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ABSTRACT

The aim of this paper is to propose a new method for controller design using control places in special
hybrid Petri Nets called Hybrid-Time Delay-Petri Nets (HTDPN). Most control approaches use the
control place of the supervisory control for discrete Petri Nets. However, the new approach uses the
place to control the linear dynamical systems which are modeled by the HTDPN tool. This controller
consists of control places, transitions, arcs connected to the control place, and weights of the arcs, which
are added to the HTDPN model of the system. In this paper, there are three main steps for the controller
design. In the first step, the plant is modeled using the HTDPN tool, and in the second step, a controller
is designed using the novel method presented. Finally, the weights of arcs connected to the control place
are computed using the Lyapunov function theory, which guarantees closed-loop stability. The main
advantage of this method is the possibility of using continuous and discrete places simultaneously in
nonlinear systems. Unlike most previous approaches, in the proposed method, an expert designer can
create a favorite controller in the graphical environment, and then apply changes to the mathematical
environment of the HTDPN model. The performance of the proposed controller is evaluated by a
comparative study. The comparison criteria in this article are: error criteria (IEA), energy consumption,
rise time, settling time and simulation run time. The simulation results showed that the proposed method
was 45% and 600% better conditions than the Model Predictive Conrol (MPC) and optimal control

methods, respectively.

doi: 10.5829/ije.2023.36.10a.12

1. INTRODUCTION

In new systems such as traffic systems, biological
systems, etc., they are described by differential
equations, therefore, they are motivated to develop new
methods for analysis, modeling, evaluation and control of
systems [1-3]. One of the most successful modeling
approaches is Petri Nets [4].

The control of dynamic systems which are modeled
by the HTDPN tool has been a matter of great interest. In
the last decade, several researchers have been working on
the control based on discrete Petri Nets [5, 6].
Supervisory control is one of the essential methods for
controller design in Discrete Event Systems (DES) using
Petri Nets tool [7]. In supervisory control, the behavior
of the system is controlled by adding places and
transitions [8]. Demongodin and Koussoulas [9, 10]
modeled a controller which was designed based on
supervisory control for the industrial system by
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differential Petri Nets. In the articles mentioned,
differential equation modeling was carried out by Petri
Nets, which requires the use of new definitions such as
discrete implicit differential transition. Saleh et al. [11],
a hybrid adaptive Petri Nets is introduced, in which
transition commutes between discrete and continuous
behavior depending on a threshold. Ruan and Li [12], for
the control of traffic, first, a macroscopic model based on
continuous Petri Nets is proposed, and then predictive
control laws that improve the behavior of traffic systems
are designed. Taleb et al. [13] designed a model
predictive control for timed continuous Petri Nets
systems. In the methods mentioned, controllers are
designed based on the system variables that are generally
flow. Continuous systems theory is often described by
continuous-time differential or discrete-time differential
equations. Therefore, this tool could not be practical to
apply to all dynamic systems [14, 15].
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Previous attempts have been made to model and
control continuous linear dynamic systems, which are
modeled by differential equations using Petri Nets.
Dideban. and Ahangarani Farahani [16] also designed an
output feedback controller based on modified Petri Nets.
Modified Petri Nets was introduced by Dideban et al.
[17], where a discrete transfer function is modeled by
Petri Nets. A PID controller based Petri Nets was also
proposed by Dideban et al. [18] and Ahangarani Farahani
[19]. In these works, some new concepts were added to
the conventional Petri Nets, making them rather difficult
to be analyzed. The state feedback controller by the
Continuous-Time Delay-Petri Nets tool without adding
new elements to Petri Nets has been presented by
Ahangarani Farahani and Dideban [20]. In the following,
the Hybrid Time Delay Petri Net is introduced as a tool
for modeling systems with the current sample time
signals, including various subsystems, and multi-mode
systems [21]. Then a PID controller is designed in which
the gains are tuned by the intelligent method. In all the
introduced tools, none of the methods provide a
controller design based on the graphical and
mathematical capabilities of the continuous Petri Nets
tool for dynamical systems.

