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A B S T R A C T  

 

A deep learning method is developed for chaotic time series classification. We investigate the chaotic 

state of a dynamical system, based on the output of the system. One of the main obstacles in time series 

classification is mapping a high-dimensional vector into a scalar value. To reduce the dimensions, it is 
common to use an average pooling layer block after feature extraction block. This blind process results 

in models with high computational complexity and potent to overfitting. One alternative is to extract the 

features manually, then apply shallow learning models to classify the time series. In fact, since 
complexity lies between the chaos and order, it is a sound idea to refer to complex systems characteristics 

to explore the chaotic region entrance. Therefore, chaotic state of a dynamical system can be recognized 

solely based on these characteristics. Inspired by this concept, we conclude that there is a feature space 
in which the output vector can be sparsified. Thus, we propose a deep learning method which the feature 

space dimensions successively are reduced in the feature extraction process. Specifically, we employ a 

fully convolutional network and add on two maximum pooling layers to the relevant feature extraction 
block. To validate the proposed model, the Lorenz system is employed which exhibits chaotic/non-

chaotic states. We generate a labeled dataset containing 10000 samples each with 20000 features of the 

output of Lorenz system. The proposed model achieves 99.45 percent accuracy over 2000 unseen 
samples, higher than all the other competitor methods. 

doi: 10.5829/ije.2023.36.01a.01 
 

 
1. INTRODUCTION1 
 

A chaotic state is basically referred to a state of a system, 

in which no order is observed. In other words, a chaotic 

system cannot be described with a linear or predictable 

behavior. However, it complies with the deterministic 

laws of a nonlinear dynamism. Accordingly, 

identification of chaotic signals from random ones is a 

difficult task [1]. In modern science literature, many 

natural and human-made signals have been recognized as 

chaotic systems. Hence, the necessity of proficient 

knowledge on chaos detection becomes quite evident.  

Chaos detection in time-series has been of great 

interest as many real-world problems including human-

made or natural systems have chaotic behavior. As some 

examples of time-series classification applications, rotor 

analysis in electric machines [2], controlling cardiac 
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chaos [1], load demand forecasting [3], seismographic 

applications [4], weather forecasting and wind speed 

prediction [5], forecasting cryptocurrency prices [6] and 

even the pandemic outbreak [7], can be considered 

noteworthy.  

One of the major challenges in chaotic time series 

detection is to distinguish between different states of the 

system. In fact, depending on the parameters of the 

differential equations, the system experiences different 

states, having different equilibrium points. Thus, the state 

of a chaotic system is fully explained by its parameters. 

Nonetheless, due to the substantial influence of initial 

values on the output, behavior of the system is 

unpredictable, and estimation of the parameters solely 

based on the outputs is rather difficult [8].  

To address this issue, several studies have been 

conducted, which can be categorized into two main 
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groups, namely, model-based approaches and data-

driven approaches.  

Within model-based approaches, Barahona and Poon 

[9] have suggested a method based on the prediction 

feature. Later, Kodba et al. [10] presented Lyapunov 

exponent was as a powerful feature. Thereafter, 

Wernecke et al. [11] suggested a modification of this 

method with higher performance. However, the error and 

computational complexity of all these model-based 

methods depend vastly on how well the chosen model has 

been fitted. 

Data-driven approaches are more comprehensible 

compared to model-based approaches; we believed. 

Gottwald and Melbourne [12] have introduced first the 

correlation test which performs well for noise-free 

scenarios and seeks for chaotic behavior in a given 

deterministic dynamical system. Then the regression test 

was introduced to reduce the noise. Tempelman and 

Khasawneh [13] have recommended a framework in 

which both correlation and regression tests were utilized. 

Also, Bhattacharya and Ray [14] utilized Hidden Markov 

Models (HMM) classification to identify chaos within 

the time-series of different attractors. Khosravi and 

Gholipour [15] estimated the Lorenz system parameters 

through metaheuristic algorithms. Kirichenko et al. [16] 

utilized the Hurst exponent as a feature to be fed into 

Random Forest and neural network methods to detect 

fractals.  

Moreover, approaches by Pourafzal and Fereidunian 

[17] and Safarihamid et al. [18] took advantages of the 

link between complex systems and chaotic systems. 

