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A B S T R A C T  
 

 

Since power systems are susceptible to damages induced by disastrous incidents, the assessment and 
improvement of system resilience are unavoidable as a new goal of planning and operation. On the other 

hand, the expansion of generation and transmission grids constitute an essential part of power system 

planning as it needs a huge budget. So, a primary concern of researchers has always been the optimal 
planning of power systems. This paper studies the emerging concept of resilience, its criteria, and 

indicators, how to enhance it, and the identification of its strengths and weaknesses. It also reviews the 

strategies recommended in the literature to improve power system resilience. The paper briefly reports 
the models for expansion plan analysis and the generation and transmission expansion planning (GTEP) 

tools with or without the target of resilience enhancement, which can be instrumental in future research 

and can be used to estimate the effectiveness of different tools. Furthermore, the paper discusses the 
planning problems, thereby opening the way for further work in future studies. Finally, the study presents 

the most eminent challenges of GTEP to accomplish better, resilient, and innovative plans to escalate 

power system resilience. 

doi: 10.5829/ije.2023.36.05b.01 

 
1. INTRODUCTION1 
 
Given the growing energy consumption in the 

contemporary world, the investigation into the 

development of power systems has become inevitable. A 

power system refers to a complicated grid composed of 

instruments to meet consumer needs. These facilities 

automatically protect the power systems upon detecting 

a violation of the electrical constraints. In this encoding, 

the operator separates components from the grid to protect 

them against any damage given the system evolutions and 

the implications of a set of predefined events. As load 

increases, operators should adopt proper strategies for the 

long-term development of the power systems by 

systematic planning for the inclusion of grid components. 

On the other hand, the opt performance results from 

decisions on precise planning. Various methods have so far 

been used to provide the best grid expansion design. 

Accordingly, this paper aims to  comprehensively explore 

generation and transmission expansion planning (GTEP) 
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to improve the resilience of power systems. The study 

focuses on expanding the power systems in the generation, 

transmission, and distribution sections. However, 

investment is more significant in the generation and 

transmission sections than in the distribution sections. 

Although GTEP is interdependent, it can be planned 

separately or concurrently. The GTEP is a complicated 

problem with nonlinear and binary variables, and time-

consuming calculations. Restructured electricity markets 

exhibit further uncertainties, e.g., random and logical 

uncertainty, which should consider in the GTEP 

optimization problem. Power systems constantly expose to 

perturbations, so it is necessary to enhance system 

resilience to ensure its capability.   Also, rapid fault 

detection and system recovery to normal conditions in the 

shortest possible time are significant factors in maintaining 

the security of a power system. In this case, the static and 

dynamic effects of hundreds of events should be examined 

in power systems. Table 1 briefly presents a review of 

some models with their advantages and disadvantages. 
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TABLE 1. Review of some models with their advantages and disadvantages 

Disadvantages Advantages Models 

• Lack of electrical properties 
• Power system analysis 

• Quick detection of unexpected emergency behavior 
1.    Topological model 

 

• Consider some basic electrical properties. 

• Provide criteria for combined electrical topology. 

• Rapid assessment of vulnerability, risk probability, 

and robustness 

1.1.  Modified topology model 

 
• Use the maximum flow method 

• Consider the weight of the line and the node 
1.2.  Maximum flow model 

• Lack of attention to dynamic stability 

and waterfall details 

• Pay attention to the most uncertainties during the 

waterfall 
2.  Stochastic simulation model 

 
• Introducing single-track and multi-track modes 

• Adopt an incident tree-based approach 
2.1.  Model (practice) 

 • Indicates non-local diffusion 2.2.  Markov China model 

• Ignores all the details of the waterfall 
• Able to enable risk assessment 

• Simple and compact 
3.  High-level statistical model 

 • The probability of failure is related to the load level 3.1 Cascade model 

 

• Can be considered as an improved CASCADE 

model 

• It considers each component of failure from an early 

stage through a specific distribution 

3.2 Branch process model 

• Detailed information on the power 

system is required 

• Slow simulation 

• Simulation of most of the dynamic mechanisms in 

the waterfall 

• Provides a deeper understanding of cascade failure 

4. Dynamic simulation model 

• The network of this model has a small 

number of nodes, which is very 

different from the real system. 

• In this model, it is assumed that all 

elements of the system are the same 

• System control is done with only a 

small number of parameters 

• There is no clear relationship between 

the model parameters and the actual 

system 

• The protection system is not modeled 

• This model cannot cover the self-

organized crisis caused by the 

interactions between the power plant, 

the operator, and the control system 

• Considers the effects of the operation, automation, 

communications, relay protection, mode of 

operation, and planning 

• Tree contact, line failure due to line heating, and 

UVM model 

4.1. model OPA 

 
• Approve AC power flow 

• Monte Carlo methods are used for risk assessment 
4.2.  Manchester model 

 
• Considers the mechanism of nonlinear dynamics 

• Different relay and load models are involved 
4.3. COSMIC model 

 

• Uses a quasi-dynamic approach 

• The approximate time of evolution is considered 

• Improved reuse simulation 

4.4. Quasi-dynamic multi-time model 

 

• Optimal AC power flux is provided with security 

restrictions 

• Use of quasi-steady state dynamic model simulator 

• Modeling control in the system through time domain 

simulator access to statistical tools 

4.5. ASSESS MODEL 

 

• Considers the actions of breakers 

• Voltage problems are modeled using quasi-steady 

state AC power flux 

4.6. TRELSS model 

 

• Two levels of cascade failure are simulated using 

two different models 

• The effect of various changes in the system is 

simulated 

4.7. PRA dynamic model 

• Validation is difficult • Interaction analysis between network connections 5.  Interdependent models 
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• Precise mechanisms are ignored 

• The vulnerability of the entire system connection has 

been investigated and analyzed 

• Interdependencies are depicted 

• Computer and cyber risks are considered 

5.1. Interconnected models based on 

complex networks 

 • Able to predict system level with tracking details 5.2. Interrelated Markov chain models 

