Rheological Properties of the In-house Prepared Magneto-rheological Fluid in the Pre-yield Region

Document Type : Original Article

Authors

Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru, Karnataka, India

Abstract

The essence of the present work is to study the rheological properties of the in-house prepared magneto-rheological (MR) fluids in the pre-yield region since the rheological properties play a vital role in better understanding of vibration damping capabilities of MR fluids. In the present work, two different compositions of MR fluid samples were prepared with 24 and 30 volume percentages of carbonyl iron (CI) particles. Prepared MR fluid samples contain CI particles as a dispersive medium, silicone oil as a carrier fluid and white lithium grease as an anti-settling agent. The oscillating driving frequency and amplitude strain sweep tests are performed to investigate the rheological properties within the pre-yield region. The influences of driving frequency, strain amplitude, magnetic field and CI particles volume percentage on the rheological properties of the prepared MR fluids were assessed.  The linear viscoelastic region of the prepared MR fluid sample was identified and the yield strain obtained was around 0.371%. It is observed that the volume percentage of CI particles in the MR fluid strongly influenced the rheological properties.     

Keywords

Main Subjects


  1. Rabinow, J. “The Magnetic Fluid Clutch.” Transactions of the American Institute of Electrical Engineers, Vol. 67, (1948), 1308-1315. https://doi.org/10.1109/T-AIEE.1948.5059821
  2. Ashtiani, M., Hashemabadi, S. H. and Ghaffari, A. “A review on the magnetorheological fluid preparation and stabilization.” Journal of Magnetism and Magnetic Materials, Vol. 374, (2015), 711-715. https://doi.org/10.1016/j.jmmm.2014.09.020
  3. Kciuk, M. and Turczyn, R. “Properties and applications of magnetorheological fluids” Frattura ed Integrita Strutturale, Vol. 23, (2012), 57-61. https://doi.org/10.3221/IGF-ESIS.23.06
  4. Elizabeth Premalatha, S., Chokkalingam, R. and Mahendran, M. “Magneto Mechanical Properties of Iron Based MR Fluids” American Journal of Polymer Science, Vol. 2, No. 4, (2012), 50-55. https://doi.org/10.5923/j.ajps.20120204.01
  5. Genç, S. and Phulé, P.P. “Rheological properties of magnetorheological fluids.” International Journal of Modern Physics B, Vol. 21, No. 28-29, (2007), 4849-4857. https://doi.org/10.1142/s021797920704575x
  6. López-López, M. T., Kuzhir, P., Lacis, S., Bossis, G., González-Caballero, F. and Durán, J. D. G. “Magnetorheology for suspensions of solid particles dispersed in ferrofluids.” Journal of Physics Condensed Matter, Vol. 18, No. 38, (2006). https://doi.org/10.1088/0953-8984/18/38/S18
  7. Iglesias, G. R., López-López, M. T., Durán, J. D. G., González-Caballero, F. and Delgado, A. V. “Dynamic characterization of extremely bidisperse magnetorheological fluids.” Journal of Colloid and Interface Science, Vol. 377, No. 1, (2012), 153-159. https://doi.org/10.1016/j.jcis.2012.03.077
  8. Genc, S. “Experimental Studies on Magnetorheological Fluids” Journal: Encyclopedia of Smart Materials, 248-259, https://doi.org/10.1016/B978-0-12-803581-8.12095-8
  9. Muddebihal, A. B. and Patil, S. F. “Preparation and Study of Characteristics of Iron Based MR Fluids” Materials Today: Proceedings, Vol. 24, (2020), 1132-1137. https://doi.org/10.1016/j.matpr.2020.04.426
  10. Zhu, W., Dong, X., Huang, H. and Qi, M. “Iron nanoparticles-based magnetorheological fluids: A balance between MR effect and sedimentation stability” Journal of Magnetism and Magnetic Materials, Vol. 491, (2019), 165556. https://doi.org/10.1016/j.jmmm.2019.165556
  11. Olabi, A. G. and Grunwald, A. “Design and application of magneto-rheological fluid” Materials and Design, Vol. 28, No. 10, (2007), 2658-2664. https://doi.org/10.1016/j.matdes.2006.10.009
  12. HE, J. M. and HUANG, J. “Magnetorheological Fluids and Their Properties” International Journal of Modern Physics B, Vol. 19, (2005), 593-596. https://doi.org/10.1142/S0217979205029110
