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A B S T R A C T  
 

 

This study presents an analytical solution for free vibration analysis of two-dimensional functionally 

graded (2D-FG) porous sandwich beams. The equations of motion for the beam were derived using 

Hamilton's principle, and then the Galerkin method was employed to solve the equations. The material 
properties of the sandwich beams vary with the thickness and length of each layer according to the 

power-law function. The mechanical properties gradually changed from aluminum to alumina as the 
metal and ceramic, respectively. The vibration analysis was investigated based on two new higher-order 

shear deformation beam theories (NHSDBTs). These two new theories do not need any shear correction 

factor and have fewer unknown variables than other higher order shear beam theories.  The obtained 
natural frequencies for the three types of beams were compared with the results of the Timoshenko, first-

order , and parabolic shear deformation beam theories. In addition, the effects of porosity, L/h, and FG 

power indexes along the thickness and length on the non-dimensional frequency of three special types 
of beams are presented and discussed. Furthermore, the mode shapes of the beam are depicted for various 

FG power indexes based on these new theories. By comparing the results of the two proposed theories 

with those of existing studies, the accuracy of the proposed theories was validated. Power-law indexes 
shifted the node point to the left and resonance will be accrued sooner than the non-FGM beam. 

doi: 10.5829/ije.2022.35.11b.04 
 

 
1. INTRODUCTION1 
 
Functionally graded (FG) materials are usually formed 

by combining a certain volume ratio with ceramics and 

metals materials. These materials have been highly 

discussed among researchers because they include 

characteristics such as: heat-resistance, toughness, low 

volumetric mass and high strength. Sandwich structures 

are widely used in the aerospace, space, shipbuilding and 

construction industries due to their excellent electrical, 

thermal and mechanical properties. Research on the 

different aspects of FG beams has been conducted 

extensively in recent years [1-3]. Typically, functionally 

graded material is a compositional gradient but it can also 

be a microstructural gradient, for instance, porosity 

gradients. As far as the search for literature goes, a few 

studies were carried out on the mechanical actions of 

porous structures [4, 5]. 

The higher shear deformation theories (HSDT) support 
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transverse shear effects, hence is appropriate for analysis 

of both moderately thick and thin plates and beams. 

Vibration behaviours of FG structures have been 

investigated in many studies. For example, in a study, the 

free vibration of simply supported functionally graded 

beams (FGs) whose material properties may be 

arbitrarily altered in thickness direction has been 

undertaken by Celebi et al. [6]. In a different work, Lei et 

al. [7]. examined a size-dependent model of beam to 

study vibration and bending of FG microbeams with 

simply supported boundary conditions based on the strain 

gradient elasticity theory and sinusoidal shear 

deformation theory. Ke et al. [8]. considered the non-

linear free vibration of FG nanotube-reinforced 

composite beams by employing direct iterative and Ritz 

method based on the TBT and using von Karman type 

strain-displacement relationships. Researchers have used 

various numerical methods to analyze FG beam 
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vibrations. Free vibration of FGM layered beams under 

various boundary conditions through the use of finite 

element method were analyzed by Mashat et al. [9]. 

Recently, Faghidian [11-13] developed size-dependent 

elasticity theories such as the nonlocal modified gradient 

theory [10], the higher-order nonlocal gradient theory for 

analyzing the mechanical behavior of nanostructures. 

Shahba and Rajasekaran [14] calculate the longitudinal 

transverse frequencies of FGM beams applied the 

differential transform element method (DTEM) and 

differential quadrature element method (DQEM) of 

lower order. The vibrational analysis of composite beams 

is carried out in different studies [15, 16]. Shafiei et al. 

[17] employed the DQM to investigate vibration of 2D 

FG Timoshenko nano and micro beams with porosity. 

Kandil et al. [18] studied sandwich panels with various 

properties of face and core. They found decreasing 

thickness of concrete face wythes had a positive effect on 

strength/weight ratio. Singh and Sangle [19] were studied 

nonlinear static response of vertically oriented coupled 

wall with finite element method. 

Based on the studies mentioned above, it can be noted 

that the studies vibration of two-dimensional functionally 

graded sandwich beams with porosity are very limited. 