 

• Dynamic nodes, PMU, and local cyber-controlled 

model 

• Frequency, phase angle, and other related 

parameters are involved 

• Control strategies are presented 

5.3. Hierarchical physics-cyber 

models based on congestion 

• It focuses only on parts of the cascade 

failure mechanisms. 
• Focuses on specific parts of the mechanism 6. Other models 

 
• The "cluster" approach is used 

• The goal is to predict possible cascade fractures 
6.1. Potential waterfall model 

 • Considers hidden failure and reuse of the generator 6.2. Hidden error model 

 
• Accurately reproduce historical events 

• Complementary models available 
6.3. Models based on historical data 

 

 

This study provides an up-to-date review of GTEP 

models and tools and concentrates on the essential role of 

this scientific discipline in improving power system 

resilience. Unlike previous studies, this review emphasizes 

the effect of GTEP models on enhancing the resilience of 

power systems. Another contribution of the paper is the 

analysis of the trend of previous studies and the challenges 

that need new expansion models with/without considering 

the power system resilience. 

The remaining parts of the paper are structured as 

below. Section 2 reviews resilience concepts, assessment 

frameworks, and enhancement, as well as its indices. 

Section 3 deals with models and their applications in 

expansion planning. Section 4 discusses the literature on 

the  planning of GTEP that aimed at enhancing power 

system resilience, or did not consider this perspective. 

Section 5 lists and analyzes the challenges of GTEP. 

Section 6 finally concludes the paper with some final 

points. 

 

 

2. THE CONCEPT OF RESILIENCE 
 
Resilience is a dynamic, complicated, and 

multidimensional concept in the field of power systems, 

which has emerged relatively late [1]. Recently, 

disastrous incidents research has focused on the concept 

of ‘resilience’ [2]. Different definitions have been put 

forth for resilience, but they all have similar natures [3]. 

The word resilience is rooted in the Latin word resilio, 

means ‘leaping back’ as a system feature, and implies the 

capability of improvement against destructive events. In 

the simplest sense, power system resilience is defined as 

the capacity of a grid for the timely management of high-

impact, low probability (HILP) incidents, e.g., 

atmospheric incidents and natural disasters [4]. 

Arghandeh et al. [5] resilience defines as ‘the capability 

of a system to keep a continuous flow of power to 

customers by load prioritization.’ The UK Energy 

Research Centre (UKERC) defines resilience as ‘the 

capacity of a power system to tolerate disturbance and 

continue to deliver affordable energy services to 

consumers [6].’ The US office [7] defines this concept as 

‘the capacity of grids to anticipate, absorb, adapt to, 

or/and rapidly recover from a destructive incident’.  Also, 

resilience has been described in terms of the power 

system consistency and recovery during and after a 

disaster [8]. According to Presidential Policy Directive 

(PPD-21), resilience is ‘the ability to prepare for or adapt 

to changing conditions and recover rapidly from 

disruptions’ including ‘deliberate attacks, accidents, or 

naturally occurring threats or incidents’ [9]. In 2009, the 

American Society of Mechanical Engineers (ASME) 

defined resilience as ‘the ability of a system to recover to 

its normal operating conditions after the occurrence of 

disruptive events’ [10]. In 2011, an effective strategy was 

proposed for resilience enhancement. In 2013, a paper 

was published on the economic advantages of a resistant 

power grid focused on grid resilience during natural 

incidents [11]. NIAC’s description of resilience 

encompasses robustness (ability to absorb), which 

implies the ability to absorb shocks and continue to work, 

defined as the system’s resilience against disruption to 

minimize loss. According to Ouyang and Duenas-Osorio 

[12], resilience is the ability of the network to withstand 

damage, continue to work in the event of damage, and 

recover quickly from blackouts. It also includes 

adaptability, i.e., the ability to reduce future losses by 

using learning lessons to reinforce resilience. It refers to 

the endogeneity of the system and minimizes the 

consequences by self-organizing. Finally, the 

reinforcement of any of these four features will 

strengthen the power system’s resilience [13].  

Over 70 definitions can be found for the emerging 

concept of resilience in different papers in different 

disciplines. These definitions shift between the two 

features of adaptation and recovery [14]. The term 

resilience was first introduced in 1973 by Holling [15] to 
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describe how to change perspective on environmental 

systems and behaviors and to describe different 

approaches to resource management. Today, however, it 

has gained more importance in other disciplines [16]. For 

example, extensive effort has been made to describe and 

measure the resilience of power systems.  In 2011, 

resilience was defined using the concepts of power 

system reliability and recovery [17]. In fact, ‘the time 

dimension’ distinguishes resilience from reliability. 

Expansion planning mainly aims to prevent incidents and 

protect the equipment thoroughly. Recently, research has 

been conducted on ‘timely response and rapid recovery’ 

from destructive incidents. Therefore, attaining 

arrangements for resilience has become a chief priority, 

and practical actions should be taken before, during, and 

after incidents to assist the safe operation of power 

systems. After planning, system resilience measurement 

is the main issue [18].  

Therefore, a review paper that describes challenges in 

this field can help the power engineer community to 

develop standard indices and create a framework for its 

assessment and reinforcement. This paper tries to shed 

light on the concept of resilience and its improvement in 

planning for the expansion of power systems during 

disastrous incidents, which has become a hot issue today. 

In this section, we provide a general framework for 

assessing and reinforcing power system resilience based 

on a comprehensive review of authentic literature. Due to 

reinforce system resilience, we first need to determine 

resilience and a proper method for its measurement. So, 

this paper provides a literature review on the definitions 

and measurement of resilience. Then, we discuss them as 

a tool for enhancing power system resilience with an 

emphasis on modern technologies. 

