2022;14(4). 10.21272/jnep.14(4).04027
  28. Convertino C, Zota CB, Schmid H, Caimi D, Czornomaz L, Ionescu AM, et al. A hybrid III–V tunnel FET and MOSFET technology platform integrated on silicon. nature electronics. 2021;4(2):162-70. 10.1038/s41928-020-00531-3
  29. Arabhavi AM, Ciabattini F, Hamzeloui S, Flückiger R, Saranovac T, Han D, et al. InP/GaAsSb double heterojunction bipolar transistor emitter-fin technology with f MAX= 1.2 THz. IEEE Transactions on Electron Devices. 2022;69(4):2122-9. 10.1109/TED.2021.3138379
  30. Smets Q, Verhulst AS, El Kazzi S, Gundlach D, Richter CA, Mocuta A, et al. Calibration of the effective tunneling bandgap in GaAsSb/InGaAs for improved TFET performance prediction. IEEE transactions on electron devices. 2016;63(11):4248-54. 10.1109/TED.2016.2604860
  31. Detz H, Silvano de Sousa J, Leonhardt H, Klang P, Zederbauer T, Andrews AM, et al. InGaAs/GaAsSb based two-dimensional electron gases. Journal of Vacuum Science & Technology B. 2014;32(2). 10.1116/1.4863299
  32. Zare M, Peyravi F, Hosseini SE. Impact of hetero-dielectric ferroelectric gate stack on analog/RF performance of tunnel FET. Journal of Electronic Materials. 2020;49:5638-46. 10.1007/s11664-020-08315-3
  33. Ghosh S, Chattopadhyay A, Tewari S. Optimization of hetero-gate-dielectric tunnel FET for label-free detection and identification of biomolecules. IEEE transactions on Electron Devices. 2020;67(5):2157-64. 10.1109/TED.2020.2978499
  34. Arunkumar N, Senathipathi N, Dhanasekar S, Malin Bruntha P, Priya C. An ultra-low-power static random-access memory cell using tunneling field effect transistor. International Journal of Engineering, Transactions B: Applications. 2020;33(11):2215-21. 10.5829/ije.2020.33.11b.13