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A B S T R A C T  
 

 

Recently, some researchers have employed the McCormick envelopes method to convexify some NP-

hard optimization problems with bilinear terms. However, few publications concentrate on its variants 
to derive a more tight convex relaxation for practical applications. This paper proposes a new viewpoint 

on Kron’s loss formula, also known as the B-matrix formula, as an equation having bilinear terms. 
Relying on the perspective, we transform the loss equation to some linear constraints using an enhanced 

McCormick relaxation. In the technique, the domain of bilinear variables is divided into some smaller 

parts to improve the relaxation tightness. Some case studies with different nonconvex terms are 
considered to verify the effectiveness of the enhanced envelopes for capturing Kron’s loss formula. The 

findings from the numerical simulations suggest that the proposed approach can represent Kron’s loss 

equation precisely. Moreover, the method performs more effectively than the other methods available in 
the literature as it usually converges to more optimal solutions. 
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Graphical Abstract 

 

 

NOMENCLATURE 

Indices   𝐷  Demand 

ℎ  Breakpoint indices of cost functions 𝑒𝑀𝑎𝑥
𝑘,𝑗

  The maximum distance in McCormick envelopes 

𝑘, 𝑗  Generating unit indices 𝑀
𝑘,𝑗,𝑛

  Big-M for constraint relaxation 

𝑛  Subinterval indices of Partitioned McCormick 𝑃𝑘
𝐿, 𝑃𝑘

𝑈  Lower and upper bounds of generation in unit k 

𝑥  POZ indices 𝑃𝑘
𝑝𝑜𝑧𝑑𝑥

, 𝑃𝑘
𝑝𝑜𝑧𝑢𝑥

  Lower and upper bounds of xth POZ in unit k 

Sets  𝑃𝑘
0  

Initial generation levels obtained from previous 

hour ED solution 
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𝐻𝑘  Set of breakpoint indices of cost functions 𝑃𝑘
𝐿,𝑛 , 𝑃𝑘

𝑈,𝑛  
New lower and upper bounds of generation for 
unit k in subinterval n for partitioned McCormick 

𝐾  Set of generating units 𝑝̄ℎ,𝑘  Generation in breakpoint h for unit k 

𝑁  Set of Subinterval indices of Partitioned McCormick 𝑈𝑅𝑘/𝐷𝑅𝑘  Ramp up/down limit for unit k 

𝑋 =
{1,2, . . . , 𝑞}  

Set of POZ indices Variables  

Parameters 𝑃𝑘  Generation level of unit k 

𝑐𝑘 , 𝑏𝑘 , 𝑎𝑘 , 𝑒𝑘 , 𝑓𝑘 Coefficients of cost function. characteristics 𝑝̃ℎ,𝑘  
Generation level of unit k in segment h for 
piecewise linear approximation of cost. function 

𝐵00, 𝐵𝑘0, 𝐵𝑘𝑗  Loss coefficients in Kron’s formula 𝑃𝑙𝑜𝑠𝑠𝑒𝑠  Transmission losses 

𝑣𝑘,𝑗  
Auxiliary continuous variables in the McCormick 
relaxation 

Functions  

𝑣𝑘,𝑗
𝑛   

Auxiliary continuous variables in the partitioned 
McCormick relaxation 

𝑂(𝑃)  The total cost of generating units 

𝑧𝑅
𝑘,𝑛  Binary variables in the McCormick relaxation 𝑂̃(𝑃)  The approximated total cost of generating units 

𝑧ℎ,𝑘  Binary variables in the partitioned McCormick relaxation 𝑃𝐶𝑘  Generation cost of unit k 

 

 
1. INTRODUCTION 
 
The increasing pressure on enhancing power systems’ 

economic and environmental performance requires more 

efficient tools for electrical network management. 

However, most current tools, such as market-clearing 

models, usually ignore the transmission losses due to 

emerging complex optimization problems [1-4]. 

Nevertheless, this simplification leads to inefficient and 

imprecise modeling.  

One can directly incorporate the physic of the problem 

to model the losses as accurately as possible using the AC 

power flow equations. Nonetheless, the accurate model 

creates highly nonlinear nonconvex equations constituting 

an NP-hard problem. On the other hand, one can use the 

DC power flow model as an alternative approach, which 

is the current practice of some electricity markets [5]. 

Although the DC power flow equations build a linear 

model, they do not consider the losses and, as a result, can 

not capture the network behavior accurately. 