 

2. 1. Key Features of Resilience           Since 

disturbances are unpredictable and may have disastrous 

impacts on vital infrastructure rapidly, resulting in 

considerable losses in the system, so it is very 

complicated and time-consuming to recover the system 

[1]. An important characteristic of power system 

resilience is how to recover it. A resilient power system 

should have the following features. Figure 1 depicts a 

resilience curve [4]: 

1) Before the incident, the system should be 

consistent and resilient enough, and the operator should 

estimate the location and severity of the incident to 

prepare with a series of preventive actions. 

2) After the incident, the operator is informed 

about the situation by advanced information systems, and 

since the system has entered the destruction phase, the 

resilience is jeopardized. At this stage, the key features of 

resilience, including capability, redundancy, and 

adaptive self-organizing, help reinforce resilience and 

reduce vulnerability. 

3) As the disturbance advances, the system is 

damaged. At this stage, emergency prioritization, 

preparation, and coordination adjustment allow the 

operator to identify the main components for the recovery 

system as soon as possible and estimate the damages of 

the incident. 

4) As the impact of the incident is minimized (r0 – 

rb), the system enters the recovery phase at tc, and the 

units are re-installed. Then, the system will enter the post-

recovery phase (rd), at which stage the resilience may no 

longer be as remarkable as the pre-incident resilience (r0), 

i.e., rd < r0. The recovery duration depends on the incident 

intensity and the power system’s resilience features (tf – 

te > td – tc). So, having the critical resilience features, the 

power system can predict the following incidents and 

improve from destruction to the resilient stage. Also, it 

can adapt its performance and structure to alleviate the 

impact of the subsequent incidents.  

 

2. 2. Evaluate the Resilience of the Power System       
Power system assessment and resilience have dominated 

research in recent years, but the present methods in the 

resilience measurement still need development and 

revision. This subsection discusses power system 

resilience assessment. Since research on resilience 

assessment has a multidimensional nature and includes 

both quantitative and qualitative aspects, they are dealt 

with below. 

 

2. 2. 1. Qualitatively Evaluating the Resilience of a 
Power System         The qualitative methods allow 

investigation of power system resilience from 

engineering, social, and organizational perspectives. 

Library work, questionnaires, and personal ratings are 

used as introduced by Carlson et al. [19] to study 

resilience. Analytical methods, e.g., the analytic 

hierarchy process (AHP), can be easily applied in 

decision-making as employed according to Orencio and 

Fujii, [20]. The qualitative assessment of the system 

formulated by Roege et al. [21], and a qualitative 

evaluation of resilience by events analysis is focused  

[22]. 

 

2. 2. 2. Quantitative Evaluation of Power System 
Resilience                 Quantitative evaluation methods 

include simulation-based, analytical, and statistical 

analysis methods, among which simulation-based 

methods can easily be combined with incident scenarios 

and allow easy calculation of incident implications. The 

complicated network model was used by Chanda and 

Srivastava [23], and outage records are used as 

Maliszewski and Perrings [24] for data analysis. An 

analytical method is adopted from Whitson and Ramirez-

Marquez [25] to estimate power outage duration, and a 

statistical model is used as introduced by Nateghi et al. 

[26]. A quantitative assessment method is proposed by 

Nan and Sansavini [27] for resilience composed of two  
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Figure 1. Events-related trapezoidal curve [4] 

 

 

components an integrated metric to measure resilience 

and a hybrid model to show the failure behavior of the 

infrastructural systems. 
 

2. 3. Framework Assessing and Improve 
Resilience                      Research is growing on the 

assessment and enhancement of power system resilience. 

However, no unique framework for resilience has been 

agreed upon, and it still seems necessary to study 

methodologies and research challenges, formulate 

resilience reinforcement strategies, and develop 

definitions and indices. In 2007, the ‘resilience triangle’ 

(see Figure 2) was introduced as a guideline for resilience 

assessment. The resilience of engineering systems is 

proposed by Ren et al. [28] by using the resilience 

triangle model developed by MCEER. Panteli et al. [29], 

indices are presented for resilience quantification in 

which the resilience triangle is developed into a ‘resilient 

trapezoid’. Francis and Bekera [30] proposed a 

framework for resilience assessment, which includes 

identifying and prioritizing the system, defining the 

system domain, describing main goals of the system, 

describing physical, chemical, spatial, and social 

properties, identifying analytical purposes, and analyzing 

system vulnerability and dynamic behavior. Then, 

considering the system performance, resilience goals are 
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Figure 2. Power system resilience framework 
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set, and the stakeholders (profit/cost analysis) participate. 

The last component of the framework is resilience 

capacities, which encompasses absorption, adaptive, and 

recovery capacity. Engineering system resilience was 

explored by Mehrpouyan et al.  [31] using the spectral 

graph approach. Engineering system redundancy, which 

enables increasing system reliability and decreasing 

vulnerability, was studied by Wang and Li [32]. A 

quantitative framework was proposed by Amirioun  et al. 

[33] for the assessment of resilience and the application 

of microgrids in which destruction index (DI), recovery 

index (REI), and microgrid resilience index (MRI) are 

presented for describing the performance of system 

resilience. As depicted in Figure 3, the assessment of grid 

resilience, which is employed to assess grid status, 

compare the grid, and adopt arrangements for its 

resilience reinforcement, includes risk modeling. 

Research around the world has focused on the 

assessment and reinforcement of the resilience of power 

systems against disasters [34]. On the other hand, 

engineers have been challenged by power system 

complexity and the range of incidents. Ouyang et al.  

[35], the features of severe incidents are ignored in 

resilience assessment. The resilience assessment and 

reinforcement strategies are expressed in details through 

the CIM method [36]. This part of the paper mentions 

solutions for resilience reinforcement (see Figure 4). All 

methods of resilience quantification cannot cover all 

resilience stages and overlap with other concepts, e.g., 

robustness and vulnerability [37]. Furthermore, some 

quantification methods for resilience estimation are 

inconsistent with the concept of resilience [38]. So, when 

responding to disturbances, it is necessary to develop a 

method for infrastructure resilience assessment. Zhang et 

al. [39] calculated the resilience during an incident within 

a three-stage framework, and the capacity of grid 

recovery is evaluated by the Monte Carlo simulation after 

the incident. The paper proposed an artificial metric 

system to calculate power system resilience performance. 