According to Poincaré, the unpredictable behaviour of 

non-linear dynamical systems can be interpreted as an 

extreme point of complexity instead of disorder [19]. 

Thus, in this group of approaches, complex system 

features are utilized to detect chaotic time series. 

Pourafzal and Fereidunian [17] stated the most important 

features of complex systems as emergence, self-

organization, predictability, and complexity. Then, 

information theoretic definitions of such characteristics 

were investigated and employed for chaos recognition.  

Additionally, Safarihamid et al. [18] reviewed the 

definitions of characteristics and they substituted with 

measured-theoretic entropies (based on Kolmogorov 

complexity). Specifically, it is shown that emergence is 

indeed the violation of regularities in a time-series, 

whereas self-organization can be defined as the 

expectation of limited outcomes in a system. Then, they 

utilized these properties to develop a joint-entropy time 

series classifier with better performance compared to 

single entropy classifiers.  

Deep learning models are considered as another 

member of data-driven approaches. These models 

provide an end-to-end framework which avoids a lot of 

heavy pre-processing and feature extractions [20]. 

Architectures like Long Short-Term Memory (LSTM) 

network [21], Deep multilayer perceptron (MLP) [22], 

Residual Networks (ResNet) [22], Multi Scale 

Convolutional Neural Networks (MCNN) [23] and Fully 

Convolutional Networks (FCN) [22] are among the most 

important models which could achieve desired 

performance without any prior feature extraction.  

MLP constitutes one of the most common 

architectures, where all the neurons in the current layer 

are fully connected to the former one. The main issue 

with such networks is that each neuron will be associated 

with a specific time stamp in the time series and thus the 

temporal correlations between datapoints would be 

ignored [22]. CNNs are usually employed in 2D 

classifications, such as image classification applications. 

However, this structure could act as a moving average 

filter in one dimensional domain, following by a proper 

activation function [22]. The architecture of ResNet is the 

deepest one (with 11 layers), among all these candidates. 

It leverages from a residual block as a shortcut, which 

avoids vanishing gradient by connecting the shallow 

layers to the output [22]. Theoretically, MCNN could 

reach to the best performance among all the models [24]. 

However, the large extraction of hyper-parameters in 

such models makes it almost impossible to find the best 

solution.  

 

1. 1. Motivation             We realize that the number of 

trainable parameters in deep learning models (number of 

filters, kernels, and depth of the network) are chosen 

based on a trial-and-error process. However, as suggested 

by Pourafzal and Fereidunian [17] and Safarihamid et al. 

[18], regardless of observation length of chaotic time 

series, they can be classified using a few features of the 

complex system [17, 18]. This gives us the intuition that 

there is a feature space in which the given chaotic time 

series can be sparsified. Thus, we employed the Fully 

Convolutional Networks (FCN) proposed by Boullé et al. 

[25] and utilize two Max Pooling layers in the feature 

extraction block. By this mean, we prune all the 

redundant insignificant features in the feature extraction 

block, resulting in reducing the signal dimensions. The 

proposed deep model can be observed as the deep 

counterpart of the proposed shallow learning model by 

Pourafzal and Fereidunian [17]. Supported by the 

simulations, it is shown that the proposed deep model can 

reach to 99.45 percent accuracy over unseen test data, 

higher than other state-of-the-art methods compared in 

the text.  
The rest of this paper is organized as follows. In 

Section 2, chaos recognition with complex system theory 

will be explained and some of the most important features 

of a complex system will be mentioned. In section 3, the 

proposed deep learning model is developed. In section 4, 

implementation of each method as well as the time series 

generation will be explored. In section 5, the simulation 

results and performance of the proposed method in 
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comparison with other methods is stated. We conclude 

the paper in section 6.  

 

 

2. CHAOS RECOGNITION USING COMPLEX 
SYSTEMS CHARACTERISTICS 
 

In this section, we briefly discuss the intuition behind the 

proposed deep learning model. In the following, we 

discussed the utilized model as well as the features used 

to detect chaos in a given time series.  

 

2. 1. Lorenz System          We employed Lorenz system 

as a well-known chaotic system, to generate a chaotic 

time-series. The Lorenz system is defined in three-

dimensional space by three parameters of 𝜌, 𝜎 and 𝛽 [26]. 

The parameter 𝜌 which is proportional to Rayleigh 

number [26], can specify the state of the system alone. 