An intermediate technique can include one or some 

equations solely to approximate the transmission losses as 

the network effect model. The most well-known technique 

for approximating the losses is Kron’s equation 

employing a nonlinear equation to represent the network 

losses [6]. 

Kron’s formula yields a more straightforward loss 

computation approach than the complex nonlinear AC 

power equations. Kron’s formula yields a more simple 

loss computation approach than the complex nonlinear 

AC power equations. However, it also questions the 

efficacy of the conventional optimization algorithms to 

solve the constructed model even in a relatively simple 

economic dispatch (ED) problem, especially when a 

model includes some other practical constraints such as 

wire drawing effects. 

The ED problem involving the loss formula as a 

constraint can be solved using traditional nonlinear 

programming techniques such as the interior-point 

method or sequential quadratic programming (SQP) [7]. 

The techniques exhibit reliable behavior to solve 

nonlinear problems in general. Nevertheless, as a 

weakness, these solution algorithms naturally converge to 

local solutions rather than the global ones, which is 

problematic in multimodal problems.  

In the past decade, some researchers have used newly 

emerged artificial intelligence (AI) algorithms to solve the 

complex problem [8]. In the area of the nonconvex ED,  to 

name a few, differential evolution [9], teaching-learning 

algorithm [10], hybrid particle swarm optimization [11], 

chameleon swarm [12], artificial bee colony [13], peafowl 

optimization [14], hybridization of ETLBO and IPSO 

[15], Hybrid Multi-Verse Optimizer [16], ray 

optimization algorithm [17], particle swarm [18-20], GA–

API [21], shuffled differential evolution [22], quasi-

oppositional teaching learning [23], oppositional real 

coded chemical reaction [24], and krill herd algorithm 

[25] have been employed to solve the ED.  

The algorithm utilizing stochastic parallel search 

mechanisms can solve the problem more effectively than 

the nonlinear programming methods and find the global 

solution. Moreover, they do not rely on objective 

function/constraint gradients to search the feasible space. 

However, they lack compelling evidence for convergence. 

Moreover, one generally can find some discrepancies in 

their identified solutions in different algorithm runs in 

practice. Although a deterministic technique has been 

previously presented [26], it does not consider trnamission 

losses in its ED model.  

On the other side, relatively new deterministic global 

optimization methods usually utilize the convex 

relaxation of the nonconvex region to solve the nonconvex 

problems. McCormick envelopes have been introduced to 

relax generally nonconvex bilinear terms to one convex 

region [27]. A bilinear term is defined as the product of 

two different variables, i.e., the ‘x×y’ term. The nonlinear 
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parts of Kron’s equation are bilinear terms in Pk×Pj form, 

where Pk and Pj represent the generation level of 

generating units k and j, respectively.  

In the literature, the transmission losses usually are 

ignored or managed heuristically, which usually leads to 

infeasibility. To the best of our knowledge, this work, for 

the first paper, calculates the losses using a robust 

deterministic technique known as the McCormick 

relaxation. Moreover, we utilize an enhanced version of 

the relaxation to improve the solution optimality. As the 

distinct advantage, the proposed method reliably 

converges to the optimal solution while the convergence 

is guaranteed. 

We propose an enhanced McCormick technique to 

relax the unit generation product expressions in this work. 

The enhanced envelopes leverage deterministic 

approaches rather than stochastic searches used in AI 

algorithms, thereby presenting a robust and stable 

convergence behavior.  

In summary, the contribution of this paper include the 

following: 

1) We proposed a new viewpoint on Kron’s formula as an 

equation having bilinear terms. Relying on the viewpoint, 

we transform the loss equation to some linear constraints 

that can be solved efficiently using available optimization 

software. 

2) The presented enhanced version of the McCormick 

formulation provides a tight linear problem. Moreover, we 

linearized the nonconvexity terms due to wire drawing 

effects, and thereby we transformed the nonlinear 

nonconvex ED model to a fully tight linear model. 

3) We also proposed a new mixed-integer technique to 

enforce prohibited operating zones (POZs) of the 

generating units having nonconvex space due to disjoint 

feasible space rather than nonconvex functions.   

The rest of the paper organizes as follows: Firstly, in 

section 2, we formulate an ED model with the 

transmission losses. In the next section, we formulate the 

enhanced McCormick relaxation to recast Kron’s formula 

as linear constraints. To verify the effectiveness of the 

proposed approach, we use two case studies having 

multimodal objective functions. The simulation results 

obtained from applying the solution method in the case 

studies are reported in section 4. Section 5 concludes the 

paper. 