For the first time, natural frequency analysis of the 2D-

FG sandwich beams investigated based on two new 

higher order theories. Vibration analysis of two-

dimensional functionally graded beams by considering 

the porosities that might occur inside the materials with 

gradient properties during manufacturing process is 

presented. Three types of sandwich beams were 

investigated in second section. In the first type, a single-

layer 2D-FG porous beam is assumed. The second type 

is sandwich beam with 2D-FG core and pure 

metal/ceramic face sheet. FG layers have a smooth and 

gradual change in mechanical behaviour throughout their 

length and thickness. On the other hands, the third type 

we have two 2D-FG layers with porosity as faces and 

pure ceramic core. In present research, Alumina (Al2O3) 

and Aluminium (Al) are considered as ceramic and 

metal, respectively. Two new beam theories are 

introduced. results obtained with new higher shear 

deformation beam theories (NHSDBT1 and 2) show 

great convergence with Timoshenko (TBT), first-order 

(FSDBT), and parabolic (PSDBT) shear deformation 

beam theories. In this paper at first, formulations and 

types of beams, governing equation of motion and 

solving method are presented at end of section two. Then, 

accuracy of our two new higher order formulations is 

confirmed and the influence of porosity, L/h, shapes, and 

FG power indexes along thickness and length on non-

dimensional natural frequencies on the beams are 

discussed in the last section. Also, natural frequencies 

with various beam theories are calculated and results are 

concluded. Both novels introduced theories are simple 

than some other higher beam theories because of fewer 

unknown variables as a result it helps to reduce the time 

of calculating. Also, one of the other advantages of these 

two new proposed distributions is that they don’t need 

any shear correction factor and they satisfy free stress 

conditions at the top and bottom surfaces of the structure. 

 

 

2. PROBLEM AND FORMULATION 
 
2. 1. Numerical Simulation Procedure            Consider 

a beam, as shown in Figure 1 with length L, width b, and 

thickness h, with the Cartesian coordinate system O (x y 

z), where the origin of coordinate system O is chosen at 

the left of the beam. The mechanical properties of the 

beam, such as Young's modulus E (x, z), shear modulus 

G (x, z), Poisson's modulus υ (x, z), and mass density ρ 

(x, z), with the material properties can vary along the 

length and thickness, as shown in Figure 1. In this study, 

three different types of 2D-FG beam models were 

considered: isotropic 2D-FG beam (Model Ⅰ), sandwich 

beam with homogeneous faces and 2D-FG core (Model 

Ⅱ), and sandwich beam with 2D-FG faces and 

homogeneous ceramic core (Model Ⅲ). 
The effective material properties (P) can be expressed 

using the rule of mixtures as follows: 

( , ) ( , ) ( , )c c m mP x z P R x z P R x z= +  (1) 

( , ) ( , ) 1c mR x z R x z+ =  (2) 

where Pc and Pm are the epitomes of the mechanical 

properties. In addition, Rc and Rm are the volume 

fractions of ceramic and metal. The effective material 

properties of the porosity are defined as follows [20]: 

( ) ( ) ( ),
2

c m c m c mP x z P P R P P P
 

= − + − + 
 

 
(3) 

where 𝜂 is porosity volume fraction. 

 
2. 1. 1. ModelⅠ: Isotropic 2D-FG Beam             The 

first beam Model was graded from the metal at the lower 

left corner edge to the ceramic at the top right corner edge 

(Figure 2). The volume fraction of the ceramic material 

is given by Şimşek [21]: 

1
( , )

2

x zk k

c

x z
R x z

L h

   
= +   
   

 (4) 

 

 

 
Figure 1. Geometry of 2D-FG beam and cross section 
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Figure 2. Isotropic 2D-FG beam, Model Ⅰ 

 

 

kx and kz are the power laws of the beam, which have 

certain properties in the length and thickness directions.  

 

2. 1. 2. ModelⅡ: Homogeneous Faces and 2D-FG 
Core               In this Model, the core layer of the sandwich 

beam is similar to that of Model Ⅰ, and the bottom and top 

faces are made of pure metal and pure ceramic as shown 

in Figure 3. The volume fraction of the ceramic for the 

second Model is given by the following expression: 

2
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(5) 

 
2. 1. 3. ModelⅢ: 2D-FG Faces and Ceramic Core 
In Model Ⅲ, the two 2D-FG skins covered a 

homogeneous pure ceramic layer (Figure 4). In this case, 

the volume fraction of the ceramic constituent Rc(x, z) is 

given as follows: 

2 1
2

1
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3
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  + − 
    
   

 
=   
 

 + −  
−         

 

(6) 

The variation of the volume fraction of the ceramic 

(Rc) through the beam thickness and length for all three 

Models with respect to kx and kz is plotted in Figure 5. 