Based on Hopf bifurcation, we have the following 

condition [27]  

𝜌 <  𝜎
𝜎+𝛽+3

𝜎− 𝛽−1
.  (1) 

With violation of the Hopf bifurcation condition, the 

system loses the stability of equilibrium point which 

results in chaotic behavior [26]. 

 

2. 2. Feature Extraction            In data-driven 

approaches, each state is classified based on the time-

series itself, rather than estimating the parameters. On 

average these approaches result in better performance 

compared to model-based approaches. However, the 

dimensions of the feature space are the identical to the 

input time series, which could be a burden on the time 

and space capacity of the system.  
To reduce these complexities, proper feature-space 

reduction preprocessing units are beneficial. In feature 

engineering, having a prior knowledge about the number 

of features helps us avoiding the overfitting problem. 

Also, a model with less features to train is much lower 

time and space complexity. 

Motivated by Pourafzal and Fereidunian [17], we 

investigate the dimensions of features in a chaotic time 

series employing complex system features. For a 

complex system, different number of features are 

mentioned in the literature. For instance, Grus et al. [28] 

have studied up to 13 different attributes related to 

complex systems. Here, the same as Pourafzal and 

Fereidunian [17], we investigate Emergence, 

Complexity, Predictability, Self-organization and 

Sensitivity to initial conditions [8] as the most cited 

features of a complex system. 

 

2. 2. 1. Unpredictability          As one of the main 

characteristics of complex systems, unpredictability is 

defined as being incapable of calculating the future 

samples of the system according to the past observations, 

without precise information about its initial conditions.   
Different methods have been suggested to measure 

unpredictability. Diebold and Kilian [29] proposed a 

measure based on the precision of forecasting future 

samples. Another well-known measure is the Hurst 

exponent, which is fully discussed by Hurst [30], and 

takes a value in the range of [0,1]. This value categorizes 

the system based on its behavior, into three different 

states, indicating the long-term tendency of the signal to 

follow its current trends.  

 

2. 2. 2. Emergence          According to the systems theory, 

the components of a system which do not have a certain 

attribute, may show that behavior when working as a 

whole system. For instance, the color of an element is 

cannot be observed in the atoms of that element [31]. In 

the information theoretical literature, emergence can be 

seen as the difference between the output and input 

information of the system, which are related to the state 

of the system and its initial conditions, respectively. This 

means that the additional produced information has been 

emerged within the system as a result of the interaction 

between its inner subsystems. Bearing this in mind, it can 

be concluded that different entropy levels, could be 

interpreted as a measure of emergence within the system.  
Accordingly, the emergence was defined by Gershenson 

and Fernández [32] stated as follows: 

(2) 
𝐸 =

𝐻𝑜𝑢𝑡𝑝𝑢𝑡

𝐻𝑖𝑛𝑝𝑢𝑡
  

𝐻 ≜  − ∑ 𝑝(𝑋) log 𝑝(𝑋)  

 

2. 2. 3. Self-organization         A self-organized system 

is able to find its way through forming a specific structure 

or pattern without any external effects and only due to the 

nature of its components [8]. In other words, once a 

pattern is observed within the system, the internal 

particles of the system will find their way to form that 

pattern again, regardless of the external situations of the 

system. Therefore, linearity in a system can be seen as a 

completely self-organizing behavior. According to this, 

it could be claimed that self-organization is inversely 

proportional to the entropy, as the information production 

rate.  
 

2. 2. 4. Complexity            The above-mentioned features 

are not capable of identifying chaotic behavior, as 

emergence fails in the presence of noise, and self-

organization identifies linear systems as the most self-

organized systems. Hence, Gershenson and Fernández 

[32] have suggested to define complexity as a 

combination of these two features, by multiplying them. 

Alternatively stated, the maximum complexity occurs 

between the extremes of emergence and self-

organization.  
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2. 3. Shalow Learning Classification            To assess 

the strength of these features, we applied them as inputs 

to four machine learning models, namely support vector 

machine (SVM), K-Nearest Neighbors (KNN), 

Multilayer Perceptron (MLP) and Random Forest. Then, 

we measured the accuracy of classification on a test data.  
 

