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A B S T R A C T  
 

 

The vehicle routing problem as a challenging decision problem has been studied extensively. More 
specifically, solving it for a mixed fleet requires realistic calculation of the performance of electric and 

combustion vehicles. This study addresses a new variant of the vehicle routing problem for a mixed fleet 

of electric and combustion vehicles under the presence of time windows and charging stations. A bi-
objective mixed-integer programming model is developed which aims at minimizing cost and pollution 

level concurrently. To accurately quantify travel quantities, such as fuel consumption, emission, and 

battery charge level, a set of realistic mathematical formulas are used. The model is first converted to a 
single-objective counterpart using the epsilon-constraint method and a simulated annealing algorithm is 

tailored to obtain Pareto optimal solutions. A discussion is also made on how the final solution can be 
selected from the Pareto frontier according to the design objectives. The presented framework can find 

a set of Pareto optimal solutions as a trade-off between cost and pollution objectives by considering 

different combinations of electric and combustion vehicles. It was shown that those solutions that involve 

more electric fleet than combustion fleet, lead to higher total costs and smaller emissions and vice versa. 

doi: 10.5829/ije.2022.35.12c.12 
 

 

Description Notation Description Notation 

0 Depot 𝑞𝑖  Load of the vehicle at node 𝑖 [kg] 

𝑢0  Start depot node 𝑒𝑖  The earliest beginning of service time in Node 𝑖 [h] 

𝑢𝑛+1  End depot node 𝑙𝑖  The latest beginning of service time in Node 𝑖 [h] 

𝐶  Set of customers 𝑠𝑖  Service time of each node [h] 

𝐹  Set of Recharging stations 𝜏𝑖  The actual start of service time for node 𝑖 [h] 

𝐹′  Subset with repetition of recharging stations 𝑢𝑖  Vehicle’s current load when it enters node 𝑖 [kg] 

𝑁 = 𝐶 ∪ 𝐹′  Set of all nodes (customers+ recharging stations) 𝑆𝑂𝐶𝑖  Vehicle SOC when it enters node 𝑖 [kWh] 

𝑁0 = 𝑁 ∪ 𝑢0  Set of nodes with start depot 𝑥𝑖𝑗
𝑘   

the binary variable of a vehicle of type k that travel from 

node 𝑖 to node 𝑗 

𝑁𝑛+1 = 𝑁 ∪ 𝑢𝑛+1  Set of nodes with end depot 𝑓𝐷  Driver wage [$/h] 

𝑉𝐸  Set of electric vehicles 𝑓𝑌  Battery recharging cost per energy [$/kWh] 

𝑉𝐼𝐶  Set of internal combustion vehicles 𝑓𝐿  Internal combustion fuel cost per liter of fuel [$/L] 

𝑉 = 𝑉𝐸 ∪ 𝑉𝐼𝐶   Set of all the vehicles ∆𝐸𝑖𝑗
𝑘   

Battery discharge of a vehicle with type 𝑘 when travels 

from node 𝑖 to node 𝑗 [kWh] 

𝑄  Vehicle Load capacity [kg] ∆𝐿𝑖𝑗
𝑘   

Fuel consumption of the vehicle with type 𝑘 when travels 

from node 𝑖 to node 𝑗 [L] 

𝑘  Vehicle type 𝑓𝑂,𝐸  Operating cost of EVs per traveled distance [$/km] 

𝑡𝑖𝑗  Travel time between two nodes 𝑖 and 𝑗 [hours] 𝑓𝑂,𝐼𝐶  Operating cost of ICVs per traveled distance[$/km] 

𝑚𝑖𝑗  Distance between two nodes 𝑖 and 𝑗 [𝑘𝑚] 𝑝𝑖𝑗  
The total emission of the vehicle when traveled from node 𝑖 
to node 𝑗 [g] 

𝑔𝑘  Battery recharging time-rate [kWh/h=kW] 𝑑𝑖  Node 𝑖 demand [kg] 

𝑌𝑘  battery capacity [kWh] 𝑞𝑖  Load of the vehicle at node 𝑖 [kg] 

𝑑𝑖  Node 𝑖 demand [kg]   
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1. INTRODUCTION 
 

Massive consumption of fossil fuels by conventional 

internal combustion engine vehicles has caused 

numerous environmental problems including global 

warming and the energy crisis [1]. In the European Union 

(EU-27) report, greenhouse gas (GHG) emissions have 

decreased rapidly in recent years, reaching 24 % below 

1990 levels and 31 % below 2020 levels. As a result, the 

EU has met its 2020 GHG reduction target [2]. Numerous 

studies in the context of vehicle routing problems (VRP) 

have considered environmental aspects of transportation 

systems through solving green VRPs (GVRPs), in which 

a fleet of alternative fuel vehicles (AFVs), including 

homogeneous and heterogeneous fleets, are considered. 

Homogeneous fleets contain vehicles that are all the 

same. While heterogeneous fleets which have been 

addressed by fewer than 15% of the relevant studies 

include different types of vehicles with different 

quantities such as capacity, operating costs, 

environmental effects, charging systems, battery 

capacity, and energy consumption [3]. Schneider et al. [4], 

Erdoğan and Miller [5] proposed the formulation of electric 

VRPs (EVRP) with a fleet of electric vehicles while 

considering time windows and battery recharging 

stations. Romet et al. [6] addressed a homogeneous 

autonomous electric vehicle routing problem with the 

depth-of-discharge (DOD) method to improve battery 

life and reduce costs of battery replacement. The DOD 

method showed an 18 times longer battery lifespan even 

though it increased the initial cost and battery capacity. 