 
2. 2. Numerical Simulation Procedure         The 

displacement field for the present shear deformation 

beam theories, are given by Equation (7): 
 
 

 
Figure 3. Sandwich beam with homogeneous faces and a 

2D-FG core, Model Ⅱ 
 

 

 

 
Figure 4. Sandwich beam with 2D-FG faces and 

homogeneous ceramic core, Model Ⅲ 

 
(a) Model Ⅰ 

 
(b) Model Ⅱ 

 
(c) Model Ⅲ 

Figure 5. Variation of volume fraction of the ceramic (Rc) 

through the beam thickness and length according to power-

law indexes 

 
 

( ) ( )
( )

( ) ( ), ( )x

w x
u x z u x g z f z x

x



= − +



 (7a) 

( ) ( ),zu x z w x=  (7b) 

where u(x) and w(x) represent the axial and transverse 

displacements for the mid access, respectively, and φ is 

the rotation of the cross sections. g(z) and f(z) are shape 

functions that differ based on the theory under 

consideration, as listed in Table 1. In this study, two new  

 

 
TABLE 1. Various theories for Modelling the structure 

Theories g(z) f(z) 

TBT [22] 0  z  

FSDBT [23] z  z  

PSDBT [24] z  

2

2

4
1

3

z
z

h

 
− 

 

 

NHSDBT1 z  

2

3

4 16

3

z
z

h h

 
− 

 

 

NHSDBT2 z  

2 4

3 5

1 2 8

5

z z
z

h h h

 
− + 
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higher-order shear deformation theories, NHSDBT1 and 

NHSDBT2, were introduced for the first time. 

By assuming infinitesimal deformations, strain-

displacement relations are [25]: 

( ) ( ) ( )2

2
( ) ( )xx

u x w x x
g z f z

x x x




  
= − +

  
 (8a) 

( ) ( )
( )

( )( )
xz

g z w x w xf z
x

z x z x
 

  
= − + +

   

 (8b) 

The stress-strain relations by using Hook's law defined. 

The Hamilton's principle is employed to extract 

equations of motion [26]: 

0
( ) = 0

t

U T dt −  (9) 

where U and T are the strain and kinetic energies of the 

beam, respectively. δ denotes the variation operator. The 

strain energy of the beam (U) is calculated as follows 

[27]: 

( )
1 1

2 2
ij ij xx xx xz xx

V V
U dV dV     = = +   (10) 

Finally, the variation of strain energy with respect to u(x), 

w(x) and 𝜑(𝑥) is shown as follows: 

2

xx xx xz xz xx
xz2

A B S A D1
= ( ) ( T )

2 A
U u w dA

x x x x x
   

     
− − − + − − 

     


 
(11) 

Where Axx, Axz, Bxx, Dxx, Sxz and Txz are defined by: 

( ) ( )
/2

xx xz
/2

A , A = , dz
h

xx xz
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−

−   (12a) 
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z
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,
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d
−

 
=

   (12c) 

The kinetic energy is obtained as follows [28]: 

2 21
=

2
x z

V
T u u dV  +   (13) 

The inertia coefficients are defined as Equation (14) [25] 

( ) (
/2

1 2 3 4 5 6
/2

I , I , I , I , I , I = 1, ( ), ( ) ,
h

h
g z f z

−
−   

)2 2( ) ( ), ( ) , ( )g z f z g z f z dz  
(14) 

Finally, the total variation of the kinetic energy 

associated with the sandwich beam in the integral form 

is: 

1 2 3 3 4 6

2
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1
= I I I I I I
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w w
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x x

u w
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− − + − 

   


 

(15) 

By substituting the strain energy Equation (11) and 

kinetic energy Equation (15) into Hamilton's principal, 

Equation (9), equations of motion may be expressed as 

Equation (16). 

xx
1 2 3

A
: I I I

w
u u

x x
 

 
= − +

 
 (16a) 
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(16b) 

xx
xz 3 4 6

D
: T I I I

w
u

x x
 

 
− = − +

 
 (16c) 