 

3. PROPOSED DEEP LEARNING MODEL  
 

The main advantage of deep learning methods in time-

series classification is that we can feed the raw data 

without any preprocessing into the machine. This is due 

to its automatic feature extraction. Nevertheless, aiding 

the machine to select a subset of features can improve the 

time complexity and avoid overfitting.  

The overall architecture of this network is provided in 

Figure 1. This network consists of three blocks of feature 

extraction, pooling, and classification. We assumed that 

most of the features extracted in the feature extraction 

block are redundant, and the feature space dimensions 

could be reduced. Thus, at the feature extraction block, 

we employed Max Pooling layers between the 

convolutional layers (CL) to prune the features at each 

layer.  

 

3. 1. Feature Extraction Block            In this layer, 

firstly, three 1-D CL are utilized, each with 10 feature 

maps, kernel size of three, and stride of one, to learn the 

feature space, followed by a Batch Normalization (BN) 

unit to speed up the convergence. Also, to avoid 

overfitting problem by selecting specific neurons to 

update at each iteration, Rectified Linear Unit (ReLU) as 

the activation function is chosen. Then, between the CLs, 

we take advantage of a Max Pooling layer, which reduces 

the dimensions step by step. Assuming the input is vector 

𝐱0, the feature extraction block is described as follows 

[33]: 

𝐲𝑖 = 𝐡𝑖 ∗ 𝐱𝑖−1 + 𝐛𝑖  

𝐨𝑖 = 𝜎(𝑓(𝐲𝑖))  

𝐱𝑖 = ℳ(𝐨𝑖 , 𝐾𝑖)  

∀𝑖 ∈ {1,2} 

(3) 

where 𝐡𝑖 is the i-th convolutional layer, 𝐛𝑖 is bias term, 

𝑓(. ) is the batch normalization [34], 𝜎(. ) is activation 

layer and ℳ(. , 𝐾𝑖) is the max pooling layer with size of 

𝐾𝑖. This procedure assists the model to learn the overall 

pattern better by dismissing the unimportant features. 

Although using this architecture the learning curve 

increases slower than the conventional FCN method, it 

expresses faster performance in evaluation phase.  

 

3. 2. Average Pooling Block        Subsequently, the 

outputs of the feature extraction block are fed into a 

global average pooling layer prior to the classifier. 

Pooling layers create a response for each feature map, 

which reduce the dimensions without overfitting problem 

of the flattening layer. Traditionally, the global average 

pooling layer penalize the feature extraction block to 

dismiss the output features with insignificant values. 

However, the error fails to propagate properly when the 

rank of feature matrix is much higher than the pooling 

layer output.  
Here, by employing two Max pooling layer in the 

feature extraction block, we ensure that the feature matrix 

is sparse. Thus, there is no need for skip connection.  

 

3. 3. Classification Block              Finally, in the last 

block, three fully connected layers with the size of 10, 5 

and 2, in addition to a sigmoid activation layer are 

employed. The output of this layer is evaluated for binary 

classification.  
 

 

4. IMPLEMENTATION AND RESULTS  
 
4. 1. Dataset Generation            To train and test the 

machine learning models, a dataset based on the Lorenz 

attractor is collected. Specifically, we perform 10000 

independent simulation trial with the following 

specifications. We set the parameters 𝜎 = 10 and 𝛽 =
8/3, and the observation time window is 20 seconds for 

each trial. The parameter 𝜌 is selected with uniform 

distribution from the set of {0.1, 0.2, … 44.9}. Moreover, 

the initial conditions of each trial are standard white 

Gaussian random vectors 𝑁(0,1) in 3-D space. Finally, 

 

 

 
Figure 1. Deep Learning Network Architecture 
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the numerical method applied on the ordinary differential 

equations has the step-size of 10−3s. 

Chaotic behavior is among the three different phases 

that Lorenz attractor experiences in which the value 𝜌 

violets the inequality of Equation (1). Likewise, we 

selected Hopf condition as an ideal candidate for the 

Target of our binary classification.  

(4) 

𝑇𝑎𝑟𝑔𝑒𝑡 = 1
𝜌 ≷ 24.7

𝑇𝑎𝑟𝑔𝑒𝑡 =  0
  

Thus, the final dataset consists of two data frames, an 

input with the size of (10000, 20000, 3) and the targets 

with the size of (10000, ), respectively.  