Indeed, contemporary research aims to develop 

infrastructures or minimize the losses of disastrous 

incidents [40]. 

 

2. 4. Resilience Metrics                   Some definitions 

of resilience indices are provided by Ayyub [41] and 

discussed in detail by Hosseini et al. [42]. Two indices 

are provided by Barker et al. [43] for resilience, and one  
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Figure 3. Strengthening the resilience of the power system 
 

 

• Relocating facilities and network elements to areas less 

prone to external shocks

• Redundant transmission routes

• Elevating substations

• Upgrading poles and structures with stronger, more 

robust materials

• Undergrounding distribution and transmission lines 

(making the electrical system substantially immune to 

any risk driven by extreme ice and snow events) 

• Rebuild old overhead (OH) lines, preserving their path 

and the general layout of the project, but improving the 

mechanical characteristics

•  redundancy in transmission and distribution system

•  Installation of DER or other onsite generation units

• black-start capabilities

• tree trimming/vegetation management

• Accurate estimation of the weather 

location and severity

• Advanced and adaptive restoration

• Micro grids island operation

• Distributed energy systems 

• Advanced control and protection schemes

• Decentralized control

• Advanced visualization, situation 

awareness systems and priority setting

• Network reconfiguration

• Demand side management

• Adaptive wide-area protection and control 

schemes

• Risk assessment and management for 

evaluating and preparation

A B
 

Figure 4. A) The solution to strengthening the resilience of infrastructure. B) The solution to strengthening exploitation resilience 

[36] 
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new criterion of resilience was discussed by Hu et al. 

[44]. A benchmark was proposed by Zhao and Zeng [45] 

for resilience, considering the impacts of weariness and 

different vulnerability scenarios. Figure 5 displays 

resilience indices. 

 

 

3. MODELS AND THEIR APPLICATIONS IN 

PLANNINGy  
 

A wide range of studies have addressed the modeling of 

vulnerability, outage duration during disasters, and post-

disaster system restoration, and most proposed methods 

assess post-incident damages. This section discusses 

some models used in expansion planning. Various 

models have been presented for resilience assessment, 

e.g., the OPA-based DC model [46] and the AC power 

flux model [47]. The storms damage to a power system 

is estimated by Guikema et al. [48]. Various methods 

have so far been proposed for GEP, including 

mathematical optimization methods, e.g., analytic 

hierarchy process [49], decision tree [50], dynamic 

planning [51], decomposition method [52], meta-

exploratory optimization methods, e.g., evolutionary 

planning, ant colony optimization, frog leaping algorithm 

[53], and PSO [54], and exploratory methods [55]. 

Furthermore, GEP models are based on robust 

optimization in which unknown parameters are displayed 

by an uncertainty set introduced by Mejía-Giraldo and 

McCalley [56]. In 1997, linear planning was first used by 

Garver to solve a TEP problem in which transmission 

losses were ignored, and all constraints were linear [57]. 

Robust optimization (RO) determines unknown 

parameters by a set of uncertainties and uses renewable 

energy resources to describe the unknown nature [58]. 

RO needs less data than SP [59]. TEP has also been 

solved by using mathematical optimization techniques,  
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Figure 5. Resilience metrics 

which are harder to use because of nonlinearity and the 

number of constraints and variables. Branch-dependent 

method [60] and Benders decomposition techniques [61] 

have been used too. Two-stage optimization was used by 

Zhang and Conejo [62] as a framework to address 

uncertainty in TEP. It is also observed that meta-

exploratory optimization methods are employed, such as 

the honeybee algorithm by Meza et al. [63], the chaos 

theory by Hedman et al. [64], the evolutionary 

differential system by Limbu et al. [65], the frog leaping 

algorithm by Roh et al. [66], smart systems such as 

genetic algorithms by Rahimzadeh et al. [67], all are 

useful to find globally optimal solutions but suffer from 

very slow convergence. In addition to classic methods, 

the decomposition methods mentioned above have also 

been employed for analyzing TEP problems. Although 

the Benders decomposition technique exhibits better 

performance when analytic methods are used, other 

methods have also been used to solve TEP problems, 

such as the internal point method to solve linear and 

nonlinear problems and the branch and bound method 

based on the Benders analytic decomposition. 

 

3. 1. Planning to Improve, Evaluate, and Resilience          
Resilience reinforcement plans are divided into long-

term, medium-term, and short-term plans. They are also 

categorized into single-stage problems (static planning) 

or multi-stage problems (dynamic planning). In static 

planning, no time horizon is set, and a plan is developed 

for a certain year, in which it is assumed that all new lines 

should be installed in the first year of the planning 

horizon. But, in dynamic planning, horizon years are 

studied separately, and new lines are specified for each 

year. Indeed, power system planning aims to establish 

resilience in the grid against natural disasters in a more 

robust manner. Studies have presented different 

optimization models, from mixed integer programming 

to quadratic planning and the more complicated 

stochastic planning, and more robust optimization, to 

facilitate the decision process. On the other hand, grid 

resilience should be improved in critical conditions (i.e., 

its capacity to cope with incidents and rapidly recover 

after disturbances) by corrective action – to minimize 

losses and recover the power system to its normal state 

after an incident – and remedial actions – to lead the 

power system to its normal state before an incident after 

load elimination [68]. Resource allocation is another key 

strategy for resilience planning. To minimize the effects 

of natural disasters and improve power system resilience, 

the use of distributed generation (DG) resources was 

proposed by Wang et al. [1], and the operational 

strategies that are converted into mixed integer linear 

programming by the linear scaling method were focused 

by Wang et al. [69]. As well the failure caused by the 

incident has been assessed. Defensive islanded schemes 
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are used by Panteli et al. [70] in which the risk severity 