 
2. 3. Analytical Solution             To obtain the theoretical 

solution, the Galerkin method is considered. According 

to this method, the displacements functions u(x, t), w(x, 

t) and 𝜑(𝑥, 𝑡) are assumed as follows [28, 29]: 

( ) 0 0 -1

1

( , ) -
K

q p m iwt

m

m

u x t L x x x u e
=




= 
  (17a) 

( ) 0 0 -1

1

( , ) -
K

q p n iwt

n

n

w x t L x x x w e
=




= 
  (17b) 

( ) 0 0 -1

1

( , ) -
K

q p j iwt

j

j

x t L x x x e 
=

 
 

=  (17c) 

where �̅�𝑚, �̅�𝑛 and φ̅𝑗  are unknown coefficients which 

will be determine. i = √−1, K denote the order of series 

and 𝜔 is the natural frequency. These functions satisfy 

the fully clamped boundary conditions. Free vibration 

analysis of the bi-dimensional functionally graded 

sandwich beam can be computed from Equation (18) 

[30]: 

     2 0K M − =  (18) 

where, [M] and [K] are global mass and stiffness matrix, 

also 𝜔 and {𝜆} are natural frequency of  the beam and 

unknown coefficients, respectively. 

 

 
3. NUMERICAL RESULTS AND DISCUSSION 
 

In this section, the free vibration of three types of 2D-FG 

porous sandwich beam concerning porosity coefficients 

(𝜂)  for clamped-clamped boundary condition are studied 

and discussed. 2D-FG sandwich beam has various 

shapes, including (1-8-1), (1-1-1), (2-1-2) and (1-2-1). 

The first, second and third element indicates the 

thickness ratio of the top, core and bottom layer, 
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respectively. Functionally graded material composed of 

mixture of alumina and aluminum as ceramic and metal, 

respectively with the material. Their properties are given 

in Table 2. The influence of different slenderness ratios, 

L/h = 5, 10, 15 and 20 for various theories, contains two 

new theories on the non-dimensional natural frequency 

are investigated. The shear correction factor for TBT and 

FSDBT theories is considered as ks = 5/6 and for other 

theories are taken as ks = 1. 

The dimensionless fundamental frequency is defined 

as Equation (19) [31]: 

2 12 c

c

L

h E


 =  

(19) 

where L, h are total length and thickness of the sandwich 

beam, moreover 𝜌𝐶 , 𝐸𝐶  are density and Young’s modulus 

of the middle layer of the sandwich beam. In this 

research, the results are calculated for different power-

law indexes between 0 to 10 and porosity coefficients are 

taken as 𝜂 = 0, 0.1, and 0.2 in various displacements 

theories. The total thickness of beam (h) is constant and 

it is 0.1 m in all third Models Ⅰ, Ⅱ and Ⅲ.  The width of 

beam (b) considers as 0.1 m and the function indexes (p0 

and q0), are taken as 2 to satisfy the clamped-clamped 

boundary condition. Validation of our formulation and 

the results are obtained and compared with the results  

reported in literature [25]. The material properties in 

Table 3 are used for this purpose. A flowchart of the 

configuration of the research paper is presented in Figure 

6. 

The distribution of transverse shear stress along the 

thickness of the structure for FSDBT, PSDBT, and two 

present introduced theories are illustrated in Figure 7. 

The modified shear deformation theory satisfies free 

stress conditions at z = -h/2 and the z = h/2 surfaces of 

the beam. In Table 4, the first frequency of FG porous-

less beam with L/h = 10 for Model Ⅰ based on the 

Galerkin method and clamped-clamped support 

condition for three different power-law indexes are 

 

 
TABLE 2. Properties of materials 

Materials 
Elasticity 

module (E) 

Mass density 

(𝝆) 

Poisson's ratio 

( 𝛖) 

Alumina 380 3965 0.23 

Aluminium 70 2700 0.23 

 
 

TABLE 3. Properties of materials reported by Elmeiche et al. 

[25]  

Materials 
Elasticity 

module (E) 

Mass density 

(𝝆) 

Poisson's ratio 

( 𝛖) 

Alumina 380 3800 0.23 

Aluminium 70 2700 0.23 

 
Figure 6. Research methodology flowchart 

 

 

calculated. It is clear the present non-dimensional 

frequency values are in good agreement with the 

reference. 