The computer for the simulation is a Core-i7 @ 2.70 

GHz with 16 GB of RAM for the tasks on CPU setting in 

addition to 12 GB of GPU on Tesla K80 for deep 

learning. The dataset is generated and collected in a 

comma-separated values (CSV) file, with the volume of 

5 Giga Byte (GB).  

 

4. 2. Complex Systems Approach          In the complex 

system approach discussed in section 2, the features are 

extracted from the collected dataset and then, they are fed 

into the shallow learning models.  
We extract the predictability with Hurst exponent 

[17] with 20 lags, self-organization with Disequilibrium 

[17] with 𝐾 = 10 and emergence using distribution 

entropy with 10 frequency bins [18]. In addition, 

complexity is the product of emergence and self-

organization.  

The candidates for shallow learning classifiers are as 

follows. In SVM models, the applied hyper parameters 

are linear, polynomial, and radial basis function (RBF), 

𝐶 = {1, 10, 100, 200}  for different penalty parameters, 

and the value of Gamma is chosen within the set of 

{10−3, 10−4}. For the KNN classifier, the numbers of 

neighbours are selected within the range of {3, 4, … , 30}. 
as the distance metric of this classifier. We also utilized 

MLP with Adam solver as a posterior to our work [35]. 

The hyper-parameters in this model are chosen as 50 and 

100 as different numbers of hidden layers, {sigmoid, 

ReLU} as activation functions, and 1 × 10−3and 5 ×
10−2 as different regularization terms (L2 penalty). We 

also adopted different learning rate schedules of constant 

and adaptive. In Random Forest, different combinations 

of decision trees are utilized to find the highest 

performance. The investigated hyper parameters are the 

total number of internal classifiers in the set of 
{100, 150,200, 250} and maximum depth of each tree in 

the set of {5, 10, 15, 20, 30}.  

The dataset is shuffled and separated into train/test 

subsets with proportion of 80%, 20%, respectively.  

The classification report using shallow learning 

methods, as well as the details about the best hyper-

parameters, are depicted in Table 1. As it is apparent the 

shallow learning models provide good performance in 

either precision or recall. This is due to the loss of 

information between feature extraction and 

classification. In fact, as we calculate the features 

manually, accumulation over all the available samples 

without proper weighting factor will cause a uniform 

importance which cause destroying the information.  

The consumed time in a simulation run is averaged 

over 5000 time series. Each Hurst exponent requires 

1.43 × 10−3seconds to perform, as well as 2.11 × 10−2 

for emergence and 4.7 × 10−4 for the self-organization 

measure. In training phase, on average, SVM takes 

5.5 × 10−1 [s], KNN requires 2.3 × 10−3, 9.8 × 10−1 

for Random Forest as well as 1.6 × 10−1 for MLP. Also 

in prediction phase, average times are 2.5 × 10−4, 5.7 ×
10−4, 6 × 10−3 and 9.06 × 10−5, respectively.  

 

4. 3. Feature Importance             In this section, we 

obtain the importance of extracted features utilizing the 

Mutual Information (MI) [36] between features well as 

the Mean Decrease in Impurity (MDI) of Random Forest 

classifier.  
Specifically, we calculate the two metrics (MI and 

MDI) for the features of predictability (Hurst), self-

organization (Disequilibrium), emergence (Entropy), 

complexity and initial condition for each axis (x, y, z) of 

the dataset.  

The bar plots of feature importance are given in 

Figure 2. Overall, all features except for initial condition 

seem to be crucial for the classification as none of them 

were declined in these results. However, emergence 

stands at higher level in both metrics, followed by 

predictability and Self-organization, just about 25 

percent each. Moreover, x-axis and y-axis contain more 

information compared to z-axis. This is important for 

low-complexity applications due to high-volume of each 

axis in computation and memory allocation. It is worth 

mentioning that emergence and self-organization are 

among the most important characteristics of complex 

systems supporting the idea of using these characteristics 

in chaos recognition [17].  

 

4. 4. Proposed Deep Learning Model 
Implementation              Here instead of train/test split, 

we split the shuffled dataset into three subsets of train 

(60%), validation (20%) and test (20%). The dataset 

contains 60000 features to classify the data, while there 

are only 10000 samples of different time-series available. 

This well-known data-dimensionality problem as it is 

mentioned in section 3.  