Hiermann et al. [7], Macrina et al. [8] have addressed a 

mixed heterogeneous fleet of conventional and electric 

vehicles. Minimization of air pollution is another 

objective considered in some other works in GVRP. 

Bektaş and Laporte [9] solved an emission routing 

problem by minimizing the travel distance and 

greenhouse emissions, fuel consumption, and travel 

times. Zhou et al. [10] presented a multi-depot 

heterogeneous vehicle routing problem in which average 

risk and costs were reduced by 3.99% and 2.01%, 

respectively, with an acceptable risk compared to a half-

open multi-depot homogeneous vehicle routing problem. 

To calculate different quantities in GVRP (including 

but not limited to fuel consumption, emission, and battery 

energy consumption), different mathematical formulas 

have been utilized in the literature. Most of the works 

assumed that the energy consumption (i.e., fuel 

consumption of combustion fleet, and electrical energy 

of electric fleet) is a function of traveled distance [4, 5]. 

On the other hand, some other works are considered more 

realistic models. Davis and Figliozzi [11] assumed that 

energy consumption also depends on the average vehicle 

speed during the trip. Goeke and Schneider [12] and 

Perera [1] formulated a more complicated model of fuel 

consumption that considers speed, road gradient, and 

vehicle load in the model structure. Goeke and Schneider 

[12] used data from Global Positioning System (GPS) to 

predict energy consumption in simulation environments. 

Sivagnanam et al. [13] utilized real GPS data to predict 

electricity consumption based on several factors, 

including vehicle locations, traffic, elevation, and 

weather data.  

Most studies in GRVP have considered a single 

objective including traveled distance [5], cost [7, 14], 

emission [9] and fuel consumption [15, 16]. Sivagnanam, 

et al. [13] considered an extra objective of emission as a 

constraint on the solution space. To allow the evaluation 

of possible trade-offs between multiple objectives, some 

other works have formulated multi-objective 

optimization models. Ghannadpour and Zarrabi [17] 

considered customers’ requirements for servicing as an 

extra objective in a multi-objective problem. Abad et al. 

[18] proposed a bi-objective model to minimize cost and 

fuel consumption. Androutsopoulos and Zografos [19] 

formulated and solved a bi-objective path-dependent 

VRP to minimize time and load. Goeke and Schneider 

[12] considered three objectives including the traveled 

distance, energy consumed, and total costs. 

Considering two objectives of cost and emission for a 

mixed fleet of electric and combustion engines requires 

multi-objective optimization programming to allow an 

evaluation of possible trade-offs between different 

objectives. On the other hand, quantifying each objective 

requires evaluating different travel quantities, such as 

fuel consumption and emission. The travel quantities are 

dependent on various vehicle parameters and states, 

including size, mass, engine characteristics, vehicle 

speed, battery state of the charge (SOC), etc. which may 

change by the vehicle type, assigned route, current load, 

environmental conditions, etc. Therefore, the calculation 

of the travel quantities requires using realistic 

mathematical models. In this work, a novel multi-

objective VRP for a mixed fleet of combustion and 

electric vehicles with the presence of time windows and 

recharging stations is formulated and solved. The main 

contributions of this work are as follows: 

(I) A new variant of bi-objective VRPs with a fleet of 

mixed electric and conventional vehicles under the 

presence of recharging stations and time windows is 

formulated . 

(II) A set of realistic mathematical formulas are used 

to accurately quantify required travel-dependent 

quantities, including fuel consumption, electric energy 

consumption, and emission.  
The rest of this paper is organized as follows. In 

section 2, a mixed-integer formulation is proposed for the 

problem. Section 3 presents the solution procedure and 

the developed general optimization framework. Section 4 

presents the results and discussion for a set of benchmark 
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instances. Finally, section 5 provides concluding remarks 

and future avenues for further research.  

 

 
2. PROBLEM DESCRIPTION & FORMULATION 
 

The targeted routing problem follows a classic VRP 

formulation with some additions including time windows 

and recharging stations. The problem is to start from a 

depot node 𝑢0, serve a set of customers 𝐶 once using a 

mixed fleet of vehicles with type 𝐾 within acceptable 

time windows, and return to the node 𝑢0, while a set of 

recharging stations 𝐹 is available. The proposed Multi-

Objective Vehicle Routing Problem for a Mixed Fleet of 

Electric and Conventional Vehicles with Time Windows 

and Recharging Stations (MF-EVRPTW) must satisfy 

the following additional conditions or assumptions: 

• Each vehicle is fully recharged after visiting a 

recharging station. 

• Every customer is visited exactly once 

• Every route starts from and ends at the depot node 

𝑢0. 

The goal of this paper is to propose and solve a multi-

objective problem in which the two conflicting objectives 

of cost and emission are minimized.  

The problem under study in this paper is an extension 

of work conducted by Schneider et al. [4], Hiermann et 

al. [20]. The proposed model seeks to find an optimal 

routing for a mixed fleet of EVs and ICVs under the 

minimization of cost and emission. The Nomenclature 

table summarizes different parameters and variables that 

are used in the model. 