index, which can record the random and spatial impact, 

is employed to determine the application of these 

schemes. Also, the concept of the fragility curve, which 

expresses the probability of failure as a function of 

meteorological parameters, has been used. When natural 

disasters strike, operation strategies consisting of 

maintenance planning [71] and wide-area control, should 

adjust in response to communication failures [72] based 

on the present status of the system and related equipment, 

as well as the likely future states related to the climatic 

conditions. A power and natural gas system is suggested 

by Shao et al. [73] by replacing the underground gas lines 

to enhance resilience. However, no suggestion has made 

to eliminate the risk of fire. Gao et al. [74] found that 

structure, dynamics, and failure mechanisms of a grid 

determine its resilience. A system of systems (SoS) 

resilience assessment is proposed by Han et al. [75]. The 

dominant and analytical Markov chain technique is used 

by Kwasinski et al. [76] to evaluate and analyze 

resilience with the availability of fuel, and it used by 

Song et al. [77] with the availability of photovoltaics. To 

assess and reinforce the resilience of a three-step system, 

a metric is defined by Li et al. [78] for resilience and 

simulated different scenarios to analyze the grid structure 

against natural incidents. Despite the simplicity of these 

approaches, the simulation techniques, e.g., the Monte 

Carlo simulation, used by Arab et al. [79]; results show 

that they are more appropriate for studies on power 

system resilience. Panteli et al. [80] used mixed integer 

programming to evaluate incident effects on power 

system resilience. A robust optimization model is 

proposed by Xu et al. [81] to minimize restoration time 

and improve resilience. Lei et al. [82]presented a 

scenario-based two-stage stochastic optimization model 

before a natural disaster. In [83], reliability indices, such 

as loss of load probability (LOLP) and expected demand 

not supplied (EDNS) in the presence of microgrids, are 

employed to reinforce power system resilience. Since 

modern intelligent network technologies are effective in 

improving power system resilience and reinforcing 

power systems against extreme incidents [1], modern 

systems should be resistant in addition to purposefulness 

[84]. In research, systems have been hardened by 

underground electricity lines, vegetation cover 

management, so on, which also have been effective in 

resilience enhancement [85]. Wang et al. [86] proposed 

three-level planning to harden power and natural gas 

systems against disastrous incidents. A robust defense 

method is employed. Operation activities to reinforce 

resilience and to make a comparison for distinguishing 

system hardening and operating activities are given by 

Panteli et al. [87], in which frequency load shedding is 

employed for resilience assessment. Research has also 

used preventive strategies, e.g., grid topology re-

adjustment, to enhance resilience. In [88], using a two-

stage integer planning and an analysis-based algorithm, 

it is concluded that preventive response is preferred to 

emergency response in terms of resilience enhancement. 

Resilience can also be increased by topology switching. 

Other methods used to increase resilience and minimize 

outage costs include dynamic circuit reconfiguration 

[89], portable energy storage systems [90], emergency 

generators in the power grid [91], and back-start unit 

preparation [92]. Abbasi et al. [93] performed mixed 

integer nonlinear programming (MINLP) and the post-

outage system restoration is discussed with the aim of 

resilience maximization. Offline restoration planning is 

performed by Golshani et al.  [94] to reinforce grid 

resilience. The plan formulated is stochastic two-stage 

mixed integer linear programming with wind energy 

generation scenarios; the L-shaped integer algorithm is 

used. It is observed that the optimal wind harnessing 

strategy can contribute to improving both the restoration 

process and system resilience. MINLP is performed by 

Sarkar et al. [95] with a grid restoration approach. 

Stochastic planning is performed by Su et al. [96] to 

enhance resilience against disastrous incidents and 

minimize microgrid costs. Various methods have 

presented to model restoration and recovery time during 

natural disasters [97]. Bie et al. [98] proposed resilience 

assessment methods are explored, and a load restoration 

method. In [99], five restoration strategies are used for 

restorating the power and gas grids to analyze resilience. 

It is revealed that the ‘stochastic restoration’ strategy 

brings about the lowest resilience for both systems, and 

the ‘gas aimed’ restoration strategy is related to the 

highest resilience for the gas system. The estimation of 

system infrastructure failure and its post-incident 

restoration was addressed by Marnay et al. [100].  Liang 

et al. [101], proposed microgrids to enhance resilience in 

which loss of load reduction is regarded as the most 

effective resilient source, which has been subject to 

extensive research. Islanded microgrids were utilized by 

Pashajavid et al. [102] with centralized and decentralized 

approaches. A two-level optimization problem was 

studied by Hussain et al. [103] in the presence of multiple 

energy carrier microgrids, subjected to power and natural 

gas grid disturbances. In [104], investment cost and 

resilience enhancements are considered the constraint 

and objective function, respectively. However, 

investment cost and resilience enhancement are the 

objective functions [105] in which stochastic planning is 

performed considering the demand response plan and 

aiming to improve the resilience of microgrids, and 

solving the model by the constraint ε method. Resilience 

planning was carried out by He et al. [106] to improve 

the resilience of an integrated energy system. 

Recommendations were provided by Chen et al. [107] for 

solving resilience gaps. Indeed, resilience responses are 

divided into preventive responses (actions before 

incident scenarios) and emergency responses (actions 
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taken due to the incident). They play a significant role in 

reinforcing resilience. In coordinated regional-district 

operation, an integrated energy system was used by Yan 

et al. [108] for resilience enhancement. Threat 

description, vulnerability assessment, recovery, and 

restoration were addressed by Paredes et al. [109]. In 

[110], a risk-aversion framework is proposed for more 

resilient planning and operation. Some studies have also 

investigated the impacts of critical conditions on power 

systems [111]. A model called CRISP is presented by 

Kelly-Gorham et al. [112] to measure power system 

resilience. In 2012, several parameters of resilience 

measurement were identified, and the resilience of a 

transmission grid was assessed for disastrous conditions 

by Henry and Ramirez-Marquez [113]. In 2017, grid 

resilience was evaluated under probability scenarios by 

two-level mixed-integer stochastic programming [114]. 