Moreover, the accuracy of our results and our new 

formulation is verified by comparison with the exact 

solution study for the non-dimensional frequencies of the 

FG beams [32]. The results are presented in Table 5 by 

assuming Bouamama et.al. material properties with L/h 

= 10, results show that our theories have high accuracy 

as proven by the good agreement between the results in 

all three first frequencies. The percentage below each 

value in Tables 4 and 5 represents the difference with the 

corresponding results obtained from references. 

 

 

 
Figure 7. A comparison of transverse shear stress 

distributions of the beam based on various theories 

 

 
TABLE 4. Comparison of the results of ω̅ with Elmeiche et al. 

[25] 

 kw = 5 kw = 10 

 FSDBT PSDBT FSDBT PSDBT 

Elmeiche et al [25] 14.2348 14.0866 13.6883 13.5237 

Present 14.2380 14.1021 13.6966 13.5534 

 -0.02% -0.1% -0.06% -0.2% 
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TABLE 5. Comparison of the results with Mohamed et al. [32] 

 ω1 ω2 

NHSDBT1 21.3931 (4.3%) 58.3604 (5.37%) 

NHSDBT2 21.4001 (4.3%) 58.3877 (5.32%) 

Mohamed et al.[32] 22.3730 61.6730 

 

 

In Table 6 natural frequencies of first type 2D-FG 

considered beam are calculated for all FSDBT, PSDBT, 

NHSDBT1 and NHSDBT2. 

To show the accuracy of results of our two new 

theories for thick beam, we investigate natural 

frequencies of the 2D-FG beam in Table 7. 

Fixed coefficients and their reduction rates in these 

two theories are different from other theories, hence this 

difference causes a change in the transverse shear strain. 

The results express a convergent by using these two new 

theories. According to this table, there is a bit different 

among the results obtained from various shear 

deformation theories. These differences are due to the 

fact that, function f(z) have different expansions through 

the thickness in various theories. It is worth to mention 

that every extra power in the expansion of function f(z) 

through the thickness of the structure includes additional 

unknown variables in those theories. Additionally, 

physical interpretation of these unknown variables are 

difficult [33]. Thus, it is better to use such distributions 

that are simpler with acceptable accuracy. Although two 

new proposed theories are simpler than other modified 

shear deformation theory, they are nearly identical in 

accuracy.   

Figure 8, display the non-dimensional frequency (ω) 

of the 2D-FG porous beam of Model Ⅰ for various values 

 

 
TABLE 6. Comparison of the results of ω̅ based on various 

theories for type 1, L/h = 10, kx = 0 and 𝜂 = 0 

Theories kz = 0 kz = 1 kz = 5 kz = 10 

FSDBT 21.1695 16.5043 14.2380 13.6966 

PSDBT 21.1690 16.5042 14.1021 13.5534 

NHSDBT1 21.1618 16.5051 14.1027 13.5504 

NHSDBT2 21.1791 16.5150 14.0906 13.5551 

 

 
TABLE 7. Comparison of the results of ω̅ based on various 

theories for type 1, L/h = 5, kx = 0 and 𝜂 = 0 

Theories kz = 0 kz = 1 kz = 2 kz = 6 kz = 10 

FSDBT 18.538 14.665 13.380 12.250 11.800 

PSDBT 18.559 14.680 13.297 11.899 11.468 

NHSDBT1 18.559 14.677 13.297 11.898 11.470 

NHSDBT2 18.590 14.703 13.309 11.888 11.480 

of power-law indexes (kx and kz). These figures are 

calculated based on new higher shear deformation theory 

(NHSDBT2) by assuming porosity volume fraction (η) 

and slenderness ratios (L/h) as 0.1 and 10. It is clear from 

the figure that the value of natural frequency decreases 

with increasing FG power-law indexes (kx and kz). This 

is because of the decrease in modulus of elasticity. Also, 

the flexibility of the sandwich beam increases while the 

power-law indexes increase. The first line (kx=0) shows 

dimensionless frequencies for the one-dimensional FG 

beams, whereas other lines show the natural frequencies 

of the 2D-FG beams. It is clear that when the beam 

change to 2D-FG, the amount of non-dimensional 

frequencies will decrease. 

In Figure 9, the effect of porosity on the natural 

frequency for NHSDBT1 and NHSDBT2 are illustrated. 

It is clear that porosity is not a significant parameter for 

frequency in the low amount of power-law index (kz < 2). 