 

 

2. PROBLEM STATEMENT 
 

The ED problem includes the sum of the generation costs 

as the objective function and a set of equality and 

inequality constraints describing the physical and 

technical limits of the power system [18]. The details of 

the considered ED formulation are provided below . 

Objective function: Traditionally, the production costs 

of the generating units are shown by quadratic 

expressions. The objective function of the ED problem 

usually is defined as the sum of the generating unit 

production cost. Mathematically, the ED objective 

function can be computed as follows: 

𝑀𝑖𝑛∑ 𝑃𝐶𝑘(𝑃𝑘)𝑘∈𝐾 = ∑ (𝑐 𝑃𝑘 𝑘
2 + 𝑏𝑘𝑃𝑘 + 𝑎𝑘)𝑘∈𝐾   (1a) 

The representation of the cost functions in Equation (1a) 

makes the implicit assumption that a thermal unit has only 

one steam valve. However, the current modern units with 

multiple steam valves have more complex cost functions. 

For these modern units, the cost functions usually include 

sinusoidal terms, modeling the wire drawing effects, in 

addition to the quadratic expressions. Therefore, a more 

general objective function with the complex cost function 

can be expressed as follows: 

𝑀𝑖𝑛𝑂(𝑃) = ∑ 𝑃𝐶𝑘(𝑃𝑘)𝑘∈𝐾 =

∑ (
𝑐 𝑃𝑘 𝑘

2 + 𝑏𝑘𝑃𝑘 + 𝑎𝑘

+𝑒𝑘|𝑠𝑖𝑛( 𝑓𝑘 × (𝑃𝑘
𝐿 − 𝑃𝑘))|

)𝑘∈𝐾   
(1b)  

The surface of the objective function, considering only 

two generating units, is shown in Figure 1. As can be seen, 

it forms a nonconvex space with many local minimal 

challenging optimization algorithms.  

Equality constraints: Here, we represent the 

transmission network losses using well-known Kron’s 

formula. Accordingly, the generating units should meet 

the total system load as well as the transmission losses. 

The requirement usually is called the power balance 

equation and can be written as follows: 

∑ 𝑃𝑘 =𝑘∈𝐾 𝐷 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠  (2) 

The𝑃𝑙𝑜𝑠𝑠𝑒𝑠denotes the transmission losses and can be 

computed using Kron’s formula by the following 

equation: 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝐵00 +∑ 𝑃𝑘𝐵𝑘0𝑘∈𝐾 +∑𝑘∈𝐾 ∑ 𝑃𝑘𝐵𝑘𝑗𝑗∈𝐾 𝑃𝑗  (3) 

 
 

 
Figure 1. Nonconvex space of the objective function 

considering two generating units 
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𝑃𝑘𝐵𝑘𝑗𝑃𝑗 , shown in red in Equation (3), are bilinear terms 

that are highly nonlinear and nonconvex in general. 
Figure 2 illustrates the complex structure of the 

bilinear term. Next, we attempt to relax the bilinear terms 

tightly using the enhanced McCormick envelopes. 

Inequality constraints: The technical limits of the 

generating units require that the units should be operated 

within the feasible range of generation: 

𝑃𝑘
𝐿 ≤ 𝑃𝑘 ≤ 𝑃𝑘

𝑈∀𝑘 ∈ 𝐾  (4) 

Furthermore, some units have prohibited operating 

zone (POZ), namely 𝑃𝑘 ∉ [𝑃𝑘
𝑝𝑜𝑧𝑑𝑥

, 𝑃𝑘
𝑝𝑜𝑧𝑢𝑥

]. The 

generation limits considering the POZ can be described as 

follows: 

𝑃𝑘
𝐿 ≤ 𝑃𝑘 ≤ 𝑃𝑘

𝑝𝑜𝑧𝑑1
∀𝑘 ∈ 𝐾 𝑃𝑘

𝑝𝑜𝑧𝑢𝑥
≤ 𝑃𝑘 ≤

𝑃𝑘
𝑝𝑜𝑧𝑑𝑥+1

∀𝑘 ∈ 𝐾, ∀𝑥 ∈ 𝑋 = {1,2, . . . , 𝑞} 𝑃𝑘
𝑝𝑜𝑧𝑢𝑞

≤

𝑃𝑘 ≤ 𝑃𝑘
𝑈∀𝑘 ∈ 𝐾 

(5) 

Finally, the ramp rate limits of the generation units for 

a single period ED problem can be modeled by the 

following constraints: 

𝑃𝑘 ≤ 𝑃𝑘
0 + 𝑈𝑅𝑘∀𝑘 ∈ 𝐾  (6a) 

𝑃𝑘 ≥ 𝑃𝑘
0 − 𝐷𝑅𝑘∀𝑘 ∈ 𝐾  (6b) 

In the next section, we reformulate the bilinear terms 

(𝑃𝑘𝑃𝑗) of Kron’s equation in Equation (3) as well as the 

rectified sinusoidal terms (|𝑠𝑖𝑛( 𝑓𝑘 × (𝑃𝑘
𝐿 − 𝑃𝑘))|) in 

Equation (1b) to achieve a (mixed-integer) linear model. 