Also, two-stage stochastic optimization is proposed by 

Nagarajan et al. [115], in which the first level is grid 

investments and the second is the assessment of 

resilience enhancement related to the grid investment. 

Three-level optimization is proposed by Ma et al. [116] 

to minimize investment costs and to lose load. Planning 

was made by Gholami et al. [117] to enhance resilience 

in the presence of microgrids using the CVR technique. 

Power systems caused by cascading failure are analyzed 

by Xiao and Yeh [118]. Post-earthquake power system 

restoration planning is performed by Xu et al. [119], and 

seismic resilience is assessed by Anghel et al. [120]. Two 

criteria of repair time and resilience reduction are 

proposed by Fang et al. [121] to evaluate the criticality of 

power system components from their contribution to the 

system resilience viewpoint. Also, this method 

establishes a balance between risk and cost [122]. A 

mixed integer linear programming model is proposed by 

Teymouri et al. [123] for closed-loop controlled islanded 

systems in real-time to enhance resilience. In this paper, 

AC power flux reinforces resilience, and the 

recommended method exhibits saving on losing the load. 

Also, the sensitivity analysis indicates that the total loss 

of load increases as the delay time increases between line 

switching and loss of load. In recent decades, as power 

systems have been exposed to disastrous incidents, it has 

become imperative to use effective mechanisms for 

system resilience enhancement. Since most studies have 

focused on post-disturbance control intending to 

maximize demand, they are reviewed and analyzed here. 

 

 

4. EXPANSION PLANNING  
 
Developing goals of resilience, considering different 

scenarios, and expressing gaps provide opportunities for 

resilience enhancement, performed in three groups of 

GTEP and DEP. A comprehensive plan should reduce 

capacity and location of capacities, initiation time, 

frequency, severity, and duration of disasters, and 

improve resilience. The factors that should be considered 

in stochastic generation and transmission expansion 

planning are demand rate, availability of existing and 

candidate resources, and the capacity of the transmission 

lines. 

 

4. 1. GEP Problem                           GEP is the most 

basic model in planning, and the type, location, and time 

of construction of generators must be determined in a 

time horizon of 20 or 30 years to meet the demand for 

projected loads. In generation expansion planning, the 

goal is to provide adequacy at the lowest cost. In 1955, 

the first long-term expansion planning was done in 

French. In 1957, Danzig and Taylor translated it into 

English, introducing the first linear planning (LP). 

Anderson, in 1972, showed that the nature of multi-stage 

generation expansion planning is similar to previous 

methods in dynamic planning. In 1976, linear expansion 

planning was to minimize investment and operating 

costs. Dehghan et al. [58] proposed linear programming 

of one-step and two-step integers with uncertainty in 

mind. A multi-stage generation expansion planning 

considering wind uncertainty has been used. A 

comprehensive review of generation expansion planning 

was conducted. Among which, Benders decomposition 

and Dantzig-Wolfe decomposition are more popular 

[124]. Also, stochastic optimization models based on 

scenario generation techniques with different 

uncertainties have been used [125]. In some studies, 

exploitation constraints have been included in generation 

expansion planning [126, 127]. Chen et al. studied GEP 

[128].  
 
4. 1. 1. Uncertainty in GEP                              Some 

prevalent uncertainties in expansion planning include 

price volatility, reliability of generation units, demand 

evolution, investment, operating costs, and fuel and 

electricity prices. Dual uncertainty in the objective and 

constraint function is also presented by Hu et al. [129]. In 

GEP, the MCS  method is commonly used to deal with 

uncertainties [130].  

 

4. 2. TEP Problem                    Recently, transmission 

expansion planning has become a complex nonlinear 

optimization problem by determining which, where, and 

when new lines are to be built at the lowest total cost. In 

order to develop and strengthen transmission network 

capacity as well as ensuring future demand and 

integrating new power units with existing units have been 

considered by many researchers more than before due to 

technical/financial constraints along the planning horizon  

[131] and analysis of two critical issues of network 

reliability and security modeling [132]. Lumbreras and 

Ramos [133] presented a literature review up to 2016. 

Stochastic planning and robust optimization have been 



M. Rezaei et al. / IJE TRANSACTIONS B: Applications  Vol. 36, No. 05, (May 2023)   824-841                               833 
 

used to solve the problem of transmission and storage 

systems planning [135], for the development of 

transmission and storage systems, robust optimization 

reported in literature [134]. A multi-stage random model 

is used. Conejo et al. [136] presented a model for the 

simultaneous development of energy transfer and storage 

with a distinction between long-term and short-term 

uncertainty in a stochastic planning framework. Zhang 

and Conejo [137] presented a robust optimization 

framework that includes random scheduling. A robust 

optimization model was proposed by Moreira et al. [138] 

in the possible conditions although the security criterion 

of the worst-case n-k, and the decomposition algorithm 

is solved using the column and constraint method [139, 

140]. The robust optimization model presented by Chen 

and Wang [141] identified uncertainties related to the 

development of future production capacity and the 

decommissioning of existing generation units. In, The 

AR-TEP model was presented by Mínguez and García-

Bertrand [142] due to the uncertainty of load demand and 

production capacity. A two-stage AR-TEP model was 

proposed by Jabr [143],  to introduce the uncertainty of 

loads and renewable energy sources using a 

decomposition algorithm that finds the optimal 

investment and minimum cost of fines related to limiting 

renewable energy loads and sources.  
 
4. 2. 2. Uncertainty in TEP                        The problem 

of TEP is usually with the uncertainty of load forecasting 

and availability of power system equipment, market 

uncertainty [144], energy and risk [145], and technology 

and new forms of production.  Based on the results, the 

researchers found that considering uncertainty leads to 

better transmission expansion planning. The most 

common methods for dealing with uncertainties are the 

mathematical model [146]. The fuzzy approach is used to 

model uncertainty [147]. The application of DG in 

transmission development planning has also been 

investigated.  