As the porosity increases, the rigidity of the beam 

decreases, which reduces the stiffness. Decreasing the 

stiffness, reduces the natural frequency value. In Figure. 

10, two first modes of the natural frequency of 2D-FG 

sandwich beam respected to different slenderness ratios 

(L/h = 5, 10, 15 and 20) are compared. As the numerical 

value of the porosity parameter increases, we see more 

effectiveness of graded parameters   

 
 

 
Figure 8. ω̅ of 2D-FG porous beam for various kx and kz 

based on NHSDBT2 theory (L/h = 10, η = 0.1 and Model Ⅰ) 
 

 

 
Figure 9. ω̅ of 2D-FG porous beam for various kz and η, 

based on NHSDBT1 (L/h = 10, kx = 1 and Model Ⅰ) 
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As shown in Figure 10, L/h = 5 has more effect on 

frequencies in comparison with other slenderness ratios. 

In another word, free vibration frequencies decrease with 

decreasing value of L/h. Reducing the length to a 

constant thickness reduces the bending moment, which 

reduces the strain energy, which in turn reduces the 

natural frequency value. It is good to mention that, the 

decrement is higher for the second mode. It can be 

pointed out that slenderness ratios (L/h) effects become 

more prominent in smaller values on the natural 

frequencies of the beam. 

To verify the accuracy of the two newly presented 

theories (NHSDBT1 and NHSDBT2), Figure 11 is 

plotted. A good agreement can be observed between the 

reported results. Our two new theories and parabolic 

shear deformation formulation come up with close results 

for Model Ⅰ.   

Figure 12 indicates that non-dimensional natural 

frequencies for Model Ⅱ of the 2D-FG porous sandwich 

beam have good agreement with different theories. The 

effect of core thickness on the natural frequency for 

Model Ⅱ is illustrated. In this figure, it can be observed 

1-8-1 shape determine a larger range of natural frequency 

than other shapes.  This is due to the ratio of the thickness 

of the core layer, which has no dependency on FG is 

 

 

 
Figure 10. First and Second modes of ω̅ of 2D-FG porous 

beam respected to L/h, based on NHSDBT1 (η = 0, kx = 1 

and Model Ⅰ) 

 

 

 
Figure 11. Comparison of ω̅ of 2D-FG porous based on 

different theories (η = 0.1, kx = 1 and Model Ⅰ) 

larger than other shapes. In this Model specially, results 

of PSDBT always coincide with our two new higher 

shear deformation beam theories. Due to the graded 

properties of the beam, the natural frequencies change 

gradually, which starts from the metal phase and leads to 

the ceramic. For this reason, the values of the frequencies 

in the presented graphs have a downward trend. 

Like Model Ⅱ, results in Figure 13 shows great 

accuracy between theories for Model Ⅲ, which 

demonstrates the validity of the new theories. On the 

other hand, in this figure, the 1-8-1 shape has the smallest 

range of natural frequencies variation and the 2-1-2 shape 

has the largest variation range among shapes. This is 

because FG face sheets are thicker in the 2-1-2 shapes 

compared to other shapes and the variation in the 

properties of FG material, affects the frequencies. 

Generally, amount of frequencies in 1-8-1 shape are 

higher than the others. 

In Figure 14, dimensionless frequencies of the beam 

are graphed for assumptions of L/h = 10, η = 0.1 and kx 

= 1 based on NHSDBT2. It is noteworthy that, the effect 

of FG layers on the natural frequencies of the 2D-FG 

beam is significant for variable kz. Consequently, the 1-

8-1 shape in Model Ⅱ (Figure. 14(a)) and the 2-1-2 shape 

in Model Ⅲ (Figure 14(b)) had most affected by the 

power-law index of functionally graded material, 

compared to the other shapes in each Model. The 

stiffness of FG beams will decrease as the power-law 

index is increased for all shapes types because FG 

material went to have more ceramic volume. Also, by 
 

 

 
(a) 2-1-2 

 
(b) 1-8-1 

Figure 12. Comparison of ω̅ for various kz and theories (L/h 

= 10, kx = 1, η = 0.1 and Model Ⅱ) 



P. Mehdianfar et al. / IJE TRANSACTIONS B: Applications  Vol. 35, No. 11, (November 2022)   2092-2101                           2099 

 