 

 
3. PROPOSED METHOD 

 
The McCormick relaxation forming the convex hull of the 

bilinear term 𝑃𝑘𝑃𝑗using two underestimators and two 

overestimators can be computed as follows [27]: 

𝑣𝑘,𝑗 ≥ 𝑃𝑘
𝐿𝑃𝑗 + 𝑃𝑘𝑃𝑗

𝐿 − 𝑃𝑘
𝐿𝑃𝑗

𝐿  (7a) 

 

 

 
Figure 2. The complex surface of the bilinear expression 

𝑣𝑘,𝑗 ≥ 𝑃𝑘
𝑈𝑃𝑗 + 𝑃𝑘𝑃𝑗

𝑈 − 𝑃𝑘
𝑈𝑃𝑗

𝑈  (7b) 

𝑣𝑘,𝑗 ≤ 𝑃𝑘
𝑈𝑃𝑗 + 𝑃𝑘𝑃𝑗

𝐿 − 𝑃𝑘
𝑈𝑃𝑗

𝐿  (7c) 

𝑣𝑘,𝑗 ≤ 𝑃𝑘𝑃𝑘
𝑈 + 𝑃𝑘

𝐿𝑃𝑗 − 𝑃𝑘
𝐿𝑃𝑗

𝑈  (7d) 

The new variable 𝑣𝑘𝑗 , together with the four additional 

linear constraints (7a)-(7d), replaces the bilinear 

nonconvex space with a convex one. As an advantage, the 

constructed constraints are linear, and as a result, one can 

solve the new problem using matured linear programming 

(LP) solvers.  

As can be seen, the built constraints depend on the 

variable bounds, namely[𝑃𝑘
𝐿 , 𝑃𝑘

𝑈]and[𝑃𝑗
𝐿 , 𝑃𝑗

𝑈]. It can be 

shown that the maximum distance of the relaxed space 

from the bilinear surfaces can be computed by the 

following equation [27]: 

𝑒𝑀𝑎𝑥
𝑘,𝑗

=
(𝑃𝑘

𝑈−𝑃𝑘
𝐿)(𝑃𝑗

𝑈,𝑃𝑗
𝐿)

4
  (8) 

The expression in Equation (8) demonstrates that the 

maximum distance is proportional to the variable ranges: 

as the variable ranges widen, the relaxation performance 

weakens. Thus, one can divide the ranges into smaller 

parts and formulate the relaxation based on the new 

bounds to improve the relaxation tightness [28]. In this 

way, the McCormick relaxation is constructed for each 

sub-interval separately. Figure 3 illustrates the idea behind 

the partitioning mechanism more clearly [29]. As the 

number of partitions (N) increases, the envelopes build a 

set of tighter relaxations. 

In this paper, we divide the generation bounds to N 

smaller subintervals and apply the McCormick envelopes 

for each of the subintervals separately. To this end, 

consider a unit whose generation level is denoted by 𝑃𝑘
𝑛. 

The new generation variable in smaller subinterval has the 

following bounds: 

 

 

 
Figure 3. Tightening the McCormick relaxation by 

increasing the number of partitions [29] 
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𝑃𝑘
𝐿,𝑛 ≤ 𝑃𝑘

𝑛 ≤ 𝑃𝑘
𝑈,𝑛

  (9) 

Therefore, the original generation level variables and 

subinterval generation variables have the following 

relationships: 

𝑃𝑘 = ∑ 𝑃𝑘
𝑛

∀𝑛∈𝑁   (10) 

𝑃𝑘
𝑛 ≤ 𝑧𝑅

𝑘,𝑛𝑃𝑘
𝑈,𝑛∀𝑛 ∈ 𝑁, ∀𝑘 ∈ 𝐾  (11) 

∑ 𝑧𝑅
𝑘,𝑛

∀𝑛∈𝑁 = 1∀𝑘 ∈ 𝐾  (12) 

Constraint (12) requires only one subinterval can be 

selected at the same time, and other subinterval 

generations are enforced to be zero using constraint (11). 

