Design and Analysis of Symmetrical Dual Gate Tunnel Field Effect Transistor with Gate Dielectric Materials in 10nm Technology

Document Type : Original Article

Authors

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, India

Abstract

In this work, a Symmetrical Dual Gate Tunnel Field Effect Transistor (SDGTFET) is proposed with gate dielectric materials in 10nm technology. The electrical performance parameters of this proposed device are investigated using technology computer aided design (TCAD) simulator. The new SDGTFET employing with high-k dielectric material such as hafnium oxide (HfO2) and interfacial layer (IL). The 2nm HfO2 with 30 dielectric constant is used between the interfacial layer and the metal gate on both sides of the device. The variation of the drain current with the varying of gate length, effective gate materials and effective oxide layer thickness of the device is evaluated in this work. By optimizing the proposed device with gate dielectric material the on current gets ∼4.2 times enhanced and the averaged subthreshold swing (SSavg) becomes reduced from 90.2 mV/dec to 53.8 mV/dec. Therefore, the SDGTFET structure has better performance than single material and double material TFET and shows a lower ambipolar current and a better on current to off current ratio.

Graphical Abstract

Design and Analysis of Symmetrical Dual Gate Tunnel Field Effect Transistor with Gate Dielectric Materials in 10nm Technology

Keywords

Main Subjects


  1. Howldar S, Balaji B, Srinivasa Rao K. Design and Analysis of Hetero Dielectric Dual Material Gate Underlap Spacer Tunnel Field Effect Transistor. International Journal of Engineering, Transactions C: Aspects. 2023;36(12):2137-44. 10.5829/ije.2023.36.12c.01
  2. Krishnamurthya A, Reddyb DV, Radhammac E, Jyothirmayeed B, Raoe DS, Agarwale V, et al. Design and Performance Analysis of 6H-SiC Metal-Semiconductor Field-Effect Transistor with Undoped and Recessed Area under Gate in 10nm Technology. International Journal of Engineering, Transactions C: Aspects. 2023;36(12):2264-71. 10.5829/ije.2023.36.12c.16
  3. Mehrabani AH, Fattah A, Rahimi E. Design and Simulation of a Novel Hetero-junction Bipolar Transistor with Gate-Controlled Current Gain. International Journal of Engineering, Transactions C: Aspects. 2023;36(03):433. 10.5829/ije.2023.36.03c
  4. Madan J, Pandey R, Sharma R, Chaujar R. Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET. Applied Physics A. 2019;125(9):600. https://doi.org/10.1007/s00339-019-2900-6
  5. Musalgaonkar G, Sahay S, Saxena RS, Kumar MJ. A line tunneling field-effect transistor based on misaligned core–shell gate architecture in emerging nanotube FETs. IEEE Transactions on Electron Devices. 2019;66(6):2809-16. https://doi.org/10.1109/TED.2019.2910156
  6. Zare M, Peyravi F, Hosseini SE. Impact of hetero-dielectric ferroelectric gate stack on analog/RF performance of tunnel FET. Journal of Electronic Materials. 2020;49:5638-46. https://doi.org/10.1007/s11664-020-08315-3
  7. Raj A, Singh S, Priyadarshani KN, Arya R, Naugarhiya A. Vertically Extended Drain Double Gate S i 1− x G ex Source Tunnel FET: Proposal & Investigation For Optimized Device Performance. Silicon. 2021;13:2589-604. https://doi.org/10.1007/s12633-020-00603-1
  8. Radhamma E, Vemana Chary D, Krishnamurthy A, Venkatarami Reddy D, Sreenivasa Rao D, Gowthami Y, et al. Performance analysis of high-k dielectric heterojunction high electron mobility transistor for rf applications. International Journal of Engineering, Transactions C: Aspects. 2023;36(9):1652-8. 10.5829/ije.2023.36.09c.09
  9. Gowthami Y, Balaji B, Srinivasa Rao K. Performance Analysis and Optimization of Asymmetric Front and Back Pi Gates with Dual Material in Gallium Nitride High Electron Mobility Transistor for Nano Electronics Application. International Journal of Engineering, Transactions A: Basics 2023;36(7):1269-77. 10.5829/ije.2023.36.07a.08
  10. Keighobadi D, Mohammadi S, Mohtaram M. Recessed gate cylindrical heterostructure TFET, a device with extremely steep subthreshold swing. Transactions on Electrical and Electronic Materials. 2021:1-7. https://doi.org/10.1007/s42341-021-00321-4
  11. Rani CSH, Bagan KB, Roach RS. Improved drain current characteristics of germanium source triple material double gate hetero-dielectric stacked TFET for low power applications. Silicon. 2021;13:2753-62. https://doi.org/10.1007/s12633-020-00556-5