 
(a) 2-1-2 

 
(b) 1-8-1 

Figure 13. Comparison of ω̅ for various kz and theories (L/h 

= 10, kx = 1, η = 0.1 and Model Ⅲ) 

 

 

checking the results in model two, it is possible to achieve 

a unique natural frequency with various shapes. this 

phenomenon provides a state to use in reality. In Figure 

15, based on our new theory (NHSDBT1) the first and 

second mode shapes of two dimensional functionally  

 

 

 
(a) Model Ⅱ 

 
(b) Model Ⅲ 

Figure 14. ω̅ of 2D-FG porous beam for various kz and 

shapes, based on NHSDBT2 (L/h = 10, kx = 1, and η = 0.1) 

 
(a) First mode shape (×10-5) 

 
(b) Second mode shape (×10-5) 

Figure 15. The first two mode shape of 2D-FG beam for 

Model Ⅰ, based on NHSDBT1 (L/h = 10 and kz = 1) 

 

 

graded beam investigated. A fully clamped beam with 

L/h = 10 and kz = 1 for various kx based on Model Ⅰ is 

chosen. 

 

 

4. CONCLUSION 
 

In this paper, two new higher order shear deformation 

beam theories (NHSDBT 1 and 2) to obtain non-

dimensional frequencies of 2D-FG porous sandwich 

beams are introduced. Effect of different shapes, porosity 

(η), slenderness ratios (L/h) and power-law indexes in 

both axial and thickness directions (kx and kz) on natural 

frequencies of the 2D-FG porous beam in three different 

beam Models, based on various theories (TBT, FSDBT, 

PSDBT, NHSDBT 1 and 2) for clamped-clamped 

boundary condition are investigated. The higher order 

governing equations are derived by using Hamilton's 

principle. In the following, the Galerkin method is 

employed to solve them. The effect of power-law indexes 

on shape modes is illustrated. The presented theories are 

validated for the free vibration of beams. The major 

results of this paper are briefly explained below: 

• By implementing the presented two new theories, a 

good agreement was obtained. The results indicate 

that the accuracy of the NHSDBT1 and NHSDBT2 

are close to other order shear deformation beam 

theories although using the presented theories are 

easier than them. 

• There are some parameters that will rise the 

amounts of natural frequencies by increasing them. 
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The slenderness ratio (L/h) is one of them, whereas 

the power-law indexes (kx and kz) and porosity 

volume fraction (η) show an indirect relation with 

frequencies. Frequencies are more sensitive to 

porosity in high-value power-law indexes. 

• It is noteworthy that, the effect of FG layers on the 

natural frequencies of the 2D-FG beam is 

significant for variables kx and kz. Consequently, by 

increasing thickness of the functionally graded 

layer in each shape 

• Generally, power-law indexes shifted the node 

point to the left and resonance will be accrued 

sooner than the non-FGM beam. 
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Persian Abstract 

 چکیده 
روش   استفاده ازو با   ن استخراج شدهواست. معادلات حاکم بر تیر به کمک اصل همیلتارتعاش آزاد تیرهای ساندویچی مدرج تابعی دو جهته متخلخل ارائه شده در این پژوهش  

بین  باشند. خواص مکانیکی تیر  های حجمی مدرج متغییر مینسبت  به  با توجه  ، اند. خواص مواد تیر ساندویچی در راستای ضخامت و طول هر لایه از تیرگلرکین حل شده

که در این پژوهش برای اولین بار ارائه   کنند. ارتعاش آزاد براساس دو تئوری مرتبه بالای برشی جدیدبه صورت تدریجی تغییر می ،به عنوان فلز و سرامیک، آلومینیوم و آلومینیا

اند. علاوه بر این، تاثیر  تیموشنکو، مرتبه اول و پارابولیکی قیاس شده  برشی  های تغییر شکل تئوریبا  نتایج حاصل  است.  محاسبه گردیدهوت تیر  سه مدل متفا  برای  اند،شده

های  مودهای تیر تحت نسبتهمچنین، شکل  .  نداها بررسی شدهدر راستای طول و ضخامت برروی فرکانس  یهای حجمی مدرجتخلخل، نسبت طول به ضخامت تیر و نسبت 

 است.گردیدهمقایسه  حل دقیق و تحلیلیهای با روشدو مقاله . صحت نتایج حاصل از دو تئوری جدید با نتایج گردیدحجمی متفاوت براساس تئوری جدید ترسیم 
 

 