To avoid introducing too many partitions and binary 

variables, we build the McCormick relaxation using one 

variable partitioning rather than two variables 

partitioning. Thus, the enhanced McCormick for the new 

generation variables with the novel bounds can be 

expressed as follows: 

𝑣𝑘,𝑗
𝑛 ≥ 𝑃𝑘

𝐿,𝑛𝑃𝑗 + 𝑃𝑘
𝑛𝑃𝑗

𝐿 − 𝑃𝑘
𝐿,𝑛𝑃𝑗

𝐿 −𝑀
𝑘,𝑗,𝑛

× (1 −

𝑧𝑅
𝑘,𝑛)  

(13a) 

𝑣𝑘,𝑗
𝑛 ≥ 𝑃𝑘

𝑈,𝑛𝑃𝑗 + 𝑃𝑘
𝑛𝑃𝑗

𝑈 − 𝑃𝑘
𝑈,𝑛𝑃𝑗

𝑈 −𝑀
𝑘,𝑗,𝑛

× (1 −

𝑧𝑅
𝑘,𝑛)  

(13b) 

𝑣𝑘,𝑗
𝑛 ≤ 𝑃𝑘

𝑈,𝑛𝑃𝑗 + 𝑃𝑘
𝑛𝑃𝑗

𝐿 − 𝑃𝑘
𝑈,𝑛𝑃𝑗

𝐿 −𝑀
𝑘,𝑗,𝑛

× (1 −

𝑧𝑅
𝑘,𝑛)  

(13c) 

𝑣𝑘,𝑗
𝑛 ≤ 𝑃𝑗𝑃𝑘

𝑈,𝑛 + 𝑃𝑗
𝐿𝑃𝑘

𝑛 − 𝑃𝑘
𝐿,𝑛𝑃𝑗

𝑈 −𝑀
𝑘,𝑗,𝑛

× (1 −

𝑧𝑅
𝑘,𝑛)  

(13d) 

(13a)-(13d): ∀𝑛 ∈ 𝑁, ∀𝑘, 𝑗 ∈ 𝐾  

𝑣𝑘,𝑗
𝑛 ≤ 𝑃𝑘

𝑈,𝑛𝑃𝑗
𝑈𝑧𝑅

𝑘,𝑛∀𝑛 ∈ 𝑁, ∀𝑘, 𝑗 ∈ 𝐾  (14) 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝐵00 +∑ 𝑃𝑘𝐵𝑘0𝑘∈𝐾 +
∑ ∑ ∑ 𝐵𝑘𝑗 × 𝑣𝑘,𝑗

𝑛
𝑘∈𝐾𝑗∈𝐾𝑛∈𝑁   (15) 

The Nonconvex cost functions also pose a challenge 

for the solution of the ED problem. Based on a technique 

that has been proposed by sharifzadeh [4]. We represent 

the nonconvex cost functions Equation (1b) through 

piecewise linear approximation rendering mixed-integer 

linear programming (MILP): 

𝑀𝑖𝑛𝑂̃(𝑃) = ∑ ∑ (𝛼ℎ,𝑘𝑝̃ℎ,𝑘 + 𝛽ℎ,𝑘𝑧ℎ,𝑘)ℎ∈𝐻𝑘𝑘∈𝐾   (16) 

𝑃𝑘 = ∑ 𝑝ℎ,𝑘ℎ∈𝐻𝑘
∀𝑘 ∈ 𝐾  (17) 

𝑝̄ℎ−1,𝑘𝑧ℎ,𝑘 ≤ 𝑝ℎ,𝑘 ≤ 𝑝̄ℎ,𝑘𝑧ℎ,𝑘∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻𝑘  (18) 

 
1 http://www.gams.com 

∑ 𝑧ℎ,𝑘 = 1ℎ∈𝐻𝑘
∀𝑘 ∈ 𝐾  (19) 

Moreover, relying on the MILP representation, we 

propose a new technique to handle POZ restrictions. We 

can include the POZ segment bounds as the pairs of 

breakpoints in the piecewise linear approximation and, 

thereby, POZ segments can be avoided by imposing the 

pertained integer variables to become zero, namely: 

𝑝ℎ,𝑘 ∈ [𝑃𝑘
𝑝𝑜𝑧𝑑𝑥

, 𝑃𝑘
𝑝𝑜𝑧𝑢𝑥

] → 𝑧𝑥,𝑘 = 0∀𝑘 ∈ 𝐾, ∀𝑥 ∈ 𝑋  (20) 