The control place approach is an important method in
the control of discrete event systems modeled by Petri
Nets. Ma et al. [22] developed an algorithm an optimal
control sequence in Petri Nets for designing, which
drives a plant net from a source marking to a set of target
markings without passing any pregiven forbidden
markings. A shunt active power filter (SAPF) based on a
three-phase serial flying capacitor multilevel inverter
(FCMI) controlled using a Petri net tool is presented by
Othman et al. [23]. This controller design is based on the
structure of the investigated system and according to the
capabilities of the Petri net for the control of discrete
event systems. Bashir et al. [24] attempted to prevent
deadlock in a manufacturing system, the design of
supervisory control which was done based on the Petri
Net tool and using the combination of place and transition
control. Here, the combination of place and transition has
been given flexibility to the designer. Chenand Hu [25]
used the developed place-invariant control in automated
manufacturing systems based on the Petri Nets tool. In
this article, the extended place-invariant control principle
is initially proposed. Second, three types of place-
invariant, from the special to general, are developed.
Finally, the use of this principle is presented to simplify
the design of supervisory control. In these articles, all
methods and controllers based on Petri Nets are designed
for discrete event systems and to prevent the system from
entering unsafe conditions. Therefore, these methods
cannot be used for dynamic systems that are described by
differential equations and discrete events, such as
HTDPN.

The principal contribution of this article is to use the
idea of control place to design controllers in linear
dynamic systems which are modeled by the HTDPN tool.
In the proposed approach, the use of control places
technique, which is used for the supervisory control of
conventional Petri Nets, is extended to HTDPN. Unlike
classic control methods for dynamic systems, an
important feature of this novel controller is the use of
Petri Nets graphics capabilities. In this method, the user
can design the controller by adding control places to the
HTDPN model in the graphical environment. The
designed controller is easily applied to the mathematical
part by the incidence matrix. Therefore, controller design
is done in the graphical environment instead of the
mathematical environment. In other words, here, the
controller design methods for discrete event systems are
used to design the controller of the dynamic system
modeled with a HTDPN. In this paper, the relationship
between the control places and other components are
determined using the GA (Genetic Algorithm) method.
Another innovation in this article is to present the use of
Lyapunov's theory to prove stability in Petri Nets based
on the incidence matrix. Here, by applying the Lyapunov
stability theory on the incidence matrix, the weights of
the arcs connected to control place or the control
coefficients are obtained. The ability to use continuous
and discrete places simultaneously enables us to design a
suitable controller in some nonlinear systems. Another
innovation of this paper is the use of Lyapunov stability
concepts for the mathematical part of the Petri Nets and
its use for controller design. The simulation results show
that the implementation of this control method using Petri
Nets capabilities has better accuracy and less energy
consumption than optimal control and MPC Method.

The paper is structured as follows. In section 2, the
main concepts, definitions, and mathematics of the
Continuous and Hybrid-Time Delay-Petri Nets are
proposed. Controller design and stability proof based on
Lyapunov theory in the HTDPN is presented in section
3. The dynamic model of the capsubot robot and the
implementation of the control method on the system are
presented in section 4. Section 5 is dedicated to
simulation results, and finally, the conclusion is given in
section 6.

2. CONTINUOUS AND HYBRID-TIME DELAY-PETRI
NETS

In this section, the CTDPN and HTDPN tool, definitions,
and properties are provided. In addition, the
mathematical equation has been developed for the
HTDPN tool.

A CTDPN is a mathematical and graphical modeling
tool for dynamical systems, which are described by
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difference equations. The CTDPN tool is defined as

follows [20]:
Definition 1: A Continuous -Time Delay-Petri Nets
(CTDPN) is a 6-tuple PN¢ =

{P, T,W (Pre), W* (Post), M, T} such that:
P ={p;,ps -, 0} and T = {t;, t,, -+, t,, } are finite sets
of continuous places and transitions, respectively.

Pre and Post are the incidence functions that specify
the multiplicity of arcs between places and transitions.
MyeR is the initial marking vector, and T is the time
interval between each run cycle. To model the continuous
dynamic system using the CTDPN, the following
assumptions and rules should be considered:

Continuous transitions are corresponding to time
delays.

In the CTDPN, M € R™.

The enabling degree of a transition ¢; at a marking M (p;)
is defined as:

M(p;)

q(t,m) = min (Pre(pi,tj)) )

i:piE°tj

A continuous transition ¢; € T is enabled, i.e., it can fire,
if

IM(p)| > 0Vvp; € t;

where °t; = {p; € P|Pre(p;, t;) > 0} is the input place.
In the CTDPN tool the weights of the arcs can be negative
or non-negative real numbers.

Property 1: The continuous transitions speed in the
CTDPN used in the linear system are determined by the
input place tokens (M (p;)) divided by the sampling time
(T5).