The optimization problem is formed as a mixed-

integer program, which involves two objectives and 

multiple constraints. The first objective is to minimize 

the total cost as the summation of the driver cost, energy 

consumption cost, and operation cost, which is calculated 

as follows: 

(1) 

minimize    𝐶 = 𝐶𝐷 + 𝐶𝐸 + 𝐶𝑂 =  

𝑓𝐷 {∑ ∑ (𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑖∈𝑁0
+

∑ ∑ (
(1−𝑆𝑂𝐶𝑖

𝑘)𝑌𝑘

𝑔𝑘 ) 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑖∈𝐹′ } +  

∑ ∑ (𝑓𝑌∆𝐸𝑖𝑗 + 𝑓𝑂,𝐸𝑚𝑖𝑗)𝑥𝑖𝑗
𝑘

𝑖∈𝑁0,𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉𝐸
+  

∑ ∑ (𝑓𝐿∆𝐿𝑖𝑗 + 𝑓𝑂,𝐼𝐶𝑚𝑖𝑗)𝑥𝑖𝑗
𝑘

𝑖∈𝑁0,𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉𝐼𝐶
  

The second objective is to minimize the total emission of 

the fleet, which is calculated as follows:  

(1) minimize    𝑃 =  ∑ ∑ 𝑝𝑖𝑗
𝑘 .𝑥𝑖𝑗𝑖∈𝑁0,𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉𝐼𝐶

  

Additionally, to satisfy the problem requirements, 

multiple constraints are considered.  

(3) 𝑥𝑖𝑗
𝑘 𝜖{0,1}      ∀𝑘𝜖𝑉 𝑖𝜖𝑁0, 𝑗𝜖𝑁𝑛+1 , 𝑖 ≠ 𝑗 

First of all, constraints (3) define the binary decision 

variables.  

(4) ∑ ∑ 𝑥𝑖𝑗
𝑘 = 1       ∀𝑖 ∈ 𝐶𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉   

(5) ∑ ∑ 𝑥𝑖𝑗
𝑘 ≤ 1         ∀𝑖 ∈ 𝐹′𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉   

(6) ∑ 𝑥𝑗𝑖
𝑘 − ∑ 𝑥𝑖𝑗

𝑘
𝑖∈𝑁0,𝑖≠𝑗 = 0 ; ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉𝑖∈𝑁𝑛+1,𝑖≠𝑗   

There are multiple constraints regarding visiting the 

nodes; constraints (4) ensure that every customer is 

visited by one vehicle exactly once. Constraints (5) 

enforce that a recharge station does not necessarily need 

to be visited. Constraints (6) guarantee that the number 

of incoming arcs into a node is equal to the number of 

outgoing arcs from it. 

(7) 𝑒𝑖 ≤ 𝜏𝑖 ≤ 𝑙𝑖           ∀𝑖 ∈ 𝑁0,𝑛+1  

(8) 𝜏𝑖 + (𝑠𝑖 + 𝑡𝑖𝑗)𝑥𝑖𝑗
𝑘 − 𝑙0(1 − 𝑥𝑖𝑗

𝑘 ) ≤ 𝜏𝑗         ∀𝑘 ∈ 𝑉,∀𝑖 ∈

𝐶,∀𝑗 ∈ 𝑁𝑛+1,𝑖 ≠ 𝑗 

(9) 𝜏𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗
𝑘 +

(1−𝑆𝑂𝐶𝑖
𝑘)𝑌𝑘

𝑔𝑘 − (𝑙0 +
𝑌𝑘

𝑔𝑘
) (1 − 𝑥𝑖𝑗

𝑘 ) ≤ 𝜏𝑗  

∀𝑘 ∈ V𝐸 ,∀𝑖 ∈ 𝐹,∀𝑗 ∈ 𝑁𝑛+1,𝑖 ≠ 𝑗 
Additionally, constraints (7)-(9) enforce the timing to 

visit nodes; constraint (7) ensures that the start of service 

time 𝜏𝑖 must be within the time window [𝑒𝑖 , 𝑙𝑖] of node 𝑖; 
constraints (8) guarantee that for the start of service time 

of customer node 𝑗 who is visited after node 𝑖 must be 

later than the start of service time plus the service time of 

customer node 𝑖 plus the travel time from node 𝑖 to node 

𝑗. Constraints (9) are the same as constraints (8) but for 

recharging stations; they consider the recharging time of 

EVs as a function of the remaining battery SOC when it 

enters a charging station. Note that to maximize the range 

of electric vehicles and to simplify the problem, the 

battery is enforced to be fully charged at the exit of 

recharging stations. 

(10) 𝑞𝑗
𝑘 ≤ 𝑞𝑖

𝑘 − 𝑑𝑖𝑥𝑖𝑗
𝑘 + 𝑄𝑘(1 − 𝑥𝑖𝑗

𝑘 )   ∀𝑘 ∈ 𝑉,∀𝑖 ∈

𝑁0,∀𝑗 ∈ 𝑁𝑛+1,𝑖 ≠ 𝑗 

(11) 0 ≤ 𝑞𝑗
𝑘 ≤ 𝑄𝑘        ∀𝑘 ∈ 𝑉,∀𝑗 ∈ 𝑁0,𝑛+1 

There are some constraints regarding the load of the 

fleets. Constraints (10) ensure that a load of a vehicle in 

the node 𝑗 depends on the initial load when visiting the 

previous node 𝑖 plus the demand of node 𝑖. Constraints 

(11) enforce that a vehicle’s load never exceeds the 

maximum capacity.  