To summarize, the Mixed Integer-McCormick 

envelopes (MI-ME) model can be expressed as follows: 

Objective function: Equation (16) 

Constraints: (2), (5), (6a), (6b), (9)-(15) and (17) - (20)  

As the solution obtained by the MI-ME model may 

contain error because of the approximations, we use its 

optimal solution as the initial solution of the original NLP 

model. The goal is to obtain a more accurate solution 

without approximation error. Clearly, the NLP model 

objective function is Equation (1b), and its constraints 

include Equations (2), (3), (5), (6a), and (6b). It is noted 

as the NLP model is a nonconvex problem, the pertained 

NLP solver converges to the nearest point to MI-ME 

optimal solution. Later in the numerical result section, we 

analyze the MI-ME and NLP roles to enhance the quality 

of obtained solutions. 

 

 
4. NUMERICAL RESULTS 

 

To show the effectiveness of the proposed solution 

method, we adopt two case studies, including 6-unit and 

40-unit test systems modeling the transmission losses 

using Kron’s formula. We draw required data for the 6-

unit and 40-unit case studies from [18]. The case studies 

also include the sinusoidal cost functions stemmed from 

the wire drawing effects. The generation ranges of the 6-

unit case study also contain POZs complicating the 

solution space. Therefore, the ED feasible spaces of both 

case studies make a complex nonconvex problem. As a 

result, they need particular solution techniques with global 

search ability rather than locally based solvers . 

We use GAMS 24.1.3 to implement our solution 

approach and CPLEX 12 to solve the constructed ED 

model1. The absolute optimality gap is set to 0. Moreover, 

IPOPT as the NLP solver is employed to refine the final 

solution. We perform all simulations in a laptop with 8 GB 

RAM and 2.7 GHz Core i7 processors . 

Table 1 displays the solutions of the ED problem 

reported in earlier works as well as the proposed method 

results for 6-unit case study. The first column in the tables 

shows the different ED solution methods that can be found 

in earlier works as well as the solution obtained by the 
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proposed method. The next three columns (columns two, 

three, and four) exhibit the reported optimal costs, i.e., 

objective function in Equation (1b). As the AI-based 

algorithms use random search mechanisms, they usually 

converge to different solutions in each algorithm 

application. The algorithms generally run several times, 

for example, 50 times. Then, the best and worst identified 

solutions, as well as the average of the identified solutions 

among all trial runs, are recorded. However, note that the 

proposed approach always converges to a unique solution 

in different runs as it relies on deterministic mechanisms 

to find the optimal solution. In other words, we solely 

write down the obtained solution of the proposed method 

three  times  in  the  pertained  three  columns  of  Tables 

1 and 3. 

Consider the second column of Table 1, which shows 

the best cost, among some conducted experiments as 

reported in the corresponding study, of the solution 

methods in case study I. As can be seen, the MI-ME 

identifies a more optimal solution compared with the other 

techniques. A couple of the meta-heuristic algorithms 

randomly obtain some optimal points close the MI-ME 

solution as shown in the second column of the table; 

however, the poor performance of their average and 

especially the worst solutions, in columns three and four 

of Table 1, respectively, suggests they exhibit 

unacceptable behavior in different trial runs, as they 

statistically converge to a weaker solution compared with 

their own best solution. 

Table 2 shows the optimal scheduling of the 

generating units in case I, based on the proposed method, 

leading to $15449.89, as the considered objective function 

in Equation (1b). 

Table 3 shows the solutions of earlier studies and the 

proposed method result for case II, namely 40-unit case 

study. Case study II with a larger and more complex 

feasible space reasonably reveals the efficacy of the 

solution methods more clearly. From the viewpoint of the 

best solutions, rarely the previous studies have found the 

solutions close to the proposed Mi-ME solution, as can be 

seen in the second column of Table 3. More importantly, 

the result reported in columns three and four of Table 3 

shows that the earlier works have low success rates. 

Namely, a large discrepancy can be seen between their 

identified solutions in different trial runs. 

Apart from the discrepancy drawback, the AI 

techniques heavily rely on their parameters to search the 

solution space. In other words, their obtained solutions 

change depending on their parameter values. For example, 

the different versions of Particle swarm optimization 

(PSO) in Table 1, such as PSO, NPSO, NPSO-LRS, 

RDPSO, and IRDPSO, have parameters such as cognitive 

coefficient and social coefficient, number of iterations, 

and number of particles that need to be tuned beforehand. 