 

4. 2. 3 TEP and Improve Resilience                 Enhancing 

resilience and reducing the density of TEP have been 

increasingly considered by researchers and have been 

addressed by Zhao et al. [148]. In 2015, transmission 

network optimization was carried out by Fang ey al.  

[149] to strengthen the resilience of the power system 

against cascading errors and minimize investment costs. 

The impact of fire on transmission development planning 

was presented by Choobineh et al. [150]. The 

optimization framework is illustrated by providing the 

formula of MILP to track the redistribution of power flow 

DC and the evolution of the theoretical diagram of the 

network topology during cascade failures and, in the next 

step, determine the effect of acceleration [151]. 

Interaction after disruption of system resilience has been 

suggested to be the worst case of disorder. Whereas some 

lines are overloaded and some lines have empty 

capacities after redistribution of power flow due to line 

interruption, optimal changes in line reactance reduce the 

flux in overloaded lines and transfer them to lines that 

have unused capacity. Romero et al. [152] presented the 

(MIP) model for investment arrangements under terrorist 

threats. Panteli et al. [153] also presented MCS  to 

evaluate the impact of weather on power system 

equipment focusing on the effect of wind on transmission 

lines, using fragility curves that express the probability of 

equipment failure as a function of wind speed. Arroyo 

and Galiana [154], Motto et al.  [155] used  two-level 

TEP to identify the power system’s key elements and to 

identify the sensitive transmission lines. One of the 

crucial advantages of transmission expansion planning is 

its resilience to the worst-case scenarios, which is vital 

for strengthening the resilience of power system 

infrastructure.  

 

4. 3. GTEP Problem                GTEP is the most 

important part of power system planning. Recently, 

extensive research has addressed concurrent generation 

and transmission expansion planning (CGTEP) [156], 

but we are trying to provide a more comprehensive paper. 

Multi-objective CGTEP was conducted by Tekiner et al. 

[157] to minimize operational, investment, and emission 

costs. A three-level model of decentralized GEP and 

centralized TEP was studied by Javadi and Esmaeel 

Nezhad [158] using the epsilon method, in which 

multiple stochastic points are considered along with the 

load demand uncertainty. A two-level model was 

presented by Jenabi et al. [159], for the trade between 

generation and transmission investment and is 

transformed into a single-level mixed integer linear 

problem. Probabilistic multi-objective planning was 

performed by Mavalizadeh et al. [160] to reduce 

investment costs and adverse environmental impacts. 

Guerra et al. [161] presented coordinated planning under 

the constraints on pollutant emissions, storage, and load 

response programs. Coordinated planning was addressed 

by Zhang et al. [162] considering load response plans. In 

the coordinated expansion of power systems and gas 

grids was planned by Hu et al. [163] under uncertainty 

and the effect of a wind turbine. Muñoz-Delgado et al.  

[164] presented a dynamic planning considering grid 

uncertainty and reliability. Integrated generation and 

transmission expansion planning models were designed 

by Baringo and Baringo [165], considering uncertainty. 

The critical advantage of optimal expansion planning 

models is the calculation of uncertainty parameters with 

large dimensions, which does not need probabilistic 

models or the application of specific probability 

distributions. Unsihuay-Vila et al. [166] discussed on 

linear planning of mixed integer coordinated generation 

and transmission expansion. An exploratory algorithm 

was used by Alizadeh and Jadid [167]  for dynamic 
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CGTEP in which the power system reliability is assessed 

within a linear framework. The same method was used 

by Alizadeh and Jadid  [168] in the static form. Interested 

readers can find more details on GTEP problem-solving 

[169]. 

 

4. 3. 1. GTEP and Improve Resilience               To 

strengthen resilience, a static GTEP was developed by 

Romero et al. [170] with a scenario-based approach for 

the analysis of earthquake effects. Studies have dealt with 

cost reduction, system losses, and increasing grid 

reliability. However, the alleviating of power system 

vulnerabilities to deliberate invasions should also be 

considered [171]. The static model of coordinated 

planning for GTEP [172], which aims to reduce the side 

effects of deliberate attacks on the transmission lines and 

minimize investment and operational costs, can also 

reduce the power system vulnerability. A scenario-based 

framework was described by Vaziri et al. [173] in 

response to seismic incidents. To reduce earthquake-

induced power outages, a maintenance plan was studied 

by Çağnan et al. [174] in which the incident damages are 

ignored. A four-level planning model was described by 

Shivaie et al. [175] to reinforce a 400-kV grid in Iran for 

assessing seismic events. In An instrument was used by 

Cervigni et al. [176], to investigate the strategies for 

enhancing infrastructure resilience in Africa against 

natural disasters. The optimization of integrated GTEP is 

dealt with in the US in a time frame extending to 2050  

[177]. 
 

 

5. TRENDS AND CHALLENGES 
 

Since electricity cannot be stored, the operator will be 

faced to multiple challenges in any planning horizon. 

Therefore, optimal power system operation needs 

optimal planning. Since a resilient power system is 

capable of predicting possible disasters, taking practical 

actions to reduce losses and damages to the system 

components, and restoring the system to the pre-incident 

state, the investigation of its different aspects is crucial 

for organizing future research. On the other hand, 

researchers try to transform societies into resilient 

societies against disasters, in which case the 

infrastructure will be operated more efficiently. Still, it 

will result in system vulnerability and cascading errors. 

As power engineers, we can build reliable and resistant 

grids. The most obvious way is to build resilient grids, 

and an economical practice is to make further 

investments. With more information on the concept of 

resilience, this problem can be solved. Rezaei et al. [178], 

have listed the key challenges, constraints of modeling, 

and resilience enhancement activities. The first step to 

accomplishing resilience is to study vulnerability. 

Resilience enhancement activities are first prioritized 

based on their significance. Some activities are better in 

terms of resilience, and others are more economical. 