(12) 0 ≤ 𝑆𝑂𝐶𝑗 ≤ 𝑆𝑂𝐶𝑖 − ∆𝑆𝑂𝐶𝑖𝑗
𝑘 .𝑥𝑖𝑗

𝑘 + (1 − 𝑥𝑖𝑗
𝑘 )     ∀𝑘 ∈

𝑉𝐸,   ∀𝑖 ∈ 𝑁0,   ∀𝑗 ∈ 𝑁𝑛+1,𝑖 ≠ 𝑗 

(13) 𝑆𝑂𝐶0
𝑘 = 1       ∀𝑘 ∈ 𝑉𝐸 

According to the SOC of batteries, constraints (12) 

ensure that the battery SOC at the next node 𝑗 depends on 



2362               A. Mohammadbagher and S. A. Torabi / IJE TRANSACTIONS C: Aspects  Vol. 35 No. 12, (December 2022)    2359-2369 

 

the SOC of node 𝑖 plus battery discharge by traveling 

from node 𝑖 to node 𝑗. Constraint (13) ensures that the 

battery is fully charged when exiting the depot. 

 

 

3. SOLUTION PROCEDURE 
 

According to the bi-objective constrained nature of the 

problem, we suggest a two-step solution method. 

 
Step 1: Conversion to Single-objective Model 
The epsilon-constraint method is used to obtain Pareto 

front solutions where the first objective function is 

considered as the main objective, and the second 

objective function is moved to the constraints of the 

problem: 

(14) 

min 𝐶  

s.t. 

∑ ∑ 𝑃𝑖𝑗
𝑘 . 𝑥𝑖𝑗

𝑘
𝑖∈𝑁0,𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉 ≤ 𝜀  

Constraints in (4) − (3)  
Step 2: Unconstrained Formulation 

Many constraints exist in the model (14) which bound the 

solution space. By using the penalty function method, the 

constraints are treated as soft constraints for two reasons; 

First, it increases the chance of finding a significantly 

better routing solution with some extra cost on some 

penalties, such as being late for a customer or putting 

some extra load on a vehicle. This brings the opportunity 

to the user to deal with trade-offs between violating some 

of the constraints while decreasing the overall cost or 

emission significantly. Second, it lets the simulated 

annealing (SA) method keep answers that are almost 

optimal but slightly violate some of the constraints; 

therefore, a neighborhood solution that does not violate a 

constraint is likely to be selected in later iterations of the 

SA algorithm, which leads to finding a better solution at 

the end of the optimization iterations. SA is a common 

metaheuristic local search algorithm known as one of the 

most preferred methods applied for solving VRPs. In SA 

algorithm, the annealing process involves heating metal, 

glass, or crystal alloys above their melting points and 

cooling them slowly to achieve perfect crystal structures. 

In metaheuristics, SA can escape the local optimum by 

using hill-climbing moves to decrease the temperature 

parameter and the probability of acceptance of a worse 

objective function. There are some papers that describe 

more details of this method [21]. Accordingly, the 

penalty functions associated with the constraints (14) are 

as follows: 

(15) 𝐶𝑉 = mean
𝑘𝜖𝑉

{max (
∑ 𝑞𝑖𝑖𝜖𝑐

𝐶𝑘
− 1)}   

(16) 𝑇𝑊𝑉 = mean
𝑖∈𝑁𝑛+1

{max (0, 1 −
𝜏𝑖

𝑒𝑖
 , 

𝜏𝑖

𝑙𝑖
− 1)}   

(17) 𝑆𝑂𝐶𝑉 = mean
𝑖∈𝑁𝑛+1

{max(0, − 𝑆𝑂𝐶𝑖  , 𝑆𝑂𝐶𝑖 − 1)}   

(18) 𝑃𝑉 = max (0, (
𝑝

𝜀
− 1))  

in which CV, TWV, SOCV, and PV correspond to the 

constraints of the vehicle capacity, time windows, battery 

SOCs, and the epsilon, respectively. As a result, Equation 

(14) becomes an unconstrained problem with the 

following single objective function: 

(19) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝐶(1 + 𝛽1𝑃𝑉 + 𝛽2𝐶𝑉 + 𝛽3𝑇𝑊𝑉 +

𝛽4𝑆𝑂𝐶𝑉) = (𝑓𝐷 {∑ ∑ (∆𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑖∈𝑁0
+