M(py)

Vi =T )

Proof: Proof is given in appendix.
Property 2: The fundamental state equation of the
CTDPN can be written as follows:

mmn) =mn—-1)+Wmn—-1) (3)

Proof: Proof is given in appendix.

Property 3: The eigenvalues of the dynamical system are
equal to the eigenvalues of the W *matrix by removing
the value of zero.

Proof: Proof is given by Ahangarani Farahani and
Dideban [20].

A HTDPN is a modeling tool to model dynamic systems
such as systems with current sample time signals, system
including various subsystems and multi-mode systems.
Definition 2: A HTDPN is defined as PNy =
{P, T, W (Pre), W*(Post), M,, h, T}, where

P ={p;,ps ., 0n} and T = {t;, t,,**, t;,} are a finite,
not empty, set of continuous and discrete places and
transitions, respectively. Pre and Post are the backward
and forward incidence mappings. M, and T, were
introduced in definition 1. h: PUT — {C, D} is a hybrid
function which indicates whether each node is a discrete

node or a continuous node. In HTDPN, discrete
transitions are initially executed [20].

To illustrate this tool, consider the net in Figure 1. All
concepts that can be modeled to HTDPN are shown in
this figure. Places p; and p, and transitions t,and t, are
continuous places and transitions, respectively. Places p,
and p, and transitions t; and t, are discrete places and
transitions, respectively.

Here, transition ¢, is enabled only if there is at least
one token in p; and M(p,) > 0. Therefore the speed of
transitions t; and t,can be written as follows:

_ M) - M®,) )

% )
1 T, 2 T

However, the following assumptions and rules should be
considered:
Continuous transitions are corresponding to time delays.
In the HTDPN, continuous places contain real values,
while discrete places contain non-negative integer
values.

A continuous transition ¢; € T is enabled, if each of
the continuous and discrete input places to transition t;
have the following condition at the same time:

IM(p)| > Pre(p,t;) &  Ifp, D-Place .
VPis1 € tj
[M(p)| >0 If p; C-Place
The firing speed of the continuous ¢; € T is:
v = M@y If p; C-Place %)

Ts

A discrete transition t; is enabled at discrete M (p;), if
M(py) = Pre(p;, t)

In the first step, the discrete transitions must be
evaluated and fired (if enabled) before continuous
transitions. Therefore, the fundamental equation for the
discrete part of the HTDPN is:

b ol

where X (n) is the firing vector of discrete transitions.

The fundamental equation for the continuous part can
be written as follows:

() (n—1) "
el = e o w ] 7)

Figure 1. A hybrid Petri Nets model
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where the incidence matrix is written as:

-1 0 0 0
1 -1 o of_[we
=10 0o -1 1 _[WCD

0 0 1 -1

WDC] (15)

WD

where W€ and WP correspond to arcs among continuous
and discrete nodes, respectively. WP¢ corresponds to
arcs among discrete transitions and continuous places.
Arcs among continuous transitions and discrete places
(W€P) are zero and their effects are given in the VV vector.

In this paper, the discrete transitions between
continuous places were not used.

[M(pl(n—l))l
Tg

V(n) = I.M(vzgl—n)

.

0
For the X(n) vector, if M(p;) = Pre(p;t;), the
transition can be fired. In this example, t; can be fired
and then X, (n) = 1and for the transitiont,, X;,(n) =
0. The simple hybrid system mentioned above has two
modes. Therefore, this system can be converted into two
continuous systems, in the first mode, the place p; has a
token and in the second, p, has a token. To examine the
stability property, it is necessary to construct the matrix
J¢t . This matrix is defined in definition 3.
Definition 3: In each mode, the augmented continuous
incidence matrix j¢* is extracted from the system
incidence matrix W as follows:

Jer=wer s WP img (k)] ©)

Where m, can be obtained as:

(®)

And X is the firing vector of discrete transitions.
3. CONTROLLER DESIGN BASED ON CONTROL

PLACE IN THE HTDPN TOOL

A detailed description of the controller design algorithm
based on the HTDPN tool is presented in five steps as
follows:

Algorithm 1:

Step 1. Calculate the open-loop poles of the system in
each discrete mode using the augmented continuous
incidence matrix J¢* based on property 1 [26].

det(zl —J°*) =0 (11)
xl(t) = xz(t)
X, (t) = —%(M +m)g.sign(x,) + %
X3(t) = x4(t)

. , 1
%4 () = —Uppg.sign(xy — x3) — mY

mg.sign(x, — x;) + Lu

M

1871

If the system in each mode is stable, there is no need to
design a controller; otherwise, go to step 2.