In other words, the results of the AI algorithms are 

sensitive   to   their    parameter   setup.    The    sensitivity 

TABLE 1. Comparison of the solution method results in the 6-

unit case study 

Method 
Cost($) 

Best Average Worst 

SA [17] 15545.5 15488.98 15461.1 

GA [17] 15524.69 15477.71 15457.96 

TS [17] 15498.05 15472.56 15454.89 

PSO [17] 15491.71 15465.83 15450.14 

GA [18] 15459 15469 15524 

MTS [17] 15453.64 15451.17 15450.06 

NPSO [19] 15450 15452 15454 

NPSO-LRS [19] 15450 15450.5 15452 

PSO [18] 15450 15454 15492 

RDPSO [19] 15449.89 15458.01 NAa 

IRDPSO [19] 15449.89 15456.55 NA 

Proposed 15449.89 15449.89 15449.89 

a: Not available 

 
 

TABLE 2. The optimal generation scheduling of the proposed 

method in case I 

Units Generation (MW) 

P1 447.5038 

P2 173.3182 

P3 263.4628 

P4 139.0653 

P5 165.4734 

P6 87.1347 

The objective function($) 15449.89 

 

 

TABLE 3. Comparison of the solution method results in the 40-

unit case study 

Method 
Cost($) 

Best Average Worst 

GA-API [21] 139864.96 NA NA 

SDE [22] 138157.46 NA NA 

QOTLBO [23] 137329.86 NA NA 

BBO [24] 137026.82 137116.58 137587.82 

DE/BBO [24] 136950.77 136966.77 137150.77 

ORCCRO [24] 136855.19 136855.19 136855.19 

KHA [25] 136670.37 136671.24 136671.86 

Proposed 136450.21 136450.21 136450.21 

 

 

challenges the application of these algorithms in practice, 

as a new difficult problem arises on how to tune the 

parameters effectively, which is an unsolved problem in 

general.  
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As a significant advantage, we design the MI-ME 

leveraging advanced deterministic modeling techniques as 

well as standardized off-the-shelf solvers. On the other 

side, AI algorithms are mainly devised based on some 

‘heuristics’ and personal experiences. To the best of our 

knowledge, the algorithms lack compelling evidence for 

convergence. The large discrepancies between the 

obtained solutions of the algorithms also suggest their 

weakness in finding a unique solution and lack of reliable 

convergence. However, the proposed model and the 

employed solvers have solid evidence to prove their 

reliable convergence, as the achieved result confirms the 

advantage as well. 

The optimal scheduling of the generating units in case 

II, obtained by the proposed method, is illustrated in Table 

4. The scheduling results in $136450.21, as the operation 

cost.  

As noted earlier, we also used an NLP solver to refine 

the solution of the MI-ME. To analyze the share of the MI-

ME and the NLP solvers in the improvement of the  

 

 
TABLE 4. The optimal generation scheduling of the proposed 

method in case II 

Units 
Generation 

(MW) 
Units 

Generation 

(MW) 

P1 114 P21 523.2794 

P2 114 P22 550 

P3 120 P23 523.2794 

P4 179.7331 P24 523.2794 

P5 87.7999 P25 523.2794 

P6 140 P26 523.2794 

P7 300 P27 10 

P8 300 P28 10 

P9 290.4802 P29 10 

P10 279.5997 P30 87.7999 

P11 243.5997 P31 190 

P12 94 P32 190 

P13 484.0392 P33 190 

P14 484.0392 P34 200 

P15 484.0392 P35 164.7998 

P16 484.0392 P36 164.7998 

P17 489.2794 P37 110 

P18 489.2794 P38 110 

P19 511.2794 P39 110 

P20 511.2794 P40 550 

The objective 

function($) 
136450.21 

 

obtained solutions, we separately reported the solutions 

obtained in the models in Table 5. Moreover, we also 

shown the change in the solutions of the MI-ME model 

after the application of the NLP solver in percentage 

terms. Mathematically, the change can be computed as 

follows: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(%) =
𝐶𝑜𝑠𝑡𝑀𝐼−𝑀𝐸−𝐶𝑜𝑠𝑡𝑁𝐿𝑃

𝐶𝑜𝑠𝑡𝑀𝐼−𝑀𝐸
× 100  (21) 

Comparison of the results of MI-ME and NLP models, 

in columns two and three of Table 5 in both cases, 

indicates that the obtained objective functions are close to 

each other. To put it simply, the difference, as defined in 

Equation (21), between the obtained objective functions is 

less than 0.1%, as can be seen from column four of Table 

5. Therefore, the MI-ME model converges to one point 

quite close to the final solution, and then, the NLP solver 

solely takes a small step forward to improve the solution 

locally. 