∑ ∑ (
(1−𝑆𝑂𝐶𝑖

𝑘)𝑌𝑘

𝑔𝑘 ) 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑖∈𝐹′ } +

∑ ∑ (𝑓𝑌∆𝐸𝑖𝑗 + 𝑓𝑂,𝐸𝑚𝑖𝑗)𝑥𝑖𝑗
𝑘

𝑖∈𝑁0,𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉𝐸
+

∑ ∑ (𝑓𝐿∆𝐿𝑖𝑗 + 𝑓𝑂,𝐼𝐶𝑚𝑖𝑗)𝑥𝑖𝑗
𝑘

𝑖∈𝑁0,𝑗∈𝑁𝑛+1,𝑖≠𝑗𝑘∈𝑉𝐼𝐶
) (1 +

𝛽1 max (0, (
𝑝

𝜀
− 1)) + 𝛽2mean

𝑘𝜖𝑉
{max (

∑ 𝑞𝑖𝑖𝜖𝑐

𝐶𝑘
−

1,0)} + 𝛽3 mean
𝑖∈𝑁𝑛+1

{max (0, 1 −
𝜏𝑖

𝑒𝑖
 , 

𝜏𝑖

𝑙𝑖
− 1)} +

 𝛽4 mean
𝑖∈𝑁𝑛+1

{max(0, − 𝑆𝑂𝐶𝑖  , 𝑆𝑂𝐶𝑖 − 1)} )   

where 𝛽1, … , 𝛽4 denotes the weights associated with each 

penalty function. Note that all the penalty functions are 

designed to be between zero and one so all the weights 

can be chosen in the same order. 

 

3. 1. Realistic Evaluation of Travel Information               
To quantify the travel information, including fuel 

consumption, emission, and battery charge level, the 

models in ADVISOR are used [22]. ADVISOR contains 

realistic physics-based mathematical models for the 

vehicle’s drivetrain components that can compute the 

performance of the vehicle in a driving scenario in the 

simulation environment accurately. Figure  shows the 

ADVISOR model for the internal combustion engine 

drivetrain and electric drivetrains, respectively. Given the 

driving cycle as the input, ADVISOR estimates the fuel 

 

 
 

 
Figure 1. Drivetrain Model of combustion (a) and electric 

(b) vehicles in ADVISOR [22]. The models in the simulation 

environments provide vehicle performance such as fuel 

combustion, electrical energy consumption, and emission 

b 

a 
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consumption, change in the battery state of the charge, 

and amount of emission, which are needed to evaluate the 

cost function in Equation (19). 

(20) 𝑑𝑖𝑗 = ∫ 𝑉(𝑡)𝑑𝑡
𝑡𝑓

0
, 

where 𝑡𝑓 is the duration of the trip which is determined 

by the driving cycle. 

The fuel consumption, emission, and state of charge 

are functions of the vehicle’s parameters, including the 

vehicle’s mass, the type of the drivetrain and its 

components as well as the initial condition of the vehicle 

at the start of the trip. The vehicle’s mass can vary not 

only from one trip to another but also during a single trip 

due to unloading at customer nodes along a single trip. 

The drivetrain of the vehicle contains various 

components, which all influence the overall fuel 

consumption, emission, and battery SOC change. Finally, 

the vehicle’s initial condition affects the entire 

performance of the vehicle over the driving cycle since it 

changes the working points of the drivetrain’s 

components which result in different efficiency of each 

component. 

To address the variability of the vehicle’s 

performance in different conditions, the vehicle’s model 

is simulated in ADVISOR in offline mode for a discrete 

multidimensional grid of different driving cycles, vehicle 

types, vehicle loads, and initial conditions. The result is 

a 3D tensor for fuel consumption denoted by Δ𝐿, a 3D 

tensor for the emission denoted by 𝑃, and a 4D tensor for 

SOC change denoted by Δ𝑆𝑂𝐶: 

(21) 
∆𝐿 = ∆𝐿(𝑖𝑗, 𝐾, 𝐿) 

𝑃 = 𝑃(𝑖𝑗, 𝐾, 𝐿) 

Δ𝑆𝑂𝐶 = Δ𝑆𝑂𝐶(𝑖𝑗, 𝐾, 𝑆𝑂𝐶0, 𝐿), 
where 𝑖𝑗 is the route path (which determines the driving 

cycle), 𝐾 is the vehicle’s type, 𝐿 is the vehicle’s load 

during the trip, and 𝑆𝑂𝐶0 is the initial state of the charge 

of the battery at the start of the trip. Note that the amount 

of emission is nonzero for the combustion fleet and it is 

zero for the electric fleet while the SOC change is only 

applicable to the electric fleet. 

After constructing the multidimensional grid of 

Equation (21) offline, it is then used as the database 

during the vehicle routing optimization process. This is 

very beneficial since there is no need to run an 

ADVISOR simulation during the optimization loop of 

solving the routing problem, which can significantly 

reduce the computational load of the optimization 

problem. 

Given the fact that the multidimensional grid in 

Equation (21) is discrete if a load of vehicles or state of 

charge of a vehicle is between two discrete values of the 

grid, a linear interpolation approach is used over the 

multidimensional grid to calculate the fuel consumption, 

emission and the SOC change of a trip from one node to 

another. 

 

3. 2. SA Algorithm              The SA algorithm is tailored 

to find an optimal or near-optimal solution to the 

proposed VRP problem. The main advantage of SA is 

using exchange methods to produce new neighbors 

stochastically and search in a wider domain for better 

solutions to avoid being trapped in local extremums. The 

SA algorithm involves an outer loop for increasing initial 

temperature and an inner optimization loop. The iterative 

process continues until reaching the lowest limit of 

temperature or realizing the predetermined number of 

iterations.   
 