We train the proposed deep model using the train set 

for 100 epochs. For validating the model at each epoch, 

we use the validation set. For both, the batch size is set to 

750 with Adam  optimizer introduced by Kingma and Ba 

[37]. 
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TABLE 1. Performance of Conventional Machine Learning methods + Feature Extraction 

 Performance  

Selected Hyper Parameters Model 
Recall Precision 

Accuracy 
1 0 1 0 

0.99 0.16 0.54 0.97 0.75 
𝐶 = 100 

𝐾𝑒𝑟𝑛𝑒𝑙 = 𝐿𝑖𝑛𝑒𝑎𝑟 

𝛾 = 10−3 
SVM 

0.18 1 0.98 0.55 0.77 27 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 KNN 

0.99 0.16 0.54 0.95 0.74 
𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛: 𝑅𝑒𝐿𝑈, 

𝑙𝑎𝑦𝑒𝑟𝑠 = 100, 𝑎𝑙𝑝ℎ𝑎 =  10−3  
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 

MLP 

0.99 0.16 0.54 0.96 0.75 𝑀𝑎𝑥 𝑑𝑒𝑝𝑡ℎ = 30 
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 200 Random Forest 

 

 

We tune the model using two hyper parameters of 𝐾1 

and 𝐾2, the pool size of first and second max pooling 

layer in the feature extraction block, respectively. In 

addition, we optimal value of learning rate is explored in 

100 points linearly spaced the range of (10−4, 1). 
Dimensions of the output of feature extraction block 

as well as the final performance of model associated with 

each pool size are shown as pairs, respectively, in Table 

2. It can be observed that by reducing the dimensions 

from 10000 to 50 the performance degrades up to 10 

percent accuracy, which supports the redundance of input 

features. In addition, the performance degrades more 

when we reduce the dimensions in later stages. Indeed, 

employing only one global averaging (as used by Boullé 

et al. [25]) at the output of feature extraction block can be 

interpreted as the worst-case scenario of this experiment. 

Based on this table, we choose 𝐾1 = 20, 𝐾2 = 10 to set a 

trade-off between performance and dimensions.  

Figure 3 illustrates the dependency of performance on 

the learning rate for the selected pool sizes. Based on this 

figure, we select 2 × 10−3 as the optimal value of 

learning rate.  

To evaluate the time-complexity improvement when 

the Max pooling layer is employed, we compare the 

consumed time of proposed deep model against FCN 

proposed by Boullé et al. [25]. For both deep learning 

models, there are an overall of 957 trainable parameters. 

 

 

   

Figure 2. Feature importance of extracted complex system features 
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TABLE 2. Parameter selection of Max Pooling Layer for the proposed method 

 𝑲𝟐 = 𝟐 𝑲𝟐 = 𝟒 𝑲𝟐 = 𝟏𝟎 𝑲𝟐 = 𝟐𝟎 

𝐾1 = 2  (5000, 0.79) (2500, 0.75) (1000, 0.77) (500, 0.78) 

𝐾1 = 4  (2500, 0.79) (1250, 0.78) (500, 0.78) (250, 0.74) 

𝐾1 = 10  (1000, 0.78) (500, 0.8) (200, 0.8) (100, 0.74) 

𝐾1 = 20  (500, 0.79) (250, 0.78) (100, 0.78) (50, 0.72) 

 

 

 
Figure 3. Dependency of Accuracy on Learning rate 

 

 

By enabling the GPU in the simulations, approximately 

7 × 10−3[𝑠] is required for each batch in the training 

phase given by Boullé et al. [25]. While this value is 

6 × 10−3[𝑠] for the proposed model. In addition, the 

classification could be performed by 3 × 10−3[𝑠] in 

evaluation phase. To make a fair comparison with 

shallow learning methods, we also provide the consumed 

time when only CPU is available. In these setting, each 

batch of data in training model by Boullé et al. [25] 

requires 1.02 × 10−1[𝑠], as well as 19 [𝑠] for an epoch. 

On the contrary, when we utilize Max Pooling, these 

values are reduced to 4 × 10−2[𝑠] and 8 [𝑠], respectively. 

Moreover, in the evaluation of these models in the same 

setting, 6.2 × 10−3[𝑠] is required for the average of a 

classification task using FCN [25], while it requires 

5.2 × 10−3[𝑠] for the proposed deep model.  