Step 2. Add a control place to the HTDPN model of the
system.

Step 3. Construct the /5%, in each mode. The dimensions
of Jet,are (n + 2) x (n + 2).

Step 4. Obtain the fundamental equation of the system in
each mode.

mc(n) = mc(n - 1) +]CUTS (12)
where
= =D (13)

Ts

So equation Equation (12) can be rearranged to Equation
(14):

me(n) =J*mc(n—1) (14)

Step 5. Calculate k; as the system is stabilized. Here, the
Lyapunov method can be used.

A Lyapunov function can be exploited for the
synthesis of nonlinear control systems. First, a Lyapunov
function V must be found for the closed-loop system and
then a control law is designed, which makes the
AVnegative for the required region of attraction [27]. For

this purpose, the following Lyapunov’s function
candidate is defined:

V(n) =mlPm, >0 (15)
and

AV=V(n)-V(mn-1)<0 (16)
where

AV =ml(n— 1] TP]**m.(n— 1) = mI(n — 1)Pm.(n —
D<0=>AV=mltn—1)J*TP]* —P)m,(n—1) <0
= AV =ml{(n—-1)(=Q)m.(n—1)

where

Q — _(]C+TP]C+ _ P)

In Lyapunov’s method for stability, @ must be a positive
definite constant matrix.
The flowchart of this algorithm is shown in Figure 2.

17

4. CONTROLLER DESIGN FOR CAPSUBOT ROBOT

4. 1. Capsubot Dynamic Model The capsubot is
selected as the system, that is to be controlled by adding
a control place. The simplified schematic model of the
legless piezo capsule robot is depicted in Figure 3.

A mathematical model of the capsubot system is
derived below [28].

= X(t) = A.X(t) + Bu(t) + £.(t) (18)
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Calculate open-loop poles system
in each mode

Is the
system
stable?

‘ Add a control place to system ‘

Calculate the incidence matrix
in each mode

Design controller based on new incidence
matrix using Lyapunov method in each mode

Il

‘ Calculate k ‘

D ——————
Figure 2. Flowchart algorithm to design a control place
based on the HTDPN model

Piezo
Capsubot Shell (M)
Inner Mass (m)

Y

X1 —
. PS \

Figure 3. The schematic of the legless piezo capsule robot

where
X() = [x1(0) %) x3(t) x0T
and

%1 (t) = x,(t)

%,(t) = —1.3571.sign(x,) + 0.0523.sign(x, — x,) + 1.111u

%3(t) = x4 ()
%4(t) = —0.0785.sign(x, — x,) — 1.6667u

0100 [E]
Ac:g 8 8 2,3C=|fg|

0000 [—iJ

| (M +m)g. sign(xz()) + 5 mg. sign(x, — x)
fc(t)=| M o

l g signe, — ) :

The parameters of the capsubot robot used are given in
Table 1.

A mathematical model of the capsubot microrobot is
described as follows:

Finally, the HTDPN with step input for this model is
demonstrated in Figure 4.

Here 0% is the smallest measurable value in a digital
system. The incidence matrix is depicted in Figure 5.

The HTDPN tool models multi-mode systems very
well and provides a clear graphical model for analyzing
and designing the controller. This system operates in four
modes.

The augmented continuous incidence matrix for each
mode is given in Table 2.

4.2.Control Design Based on Place  The dynamic
model of the aforementioned capsule robot is a combined
nonlinear model that consists of a discrete event part and
a linear dynamic part. Therefore, the proposed technique
is very difficult to control. In the following, the control
method is presented in 5-steps.

Step 1. The open-loop poles of the system in each mode
are calculated as:

TABLE 1. Parameters of the capsubot
My(kg) my(kg) pu(N/M/s) U (N/M/s) g (m/s?)
0.9 0.6 0.083 0.008 9.81

(19)

After converting the dynamic system from continuous-time system to discrete-time system with the sample time T, =

0.01(s), the resulting state space is:

x; (k) = x,(k = 1) + 0.01x,(k — 1) — 1.3571 X 10~*. sign(x, (k — 1))
x3(k) = x,(k — 1) — 1.3571 x 10 2. sign(x,(k — 1)) + 0.0111u(k — 1)

(20)

x4(k) = x4(k — 1) — 0.0785 x 10~ 2. sign(xs(k — 1) — x,(k — 1))

—0.0167u(k — 1)



A. Ahangarani Farahani and A. Dideban / IJE TRANSACTIONS A: Basics Vol. 36 No. 10, (October 2023) 1868-1879 1873

pr=u(k)

1.3571x10°% t

-0.0167

P=x1(k)

-1.3571x10?