Eventually, a profit/cost analysis is undertaken. In the 

next step, the resilience activities can be categorized and 

fulfilled based on the resilience indices, which will 

contribute to building power infrastructure and satisfying 

resilience needs and the need for being economical. 

When or after a disturbance happens, resilience is 

analyzed to understand the infrastructure behavior to be 

more capable of preventing damage. Presently, the 

deployment of sensors for data collection has opened a 

new way to understand system resilience reinforcement 

by data analysis. For instance, machine learning can be 

used to analyze the collected data. However, there is still 

a huge gap between big data and significant impacts, 

while research is rare on it. Factors such as reliability, 

electricity market [179], uncertainty [180], environment, 

distributed generation, modeling, line density, reactive 

power planning, FACTS instruments, and demand-side 

management (DSM) are effective in resilient planning. 

On the other hand, the investigation of GTEP challenges 

in this paper lays the ground for future research. Based 

on the literature, the presence of distributed generation 

resources in planning helps develop an optimal plan and 

reduce costs [181]. As well, reactive power is essential 

for GTEP, which should be considered by researchers in 

their attempts to accomplish optimal planning. On the 

other hand, integrating reactive power planning with 

GEP will result in more optimal planning, so it is better 

to consider it in future studies. Research should explore 

uncertainties and FACTS instruments, e.g., TCSC, 

SSSC, UPFC, and IPFC, in TEP. Demand management 

programs, e.g., DSM, are mainly influential in the result 

of planning, but they have not been adequately studied in 

research on generation and transmission expansion 

planning. Microgrids have extensively been used in 

generation and transmission expansion planning in the 

studies, which has had good results too, so it has been 

presented as the most effective way of resilience 

enhancement. On the other hand, research has shown that 

energy hubs will be very effective. It is an emerging 

concept in the issue of power system resilience. This is a 

contribution of this article, which the authors will address 

in their future studies. It should be noted that some 

studies have neglected reliability and security in 

planning. In contrast the inclusion of reliability 

contributes to developing a resilient and reliable plan, as 

many researchers have mentioned as a pressing issue. 

Almost all studies have considered investment costs to 

minimize costs or maximize social welfare. However, 

operational costs are also crucial for a significant 

planning horizon, so they should also be studied within 

the model. Therefore, generation and transmission 

expansion planning are a key factor in long-term power 

system operation. On the other hand, it has been revealed 
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by the studies that multiple energy supply systems will 

also help enhance resilience. 
 

 

6. CONCLUSIONS 
 
Power systems have recently been exposed to 

disturbances induced by natural disasters, have 

influenced global security and economic benefits. So, we 

have to use techniques to assess the effect of these 

incidents. On the other hand, it is crucial to plan power 

systems that are resistant to high-impact, low-probability 

events. Since incidents may have irreparable 

consequences for power systems and their components, 

the issue of enhancing system resilience against disasters 

has become an essential requirement for smart grids. This 

paper provided resilience definitions and indicators in 

detail and identified different strategies and technologies 

for resilience enhancement. Also, the research papers on 

models were comprehensively reviewed, and the 

assessment of GTEP separately and concurrently, which 

is sophisticated and challenges the analysis of the results, 

was discussed. Finally, the paper mentioned the trends 

and challenges of the expansion models and my 

contribution. Indeed, the authors intended to provide a 

comprehensive review of concurrent GTEP aimed at 

improving grid resilience and give a general 

understanding of its effectiveness in improving system 

performance. In other words, a system is resilient when it 

can tolerate unexpected disturbances or restore itself 

rapidly after the incidents. So, it is vital to be able to 

assess incidents to evaluate and enhance power system 

resilience against them. This paper is a comprehensive 

context to find different ideas for future work. 
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Persian Abstract 

 چکیده 
 ات یو عمل  یزیربرنامه  دیهدف جد  کی به عنوان    ستمیس  تاب آوریو بهبود    یابیبار هستند، ارزاز حوادث فاجعه  یناش  یهابیقدرت در معرض آس  یهاستم یکه س  ییاز آنجا

  ی ک ی   ن،یدارد. بنابرا ی به بودجه هنگفت ازین رایز دهد،ی م لیک قدرت را تش ستمیس یزیراز برنامه  یو انتقال، بخش مهم دیتول یهاشبکهتوسعه   گر،ید یاست. از سو ریناپذاجتناب 

آن   یآن، نحوه ارتقا  یهاو شاخص  ارهایمع   ،یآورمفهوم نوظهور تاب   یمقاله به بررس نیقدرت بوده است. ا  یها  ستمیس  نهیبه  یزیمحققان همواره برنامه ر  یاصل  یاز دغدغه ها

مقاله به طور خلاصه   نیکند. ا  یم  یبررسرا  قدرت    ستمیس  تاب آوریبهبود    یبرا  مطالعات شده در    هیتوص  یها  یاستراتژ  نی. همچنپردازدینقاط قوت و ضعف آن م  ییو شناسا

و  باشد    ینده ابزاریآ  قات ی در تحق  تواندیکه م   کند،ی گزارش م  تقویت تاب آوریبدون هدف    ایو انتقال را با    دیتوسعه تول  یزیربرنامه  یطرح توسعه و ابزارها  لیتحل  یهامدل

در مطالعات   شتریکار ب یراه را برا جهیدهد و در نت یرا مورد بحث قرار م یزیمقاله مشکلات برنامه ر نیا ن،یمختلف استفاده شود. علاوه بر ا یبزارهاا یاثربخش نیتخم جهت

  ستم یس جهت تقویت تاب آوریو نوآورانه  تاب آوربهتر،  یهاانجام برنامه  یو انتقال را برا دیتول عهتوس  یزیربرنامه یهاچالش نیترمقاله مهم  نی ا ت،یکند. در نها یباز م ندهیآ

 .کندیقدرت ارائه م

 

https://doi.org/10.22111/ieco.2023.42385.1428