3. 2. 1. Solution Vector Definition            The solution 

vector is defined as a vector of an ordered sequence of 

customers’ ids. A delimiter technique is used within the 

solution vector to create the distinction between 

customers that are allocated to different vehicles. In 

addition to the customers, recharging stations need to be 

added to the solution vector. However, the required 

number of recharging stations is not known initially since 

they are not all mandatory to be visited according to the 

assumption of the problem. To select and place 

recharging stations along the customer route, a subset of 

stations is randomly placed along the customers’ routes. 

Afterward, in each iteration, the number of recharging 

stations is reduced to avoid unnecessary visits to 

redundant recharging stations, until the best and most 

feasible solution vector is obtained. 
 

3. 2. 2. SA Exchange Methods               In the SA process, 

the current solution vector needs to be replaced by its 

neighboring stochastically. Several different exchange 

methods can be implemented to generate neighborhoods. 

In this paper, four exchange methods, including 

swapping, insertion, reversion, and elimination, are used, 

where two index positions 𝑖, and 𝑗 (i.e. two distinct 

numbers smaller than the length of the solution vector 𝑛 

where 𝑖1 < 𝑖2 < 𝑛) are randomly selected as the place in 

the solution vector to change the current solution vector 

under these four methods [23]. The swap operator is 

almost similarly to insertion whereas two distinct 

numbers change their position in the string vector. 

Inversion  acts similar to the swap operator, except that in 

addition to swapping, it also puts the numbers between 

the two numbers reversely on the string vector. Due to 

the presence of a random insertion operator, the number 

of recharging stations added in each iteration of the 

algorithm may be surplus. For this reason, the removal 

operator was used such that with a low probability in each 

iteration of the algorithm, the number of recharging 

stations was reduced to end up with a lower cost while 

the solution remains feasible. 
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3. 2. 3. Overall Framework            Figure 2 illustrates 

the proposed framework to solve the VRPs. According to 

this figure, the framework consists of three main layers; 

an offline layer (denoted in red) which calculates the 

required tensors of travel information by ADVISOR 

which are needed for the other layers; an outer 

optimization layer (denoted in yellow) that uses the ε-

constraint approach to find the Pareto optimal solution; 

an inner optimization layer based on SA to find the 

optimal solution for each given 𝜺. After reaching the SA 

stop condition for all values of epsilon, the Pareto frontier 

will be obtained as the final answer. 
 

 

4. RESULTS AND DISCUSSION 
 

In this section, the results of the proposed framework for 

solving the routing problem of a set of benchmark 

instances are presented. The benchmark instances are 

based on the Solomon modified data [4], which extends 

56 VRPTW instances with a mixed fleet and recharging 

stations. To evaluate the solution method presented in 

this research, a sample problem of the transportation 

system has been set up. Table 1 summarizes the instances 

of the problem. 

Accordingly, there are 15 customers with a time 

window between 0 to 8, 5 charging stations, and a fleet 

of 6 vehicles including 3 conventional and 3 electric 

vehicles. The algorithm was programmed in MATLAB 

and executed with the hardware of Intel(R) Core (TM) 

i7-3770K CPU, 3.5 GHz with 8 GB of RAM. 

The mixed fleet contains two types of conventional 

and electric vehicles, including Navistar eStar Electric 
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Figure 2. The schematic diagram of the proposed 

optimization framework to solve the VRPs. There are three 

main layers; an offline layer (red) containing travel 

information provided by the advisor. An outer optimization 

layer (yellow) illustrated a Pareto optimal solution using an 

Epsilon constraint. An inner layer (blue) demonstrates the 

simulated annealing process 

TABLE 1. The details of the problem instances, including 

customers and recharging stations 

 

 

Truck and ISUZU NKR 77- 5.2 Ton, whose 

specifications are summarized in Tables 2 and 3, 

respectively. 

Table 4 includes all values of different cost 

parameters which are based on the research performed by 

Lin et al. [24], Feng and Figliozz [25]. Table 5 

summarizes the economic data and assumptions of 

electric and conventional vehicles based on the work of 

[24], Feng and Figliozz [25]. 

 

 
TABLE 2. Specification of Navistar eStar- Electric Truck [26] 

Parameters Amount 

Net weight (kg) 3185 

Load capacity (kg) 2313 

Battery capacity (kWh) 80 

Battery voltage (V) 300 

Electric motor max power (kW) 70 

Max range (km) 160 

Air Drag Coefficient 0.5 

Code Type 
Demand 

(kg) 

Earliest 

starting 

Latest 

starting 
Service 

Time (hours) 

C01 

C
u

st
o
m

er
s 

100 0 8 0.25 

C02 100 0 8 0.25 

C03 200 0 8 0.5 

C04 100 0 8 0.25 

C05 100 0 8 0.25 

C06 300 0 8 0.75 

C07 100 0 8 0.25 

C08 100 0 8 0.25 

C09 100 0 8 0.25 

C10 300 0 8 0.75 

C11 200 0 8 0.5 

C12 400 0 8 1 

C13 300 0 8 0.75 

C14 100 0 8 0.25 

C15 100 0 8 0.25 

S16 

R
ec

h
ar

g
in

g
 s

ta
ti

o
n

s 0 0 8 0 

S17 0 0 8 0 

S18 0 0 8 0 

S19 0 0 8 0 

S20 0 0 8 0 
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TABLE 3. Specifications of Isuzu ELF truck N [27] 

Parameters Amount 

Net weight (kg) 3185 

Load capacity (kg) 2313 

Engine capacity (CC) 3000 

Max speed (km/h) 102 

Tank capacity (L) 75 

Air Drag Coefficient 0.7 

 