-1.3571x10*

Pe=xz(K)=0

t
1

1.3571x10*

0.00785x10°

tu
1

-0.00785x107

ts

Pu=Xa(K)-%2(K)<0

Figure 4. The HTDPN model of the capsubot

0 0 0o 0 O 00 O 0O 0 O 0 0 0 0
0 10000 0 0 00 0O O 0 0 -13571x10"* 1.3571x107* 0 0
00111 0 0 0 O 0 0 0 0 0 0 -13571x10"%2 1.3571x1072 0 0
0 0 0 1 0001 00 0 0 0 O 0 0 0 0
00167 0 0 0 1 00 0O O 0 O 0 0 0.00785 x 1072  —0.00785 x 1072
wr=| o 0 1 0 0 0000 0 O 0 0 0 0
0 0 -1 0 1 00 0 0 0 o 0 0 0 0
0 0 0 0 O 00 1 0 0 O 1 0 0 0
0 0 o 0 O 00 O 1 0 O 0 1 0 0
0 0 o 0 O 00 O 0 1 o0 0 0 1 0
0 0 0o 0 O 00 0O 0 0 1 0 0 0 1
Figure 5. Matrix incidence presentations
TABLE 2. The incidence matrix for capsule robot in four modes
Mode Condition The augmented continuous incidence matrix
0 0 0 0 0 0 1
0 1 001 0 0 —13571x107*
1 x(k—-1)>0& jer=|0011L 0 1 0 0 —1.3571 x 1072
x,(k—1) —x,(k—1)>0 0 0 0 1 0.01 0
—00167 0 0 0 1 —0.0785x1072
0 0 0 0 0 1
0 0 0 0 0 0 1
0 1 001 0 0 —13571x107*
9 Xk-1)>0& jer=|0011L 0 1 0 0 —1.3571 x 1072
X, (k—1)—x,(k—1) <0 0 0 0 1 0.01 0
—00167 0 0 0 1  0.0785x1072
0 0 0 0 0 1 :
0 0 0 0 0 0 ]
0 1 001 0 0 13571x10™*
3 x(k-1)<0& jer=| 00111 0 1 0 0 1.3571 x 1072
x,(k—1)—x,(k—1)>0 0 0 0 1 0.01 0
—00167 0 0 0 1 —0.0785x107?
0 0 0 0 0 1
0 0 0 0 0 0
0 1 001 0 0 13571x10™*
4 x(k-1)<0& jer=|00111 0 1 0 0 1.3571 x 1072
x,(k—1)—x,(k—1)<0 0 0 0 1 0.01 0
—00167 0 0 0 1 0.0785x1072
0 0 0 0 0 1
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z=1
z,=1
z3=1
zy=1

lzs = —0.0001 + 0.0105(
26 = —0.0001 — 0.0105i

The system is unstable, so it requires a controller.

Step 2. Add a control place to the HTDPN model of
the system. The HTDPN model of the system is shown in
Figure 4.

Switch
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The HTDPN model of Equation (19) with the
controller is depicted in Figure 6.
In Figure 6, transitions t,¢, t,7, t;5 and t;4 act as a switch,
and by placing the robot in any mode, these transitions
determine which control coefficient to use.

Step 3. The augmented continuous incidence matrix
<t Jis structured in Table 3.

|1.3571x107
Z=a 08

13571710

=

1.3571x10°

-0.00785x107]

000785107

Pa=xu(K)xa(K):

Pk xe(K)<0

Figure 6. The HTDPN model of the system with Equation (27)