  13. Vishwakarma, P. N., Mishra, P. and Sharma, S. K. “Characterization of a magnetorheological fluid damper a review” Materials Today: Proceedings, Vol. 56, (2022), 2988-2994. https://doi.org/10.1016/j.matpr.2021.11.143
  14. Daniel, C., Hemalatha, G., Sarala, L., Tensing, D. and Sundar Manoharan, S. “Seismic Mitigation of Building Frames using Magnetorheological Damper” International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 11, (2019), 1543-1547. https://doi.org/10.5829/ije.2019.32.11b.05
  15. Seid, S., Chandramohan, S. and Sujatha, S. “Design and evaluation of a magnetorheological damper based prosthetic knee” International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 1, (2019), 146-152. https://doi.org/10.5829/ije.2019.32.01a.19
  16. Djavareshkian, M. H., Esmaeili, A. and Safarzadeh, H. “Optimal Design of Magnetorheological Fluid Damper Based on Response Surface Method” International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 9, (2015), 1359-1367. https://doi.org/10.5829/idosi.ije.2015.28.09c.14
  17. TharehalliMata, G., Krishna, H. and Keshav, M. “Characterization of magneto-rheological fluid having elongated ferrous particles and its implementation in MR damper for three-wheeler passenger vehicle” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, (2022), 095440702210784. https://doi.org/10.1177/09544070221078451
  18. Muhammad, A., Yao, X. and Deng, Z. “Review of magnetorheological (MR) fluids and its applications in vibration control” Journal of Marine Science and Application, Vol. 5, No. 3, (2006), 17-29. https://doi.org/10.1007/s11804-006-0010-2
  19. Kumbhar, B. K., Patil, S. R. and Sawant, S. M. “Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application” Engineering Science and Technology, an International Journal, Vol. 18, No. 3, (2015), 432-438. https://doi.org/10.1016/j.jestch.2015.03.002
  20. Abdel-Wahab, A. A., Murmu, T. and Olabi, A.-G. “Applications of Magnetorheological (MR) Fluids in the Biomedical Field” Reference Module in Materials Science and Materials Engineering. UK: Elsevier, (2018), 284-307, https://doi.org/10.1016/B978-0-12-803581-8.11318-9
  21. Kamble, V. G., Kolekar, S., Panda, H. S., Ammourah, S. and Jagadeesha, T. “Magneto rheological fluid: Fabrication and characterization of its temperature-dependent properties” Materials Today: Proceedings, Vol. 45, (2021), 4813-4818. https://doi.org/10.1016/j.matpr.2021.01.292
  22. Allahverdizadeh, A., Mahjoob, M. J., Nasrollahzadeh, N. and Eshraghi, I. “Optimal parameters estimation and vibration control of a viscoelastic adaptive sandwich beam incorporating an electrorheological fluid layer” JVC/Journal of Vibration and Control, Vol. 20, No. 12, (2014), 1855-1868. https://doi.org/10.1177/1077546313483159
  23. Khot, S. M. and Pramod Marathe, A. “Development and testing of low cost Magneto Rheological (MR) fluid using flake shaped magnetizable particles” Materials Today: Proceedings, Vol. 62, (2022), 2700-2708. https://doi.org/10.1016/j.matpr.2021.11.519
  24. Gamota, D. R. and Filisko, F. E. “High frequency dynamic mechanical study of an aluminosilicate electrorheological material” Journal of Rheology, Vol. 35, No. 7, (1991), 1411-1425. https://doi.org/10.1122/1.550239
  25. Weiss, K. D., Carlson, J. D. and Nixon, D. A. “Viscoelastic properties of magneto- and electro-rheological fluids” Journal of Intelligent Material Systems and Structures, Vol. 5, No. 6, (1994), 772-775. https://doi.org/10.1177/1045389X9400500607
  26. Liu, G., Gao, F., Wang, D. and Liao, W.-H. “Medical applications of magnetorheological fluid: a systematic review” Smart Materials and Structures, Vol. 31, No. 4, (2022), 043002. https://doi.org/10.1088/1361-665X/ac54e7
  27. Li, W. H., Chen, G. and Yeo, S. H. “Viscoelastic properties of MR fluids” Smart Materials and Structures, Vol. 8, No. 4, (1999), 460-468. https://doi.org/10.1088/0964-1726/8/4/303