 
TABLE 4. Considered cost parameters 

Cost 

parameter Description Amount Reference 

𝒇𝑫  Driver wage during 

working hours ($ ℎ⁄ ) 16.43 

[24] 𝒇𝒀  Battery charging cost 

($ 𝑘𝑊ℎ⁄ ) 0.12 

𝒇𝑳  Combustion fuel cost 

($ 𝐿⁄ ) 1.03 

𝒇𝑶,𝑬  Electric vehicle operating 

cost ($ 𝑘𝑚⁄ ) 
0.40 

[25] 

𝒇𝑶,𝑰𝑪  Combustion vehicle 

operating cost ($ 𝑘𝑚⁄ ) 
0.14 

 

 
TABLE 5. Economic data and assumptions of vehicles 

(maximal age=10 years, rate of interest=6.5%) [25] 

Vehicle 
Acquisition 

Cost ($) 

Utilization 

(km/year) 

Salvage 

value ($) 

Navistar 149000 41840 58451 

Isuzu 50000 41840 12803 

 

 

In a real simulation, the real values can be taken into 

account, and the preferred output can be obtained using 

navigational and surveying equipment such as a Global 

Positioning System (GPS) to predict energy consumption 

and provide data based on the route of the vehicles in the 

simulation environments. Among 20 standard drive 

cycles that are selected as the benchmark, one is assigned 

randomly to every possible route between all the binary 

combinations of nodes. It is also assumed that the two 

types of vehicles in the fleet follow the same driving 

cycles between two nodes since the selected vehicle types 

fall in the same vehicle class with comparable 

specifications. The speed profiles of the selected driving 

cycles are presented in the appendix in Figure A1.  

Table 6 summarizes the optimal hyperparameters of 

the SA method obtained by the Taguchi L16 method. 

To obtain the Pareto front, the epsilon changes from 

1500 to 0 with the step of 75. The obtained Pareto frontier 

points are shown in Figure 3. In this figure, the highest 

amount of costs and emissions belong to the lowest value 

of emissions (point 1) and costs (point 13), respectively. 

In fact, it depicts the effectiveness of using a mixed fleet 

of electric and conventional vehicles. The routing 

associated with the Pareto frontier points is summarized 

in Table 7. According to this table, among the points that 

are in the Pareto frontier, the solution points that have less 

emission correspond to the routings in which more nodes 

are assigned to the electric vehicles.   

On the other hand, the points that have more 

emissions correspond to the routings which involve using 

more combustion vehicles. To investigate the cost of the 

Pareto points in detail, Table 7 and Figure 4 summarize 

the break-down of the total cost, in terms of fuel 

consumption cost, the annual operating cost, driver of 

fuel consumption has increased with the increase in 

wages, the recharging cost, the cost of a battery kilowatt-

hour, and the amount of emission. Accordingly, the cost 

number of combustion vehicles. The operating cost of the 

first Pareto point is higher than others, which means that 

more use of the electric fleet would result in more 

operational costs. 

According to the priority of the design objectives, one 

can choose the final solution among the Pareto front 

points. If the cost is of the highest priority, using more 

combustion vehicles is more cost-effective compared to 

the electric fleet. On the other hand, with more priority 

on reducing the total emission, allocation of fewer 

combustion vehicles to customers is desirable. 

According to the results, using more electric vehicles 

results in far less emissions, despite the total costs 

increase. The increase in the total costs is due to the 

increase in operating costs and the driver's wage. There 

is an increase in the total costs because the electric 

vehicle has traveled along the route for a longer period of 
 
 

TABLE 6. Simulated Annealing hyper-parameters obtained by 

Taguchi L16 method 
SA parameters Amount 

Initial temperature 100 

Iteration of each temperature 100 

Temperature decrease factor 0.1 

 

 

 
Figure 3. Pareto frontier solutions of the bi-objective 

routing problem 
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TABLE 1. Details of the Pareto frontier points. For each solution, combustion and electric fleets are assigned to different customers 

which results in different emissions and total costs 

 𝒁𝟐 𝒁𝟏 Allocated customers 

Pareto 

Point 
Emission 

(g) 
Cost 

($) 
Combustion Fleet Electric Fleet 

1 66.8 315 - - 1 8-11-5-9-7-15-13-2-4 6-3-14 12-10 

2 141 226 - 1 11-8 4-5-13-9-10-15-3-7 14-12-6-2 - 

3 148 221 - 1 11 4-5-7-3-15-10-9-13-8 4-12-6-2 - 

4 157 216 - 4 11-8 2 7-15-3-6-1-12-14-10-9-13-5 - 

5 190 209 - 5-4 8 2-6-1-12-10-13-9-15-3-7 11-14 - 

6 192 203 - 4 8 2-6-1-3-15-7-5-13-9-10-12-14 11 - 

7 211 202 - 7 11 2-6-5-4 14-10-12-1-3-15-9-13-8 - 

8 261 202 - 2 2-5-7 14-10-12-1-6-3-15-9-13-8 11 - 

9 425 201 - 11 3-15-9-13-8 14-10-12-1-6-2 4-5-7 - 

10 497 199 - 4-5-7-15-3 8-13-9 11 14-10-12-1-6-2 - 

11 508 198 - 7 4-5-13-9-8 14-12-10-15-3-1-6-2 11 - 

12 540 195 - 8-13-9-15-3 4-5-7 14-10-12-1-6-2 11 - 

13 576 194 - 4-5-13-9-15-3-7 8 11 14-10-12-1-6-2 - 

 