To illustrate the change more clearly, we display the 

generation levels in the obtained solutions of the MI-ME 

and NLP models for case study I in Figure 4. As the figure 

shows, the change in generation levels in the MI-ME 

solution after the application of the NLP solver is 

negligible, suggesting that the MI-ME solution is placed 

very close to the final solution. 

To show the power of the MI-ME in finding the 

optimal solution of the problem, the convergence 

characteristic of the incumbent value in case study II is 

illustrated in Figure 5. The 40-unit case includes many 

local minimal complicating finding the globally optimal 

solution. However, as the figure reveals, it only takes 6 

steps to find the optimal solution.  

Finally, to demonstrate the effectiveness of the 

proposed partitioned McCormick againts the classical 

McCormick, the case studies are also solved using the 

classical one. Table 6 compares the derived solution of the 

two McCormick types.  

The table shows that in small-sized problems, such as 

6-unit case, the classical McCormick performs 

satisfactory, as it also may find the optimal solution. 

Nonetheless, as the problem size increases, the classical 

one fails to find the optimal solution. On the other side, 

the proposed partitioned McCormick presents a tighter 

relaxation and can obtain the more optimal solutions 

consequently.   

 

 
TABLE 5. cost obtained in the MI-ME model compared with 

the NLP model 

Case study 
Cost ($) 

MI-ME NLP Difference (%) 

6-unit 15443.64 15449.89 0.04 

40-units 136311.371 136450.21 0.10 
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Figure 4. Generation levels in solutions of MI-ME and NLP 

models 

 

 

 
Figure 5. The convergence characteristic of the incumbent 

value in 40-unit case 

 

 
TABLE 6. Comparison of the classical and partitioned 

McCormick relaxations in the considered case studies 

McCormick type 
Case study 

6-unit 40-units 

The classical McCormick 15449.89 136617.10 

The proposed partitioned McCormick  15449.89 136450.21 

 

 

5. CONCLUSION 
 

To represent a tractable formulation of Kron’s formula for 

transmission loss computation, we have proposed a novel 

viewpoint on the problem based on the McCormick 

relaxation of bilinear terms. To this end, we employ an 

enhanced McCormick envelope that tightly captures the 

loss equation. Comparison of the obtained solutions of the 

MI-ME model with the earlier work results on the adopted 

case studies shows the advantage of the proposed method 

to find the more optimal solutions. Furthermore, as the 

presented model relies on deterministic mechanisms for 

searching the solution space using matured solvers, it 

exhibits a highly reliable convergence behavior. Finally, 

the presented model can easily be employed without 

difficult trial and error procedures usually used to tune the 

parameters in AI algorithms.   
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Persian Abstract 

 چکیده 
داراي عبارات دوسويه استفاده كرده اند. با اين حال، تعداد بسيار    NP-hardسازيِ  سازي بعضي مسائل بهينهكرميخ براي محدب هاي مكدر سالهاي اخير بعضي محققان از پوش 

اند. اين مقاله يك ديدگاه جديد از  تر بويژه براي كاربردهاي عملي تمركز كردهمعدودي از تحقيقات، بر ديگر انواع اين پوش جهت بدست آوردن يك ريلكس محدب چفت 

كند. براساس اين نگاه، ما رابطه تلفات مذكور را  عنوان يك معادله كه داراي عبارات دوسويه است ارائه مي شود، بهاخته مي نيز شن  B-matrix، با نام رابطه  Kronرابطه تلفات  

شود تا چفتي  هاي كوچكتري تقسيم مي كنيم. در روش مذكور، دامنه متغيرهاي دوسويه به بخشكرميخ به تعدادي قيود خطي تبديل مي يافته مكبا استفاده از يك ريلكس توسعه

، چند سيستم مطالعاتي با عبارات نامحدب مختلف با استفاده از رهيافت  Kronيافته در توصيف رابطه تلفات  هاي توسعهسازي بهبود يابد. براي ارزيابي كارايي پوشريلكس

است. همچنين، اين روش نسبت به    Kronنمايش دقيق رابطه تلفات    هاي عددي حاكي از آن هستند كه روش پيشنهادي قادر بهسازيهاي شبيهشوند. يافتهمذكور بررسي مي 

 شود. تري همگرا مي هاي بهينهكند چراكه معمولا به جواب شده در اين زمينه موثرتر عمل مي هاي ارائهديگر روش 
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