TABLE 3. The incidence matrix for capsule robot with control place in four modes

Mode Condition The augmented continuous incidence matrix
00 0 0 0 0 0
01 00l 0 0 —13571x10"* 0
x(k—1)> 0 & 00 1 0 0 -13571x102 00111k,
1 < =lo 0 0 1 001 0 0
Xy(k =1 —x(k=1) >0 00 0 0 1 —00785x102 0
00 0 0 0 1 ~0.0167K,
1 0 0o o0 1 0 0o
00 0 0 0 0 0
01 001 0 0 —13571x10"* 0
o (k—1)>0& 00 1 0 0 -13571x10"2 0.0111K,
2 =0 0 0 1 001 0 0
(k=1 —x(k=1) <0 00 0 0 1 00785x10°2 0
00 0 0 0 1 ~0.0167K,
1 0 0o o0 1 0 0o
00 0 0 0 0 0
01 000 0 0 13571x10~* 0
o (k—1) < 0& 00 1 0 0 13571x102 0.0111K,
3 < =lo 0 0 1 001 0 0
%k =1 —x(k =1 >0 00 0 0 1 —00785x102 0
00 0 0 0 1 —0.0167K,
1 0 0o o0 1 0 0o
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x(k-1)<0&
x,(k—1) —x,(k—1) <0

3%
<
|
=)
cocoococoro

0 0 0 o0 0 0
0 001 0 0 1.3571x10™* 0 ]
[0 1 0 0 13571x1072 0.0111K, |

0 1 0.01 0 0 |
[o 0 0 1 00785x1072 o |
lo 0 0 o0 1 —0.0167K4J
1 0 0 1 0 0

Step 4. Obtain the fundamental equation of the system.

m.(n) =m,(n—1) + /%

Step 5. CalculateK; as the system is stabilized with the

Lyapunov method.

V=mI(n)Pm.(n) >0

AV =mI(n— 1Pt —P)m.(n—1) <0 = AV
=m{(n - 1D(=Qm(n—1)

Here, the genetic algorithm method is used to calculate

the control coefficients. The genetic algorithm must

satisfy Equation (3) and also minimize the following

fitness function:

Fopj = (24(8) = x4q(0)° (1)

The parameters of the genetic algorithm for the system
are shown in Table 4.

The convergence trends in the GA for the controller
are shown in Figure 7.

Consequently, the K; for each of the modes are given
in Table 5.

5. SIMULATION RESULTS

In this section, the performance of the controller design
algorithm will be presented using a control place based
on the HTDPN model. In this paper, to investigate the
performance of the introduced method, this method is

TABLE 4. The Parameters of the GA.
Elite Count

Generations Crossover Fraction

50 3 0.7

Best: 42.2864 Mean: 42.301

+  Bestfitness

Fitness value

42.35

423 R

4225
0

5 10 15 20 25 30 35 40 45 50
Generation

Figure 7. The GA convergence trend in the controller

TABLE 5. Control coefficients of the capsule using Lyapunov
theorem.

Mode Condition Gain

. (k= 1) >0 %x;(lé “D-xl- g _gog

, x(k=-1)>0 %xi(lé “D-xnl- p 17436
5 X(k—1) < ozil)x;(lé—l)—Xz(k— K; = —16.121
. x,(k—1)<0 %xi(lé -1 —x(k— K, = —16.508

compared with the MPC. Figure 8 shows the capsubot
step response in the proposed approach and MPC.

A comparison of the results in Figure 8 shows that the
HTDPN response is stable and the proposed control
method converges faster than MPC.

Figure 9 and Figure 10 depict capsubot velocity and
inner mass velocity, respectively.

These figures show that the inner mass velocity and
robot velocity of the proposed method has less oscillation
and is smoother than the predictive control method;
therefore, the result can be easily implemented.

The input signal in the proposed approach and MPC
method is shown in Figure 10.

Figure 11 shows that the input signal in the proposed
approach is smoother than the predictive control method.
This is while the input signal peak is higher in the
presented method. Energy consumption can also be
calculated as follows:

W =S, U@D).00(0) (22)

Capsubot Position (m)

HTDPN | |
= = =MPC

o 1 2 3 4 5 6 7 8 9 10
Time (Sec)
Figure 8. The output of the proposed approach and MPC
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The integral absolute error (IAE) is commonly used
in the design and evaluation of practical control systems'
performance. The IAE is calculated as follows:

IAE = X1, le(D)] (23)

Table 6 shows a comparison of different criteria for
the four simulated methods.

Here, for a more accurate comparison of these
methods in Table 5, these parameters are normalized as
below:

Design parameter value (24)

S =

Desired value

The total of numbers is a criterion for comparing
these methods. Table 7 illustrates these normalized
criteria.