 

 
Figure 4. The breakdown of cost for the Pareto frontier 

points along with the emission 
 

time (using the charging stations). Despite a decrease in 

the total cost, the number of conventional vehicles and 

emission increase along the route. A combination of the 

conventional and electric fleet can provide a solution that 

is balanced in terms of cost and emission. This can be 

achieved by selecting a middle point of the Pareto 

frontier, such as point 7 or point 8. In terms of cost, there 

is a small difference between these two points. This is 

because the operational cost of point 8 is less than point 

7 while the driver cost is more (Figure 4 and Table 8).  

The main difference between them is the amount of 

emission, which is due to the larger number of allocated 

combustion vehicles for point 8. Accordingly, one can 

select point 7 as the balanced final solution of the Pareto 

frontier. 

 
 

TABLE 8. The cost breakdown and the emission values of the Pareto frontier solutions 

Pareto Point Fuel Cost ($) 
Battery kWh 

Cost ($) 
Charging 

Cost ($) 
Driver wage 

($) 
Annual Operational 

Cost ($) 
Total Cost ($) 

Emission 

(g) 

1 1.990 7.60 0 217 88.8 315 66.8 

2 2.93 3.70 0 170.5 48.5 226 141.0 

3 2.50 3.44 0 171.7 43.0 221 147.5 

4 1.940 3.50 0 166.4 43.7 215 157.2 

5 2.96 2.88 0 165.6 37.3 209 190.3 

6 2.74 3.23 0 158.7 38.3 203 191.5 

7 2.82 3.18 0 155.7 40.5 202 210 

8 2.99 2.44 0 165.3 31.4 202 261 

9 8.10 1.850 0 161.5 29.1 200 425 

10 8.19 1.210 0 164.2 25.1 199 497 

11 9.66 1.670 0 156.9 29.3 197 508 

12 8.86 1.210 0 161.5 23.9 195 540 

13 10.04 1.210 0 158.7 24.4 194 576 
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5. CONCLUSION 
 

In this research, a new variant of the VRPs is formulated 

for a mixed fleet of vehicles to optimize cost and 

emission. Additionally, time windows and recharging 

stations were considered in the presented framework. In 

addition to considering the multi-objective nature of the 

routing problem, the proposed framework uses a set of 

realistic mathematical models to evaluate different travel 

quantities, including fuel consumption, change in the 

state of charge, and emission. To solve the resulting 

optimization model, the epsilon-constraint and simulated 

annealing methods were used. It was shown that those 

solutions that involve more electric fleet than combustion 

fleet, lead to higher total costs and smaller emissions and 

vice versa. Finally, a discussion was made on how the 

final solution can be selected from the Pareto frontier 

according to the design objectives. 

Some improvements can be considered for future 

research. First, the electric fleet was always fully charged 

in this study. Therefore, taking partial charging into 

account can improve the results of this problem. This 

modified way may decrease the total cost of the electric 

fleet by lowering the charging cost and the driver cost. 

Second, based on the SA limitations, results may be 

improved using other well-known metaheuristic methods 

such as adaptive large neighborhood search. 

Furthermore, the proposed framework can be tested for a 

set of real instances to further investigate the 

effectiveness of the framework in practice. 
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Appendix A: 
 

 
Figure A1. Speed profile of the driving cycles used for the problem instances 
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Persian Abstract 

 چکیده 
حل مساله مسیریابی وسیله نقلیه تلفیقی نیازمند محاسبه واقع بینانه عملکرد به طور دقیقتر،  حل مساله مسیریابی وسیله نقلیه، همچنان یک موضوع چالشی مورد مطالعه می باشد.  

شده   بررسی با در نظر گرفتن پنجره های زمانی و ایستگاه های شارژ ی له مسیریابی وسیله نقلیه تلفیقی الکتریکی و احتراقئدر این پژوهش مسناوگان الکتریکی و احتراقی است. 

 ت یابتدا با استفاده از روش محدود  مسئله  مدل  .لایندگی می باشدهزینه و آف کمینه سازی مقدار  ا هدا  با  دو هدفه  مسئله از نوع برنامه ریزی عدد صحیح مختلطمدل    است.

  ر ی مقاد  دقیق کمیت  نیی تع به منظور    .استفاده شده استپارتو   نهیبه  نقاطبه دست آوردن    یبرا  از یک الگوریتم شبیه سازی تبریدشده و سپس،    لیتک هدفه تبد  مدلبه    لونیاپس

شده  ارائه  چارچوب   دهدی نشان م  جینتاشده است.  استفاده    استاندارد  یاضیر  یهااز فرمول  یامجموعه  ی ازشارژ باتر  زانیو م  آلایندگیسفر مانند مصرف سوخت،    مرتبط با

 .ی را دارا می باشدو احتراق ی کیالکترناوگان ترکیبی  داشتنبا در نظر  لایندگیو آ  نهیهزو به عنوان تعادلی میان توابع هدف پارت نهیبه نقاطاز  یابه مجموعه توانایی دستیابی 
 