  12. Gowthami Y, Balaji B, Rao KS. Design and performance evaluation of 6nm hemt with silicon sapphire substrate. Silicon. 2022;14(17):11797-804. https://doi.org/10.1007/s12633-022-01900-7
  13. Kumar PK, Balaji B, Rao KS. Performance analysis of sub 10 nm regime source halo symmetric and asymmetric nanowire MOSFET with underlap engineering. Silicon. 2022;14(16):10423-36. https://doi.org/10.1007/s12633-022-01747-y
  14. Howldar S, Balaji B, Srinivasa Rao K. Design and Qualitative Analysis of Hetero Dielectric Tunnel Field Effect Transistor Device. International Journal of Engineering, Transactions C: Aspects 2023;36(6):1129-35. 10.5829/ije.2023.36.06c.11
  15. Anvarifard MK, Orouji AA. Enhancement of a nanoscale novel Esaki tunneling diode source TFET (ETDS-TFET) for low-voltage operations. Silicon. 2019;11(6):2547-56. https://doi.org/10.1007/s12633-018-0043-6
  16. Dixit A, Gupta N. A compact model of gate capacitance in ballistic gate-all-around carbon nanotube field effect transistors. International Journal of Engineering, Transactions A: Basics. 2021;34(7):1718-24. 10.5829/IJE.2021.34.07A.16
  17. Sharma S, Chaujar R. Band gap and gate metal engineering of novel hetero-material InAs/GaAs-based JLTFET for improved wireless applications. Journal of Materials Science: Materials in Electronics. 2021;32(3):3155-66. https://doi.org/10.1007/s10854-020-05064-1
  18. Chakrabarty R, Roy S, Pathak T, Kumar Mandal N. Design of Area Efficient Single Bit Comparator Circuit using Quantum dot Cellular Automata and its Digital Logic Gates Realization. International Journal of Engineering, Transactions C: Aspects. 2021;34(12):2672-8. 10.5829/ije.2021.34.12c.13
  19. Gopal G, Varma T. Simulation-based analysis of ultra thin-body double gate ferroelectric TFET for an enhanced electric performance. Silicon. 2022;14(12):6553-63. https://doi.org/10.1007/s12633-021-01428-2
  20. Roy A, Mitra R, Kundu A, editors. Influence of channel thickness on analog and RF performance enhancement of an underlap DG AlGaN/GaN based MOS-HEMT device. 2019 Devices for Integrated Circuit (DevIC); 2019: IEEE.
  21. Gedam A, Acharya B, Mishra GP. Junctionless silicon nanotube TFET for improved DC and radio frequency performance. Silicon. 2021;13:167-78. https://doi.org/10.1007/s12633-020-00410-8
  22. Rafiee A, Nickabadi S, Nobarian M, Tagimalek H, Khatami H. Experimental investigation joining al 5083 and high-density polyethylen by protrusion friction stir spot welding containing nanoparticles using taguchi method. International Journal of Engineering, Transactions C: Aspects,. 2022;35(6):1144-53. 10.5829/ije.2022.35.06c.06
  23. Alassery F, Khan AI, Shaik MS. Implementation of Advanced Tunnel Field Effect Transistor (DP-TFET) for High Power Switching Applications. Silicon. 2022;14(15):9589-93. https://doi.org/10.1007/s12633-021-01647-7
  24. Sahu SA, Goswami R, Mohapatra S. Characteristic enhancement of hetero dielectric DG TFET using SiGe pocket at source/channel interface: proposal and investigation. Silicon. 2020;12(3):513-20. https://doi.org/10.1007/s12633-019-00159-9
  25. Balaji B, Srinivasa Rao K, Girija Sravani K, Bindu Madhav N, Chandrahas K, Jaswanth B. Improved drain current characteristics of hfo2/sio2 dual material dual gate extension on drain side-tfet. Silicon. 2022;14(18):12567-72. https://doi.org/10.1007/s12633-022-01955-6
  26. Kumar PK, Balaji B, Rao KS. Halo-Doped Hetero Dielectric Nanowire MOSFET Scaled to the Sub-10 nm Node. Transactions on Electrical and Electronic Materials. 2023:1-11. https://doi.org/10.1007/s42341-023-00448-6
  27. Emami N, Kuchaki Rafsanjani M. Extreme learning machine based pattern classifiers for symbolic interval data. International Journal of Engineering, Transactions B: Applications,. 2021;34(11):2545-56. 10.5829/IJE.2021.34.11B.17
  28. Fouladinia F, Gholami M. Decimal to excess-3 and excess-3 to decimal code converters in QCA nanotechnology. International Journal of Engineering, Transactions C: Aspects. 2023;36(9):1618-25. 10.5829/ije.2023.36.09c.05
  29. Gowthami Y, Balaji B, Rao KS. Design and Analysis of a Symmetrical Low-κ Source-Side Spacer Multi-gate Nanowire Device. Journal of Electronic Materials. 2023;52(4):2561-8. https://doi.org/10.1007/s11664-023-10217-z
  30. Meriga S, Bhowmick B. Deep Insight into Raised Buried Oxide SOI-Fe TFET and It’s Analog/RF and Linearity Performance Parameters. Transactions on Electrical and Electronic Materials. 2023:1-14. https://doi.org/10.1007/s42341-023-00480-6