  28. Chiriac, H. and Stoian, G. “Influence of particle size distributions on magnetorheological fluid performances” Journal of Physics: Conference Series, Vol. 200, (2010). https://doi.org/10.1088/1742-6596/200/7/072095
  29. Guo, Y. Q., Sun, C. L., Xu, Z. D. and Jing, X. “Preparation and tests of MR fluids with CI particles coated with MWNTS.” Frontiers in Materials, Vol. 5, (2018), 1-8. https://doi.org/10.3389/fmats.2018.00050
  30. Jolly, M. R., Bender, J. W. and Carlson, J. D. “Properties and Applications of Commercial Magnetorheological Fluids” Journal of Intelligent Material Systems and Structures, Vol. 10, No. 1, (1999), 5-13. https://doi.org/10.1177/1045389X9901000102
  31. Allien, J. V., Kumar, H. and Desai, V. “Semi-active vibration control of MRF core PMC cantilever sandwich beams: Experimental study” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 234, No. 4, (2020), 574-585. https://doi.org/10.1177/1464420720903078
  32. Acharya, S., Allien, V. J., N P, P. and Kumar, H. “Dynamic behavior of sandwich beams with different compositions of magnetorheological fluid core.” International Journal of Smart and Nano Materials, Vol. 12, No. 1, (2021), 88-106. https://doi.org/10.1080/19475411.2020.1871104
  33. Kumar Kariganaur, A., Kumar, H. and Arun, M. “Effect of Temperature on Sedimentation Stability and Flow characteristics of Magnetorheological Fluids with Damper as the Performance Analyser” Journal of Magnetism and Magnetic Materials, Vol. 555, (2022), 169342. https://doi.org/10.1016/j.jmmm.2022.169342
  34. Kumar Kariganaur, A., Kumar, H. and Arun, M. “Influence of temperature on magnetorheological fluid properties and damping performance” Smart Materials and Structures, Vol. 31, No. 5, (2022), 055018. https://doi.org/10.1088/1361-665X/ac6346
  35. Ramkumar, G., Jesu Gnanaprakasam, A., Thirumarimurugan, M., Nandhakumar, M., Nithishmohan, M., Abinash, K. and Kishore, S. “Synthesis characterization and functional analysis of magneto rheological fluid- A critical review” Materials Today: Proceedings, (2022). https://doi.org/10.1016/j.matpr.2022.04.104
  36. Kumar, S., Sehgal, R., Wani, M. F. and Sharma, M. D. “Stabilization and tribological properties of magnetorheological (MR) fluids: A review” Journal of Magnetism and Magnetic Materials, Vol. 538, (2021), 168295. https://doi.org/10.1016/j.jmmm.2021.168295
  37. Allien, J. V., Kumar, H. and Desai, V. “Semi-active vibration control of SiC-reinforced Al6082 metal matrix composite sandwich beam with magnetorheological fluid core” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 234, No. 3, (2020), 408-424. https://doi.org/10.1177/1464420719890374
  38. Zhang, X., Liu, X., Ruan, X., Zhao, J. and Gong, X. “The Influence of Additives on the Rheological and Sedimentary Properties of Magnetorheological Fluid” Frontiers in Materials, Vol. 7, (2021), 1-9. https://doi.org/10.3389/fmats.2020.631069
  39. Khecho, A., Ghaffari, S. A., Behzadnasab, M. and Rahmat, M. “Role of Mixing Method and Solid Content on Printability of Alumina Inks for Stereolithography 3D Printing Process” International Journal of Engineering Transactions C: Aspects, Vol. 35, No. 3, (2022), 580-586. https://doi.org/10.5829/IJE.2022.35.03C.11
  40. Lijuan, P., Xiaoping, L., Wu, L., Fuhao, Z., Tongliang, W., Huang, W. and Fuwei, W. “Study on rheological property control method of ‘Three high’ water based drilling fluid” International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 8, (2020), 1687-1695. https://doi.org/10.5829/ije.2020.33.08b.28
  41. Kenai, S., Hammat, S., Menadi, B., Khatib, J. and Kadri, E.-H. “Properties of Self-Compacting Mortar Containing Slag with Different Finenesses” Civil Engineering Journal, Vol. 7, No. 5, (2021), 840-856. https://doi.org/10.28991/cej-2021-03091694
  42. Soleimani, S., Pennati, G. and Dubini, G. “A study on ratio of loss to storage modulus for the blood clot” International Journal of Engineering, Transactions B: Applications, Vol. 27, No. 8, (2014), 1167-1172. https://doi.org/10.5829/idosi.ije.2014.27.08b.01