Finally, we compared our proposed deep learning 

model with FCN proposed by Boullé et al. [25], the FCN 

network proposed by Wang et al. [22] and deep MLP also 

by Wang et al. [22]. For fair comparison with Boullé et 

al. [25], we select the same parameters as the proposed 

network, while the only difference is max pooling layer. 

For Wang et al. [22], we employ three CL layers with 
{32,64,32} filters each with {8,5,3} kernels. Also, for the 

MLP we choose three fully connected layer with the size 

of {200,200,1} and two dropout layers with fractions of 

{0.1, 0.1}. 

In Figure 4, the learning curves of different models 

are illustrated. As expected, the proposed model (red 

solid line) requires more epochs to learn the data. 

However, it converges to a value higher than other deep 

network. 

Finally, to evaluate the performance of proposed deep 

network, we give the 2000 test observation as the input 

to all the trained networks and validate the output labels 

against the actual ones. In Table 3, number of correct 

labels as well as the accuracy are reported. The proposed 

network outperforms other networks with 1989 correct 

labels, which indicates the strength of model in 

classification.  

 

 

 
Figure 4. Comparison between the learning curves of Different Deep Learning models  

            

             

   

   

   

   

   

   

   

   

   

 
 
 
 
  
 
 

            

      

    

    

    

    

    

    

 
 
 
 
  
 
 

                         

              

                   

                   

                        

                 

                      

         

                           
    

    

    

    

    

    

    



 

 
TABLE 3. Performance of Deep Models on Unseen Test Data  

 Number of correct labels (from 2000) Accuracy 

Proposed 1989 0.9945 

FCN [25] 1984 0.992 

FCN [22] 1987 0.9935 

MLP 

[22] 
1945 0.9725 

 

 
5. CONCLUSIONS 

 

Recognition of chaotic time series plays an important role 

in engineering and science as a lot of real-world signals 

(e.g., earthquakes, biomedical signals, and climatic data) 

could be modeled within this certain group. Complex 

systems as one of the well-known essentials in systems 

theory, share some considerable similarities with the 

chaotic models. Specifically, a lot of chaotic events can 

be explained based on only four features of a complex 

system, namely, prediction, emergence, self-

organization, and complexity.  
This similarity inspired us to seek the characteristic 

of a complex system in a chaotic time series. Therefore, 

we developed a network in which instead of blind feature 

extractions, we gradually reduce the dimensions of 

features. This is in fact similar to manual feature 

extraction done by complex system-based time series 

classifications yet is more efficient in computational 

complexity and accuracy. The simulation results indicate 

an overall performance of 99.45 percent accuracy for the 

proposed deep network, which is higher compared to all 

the other methods discussed in this paper.  
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Persian Abstract 

 چکیده 
های مبتنی  ها در علوم مختلف یکی از مسائل مورد توجه در دهه های اخیر بوده است. امروزه با گسترش فناوری، سیستمهای آشوبی با توجه به کاربرد آنآشکارسازی سیگنال 

ارائه شده است. ها  به منظور طبقه بندی این سیگنالعمیق  یادگیری  مبتنی بر  روش  یک  ها را با دقت بالایی دسته بندی کنند. در این مقاله،  بر یادگیری ماشین قادرند تا این سیگنال 

شود. از این رو به منظور کاهش های عمیق و بدون توجه به ساختار تنک داده موجب بالا رفتن بار محاسباتی سیستم میطبقه بندی سری های زمانی تنها با بهره گیری از شبکه

یک شبکه عمیق جدید  ما  .  ورودی را در یک فضای تنک ترسیم کرد  توانهای پیچیده به این موضوع پی بردیم که می اط تنگاتنگ آشوب و سیستمبار محاسباتی و با توجه به ارتب

سری زمانی از سیستم  سپس با تولید یک  دهیم.  میچند مرحله کاهش    در  Max Poolingی  هکمک لایبا  ارائه کردیم که در بلوک استخراج ویژگی آن، ابعاد ماتریس ورودی را  

درصد   99.45های زمانی را تا دقت  ها قابلیت طبقه بندی سریدهد روش ما برتر از دیگر روش ها نشان میروش ارائه شده را به بوته آزمایش گذاردیم. شبیه سازیلورنز،  

  داراست.
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