As Table 7 clearly shows, according to the design criteria,
the control place scheme for dynamic systems has proper
performance in comparison to the MPC. This controller
is designed according to the capacity of the HTDPN tool.
Therefore, the designer can perform the desired
controller in the graphical environment of the HTDPN
tool. Finally, the design result is applied in the incidence
matrix for use in the simulation. In addition, the
simulation of the system mentioned above by our novel
algorithm and the conventional one via the same
hardware configuration relays a significant advantage of
the new method, which is time efficiency. For future
works, it is suggested that other control design algorithms
such as fuzzy and optimization methods be implemented

TABLE 6. Comparison of the controller design criteria for the
different methods.

Proposed Optimal

% © Method method MPC Control cLe
| E’;ﬁ;%ption g 01617 032 01372 03032
. [;;; . "'| ' riiva 1AE (m) 5572 19.075 581.8096  56.087
E" } :“ "”"‘- wiAped vy Rise Time (S) 0.2119 2406  6.8857 6.8
ST T e s s s e oy Settling Time (S) 0.4651 4319  8.4218 8.24
Figure 11. The input signaITI:; (tSrT: proposed approach and Force Peak () 25 4 1518 44158
MPC method Run Time () 0733 0951 09689  0.8974
TABLE 7. Comparing the normalized parameters for the different methods
Method ;
Normalized Values Proposed method MPC Optimal Control CLC
Energy Consumption 1.1794 2.5675 1 2.865
IAE 1 3.4234 104.4167 10.0658
Rise Time 1 20.366 32.4675 32.091
Settling Time 1 9.2851 18.1159 17.7166
Force Peak 16.4745 2.635 1 291
Run Time 1 1.2963 1.3208 1.223
Sum of NV 21.6539 39.5733 158.3209 66.871
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with the HTDPN tool and the results be compared with
the proposed method.

6. CONCLUSION

In this paper, a novel method for controller design was
presented in the environment of the HTDPN tool. In this
approach, the desired controller was designed by adding
control places in the graphical environment of the
HTDPN model system. Using the properties of the
HTDPN tool, the controller designed in the graphical
environment was transferred to the mathematical
environment. Here, the control place technique used in
the design of supervisory control in conventional Petri
Nets was extended to a HTDPN. Then, by applying
Lyapunov's theory to the incidence matrix, the
coefficients of the controller were extracted. This
controller guarantees that the system was stable. In
addition, the control place inputs were determined by the
GA method. To prove the performance of the controller,
this method was implemented in the capsubot model. It
was obvious that this method simplified system analysis
and controller design. In addition, due to the use of
environment matrices for changes of system states and
algebraic operations instead of solving equations, the
proposed approach provides a faster mathematical
algorithm that can reduce simulation time and
complexity for complex systems. Additionally, the
results clearly showed that this approach could improve
the performance of the controller design.

For future work, it is suggested that the analysis of
some system properties, such as controllability and
visibility, which are extracted using the state space,
should also be investigated and analyzed in modeling
using the HTDPN tool.
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8. APPENDIX

The proof of the property 1 is as follows:
Proof: Due to the difference equations, the coefficient of

the first side of the equation is equal to 1, therefore, in the
CTDPN model, this relation always holds; Pre(p;, t;) =
1, therefore:

() = min, (M(p0) (25)

a(tym) = min Pre(pitj))  ip;e

i:p; = tj
Since in the CTDPN, the maximum speed of a transition
is assumed infinity; therefore, we can suppose that all of
the tokens in the places before a transition tj are
discharged at time T, and then the transitions speed is a
function of enabling degree for this transition. Therefore:

ft1+TS (t)dt— mln (M(pl))

fttl1+Ts v (©)dt = vj(t) (& + Ts — t1) = (26)

_ M@y
B ()T = (1) = 22

The proof of the property 2 is as follows:
Proof: The fundamental equation for timed Continuous
Petri Nets between times t; and t, is as follows:

m(t,) = m(t,) + ffj Wo(t)dt @27

Ift, =nT, and t; = t, —dt = (n — 1)Ty the following
can be written:

m(nTy) = m((n— DT) + W [, v(O)dt (28)

Here, T, is sample time.
By property 1, the following holds true [26]:

f(:llTsl)T v(t)dt = m((n - 1)TS) (29)

Substituting Equation (29) into Equation (28) and
rewriting it gives:

m(nTs) = m((n— DT;) + Wm((n — DTy) (30)

Therefore, the fundamental equation of HTDPN can be
obtained as:

mn) =mn—-1)+Wmmn-1) (31)
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