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A B S T R A C T  
 

 

The innovation of the present paper is the analytical study of Brownian motion effects on nanofluid flow 

and electromagnetic force between parallel disks with a heat source. Nanoparticle effects on 

nondimensional temperature field and velocity of fluid flow were analyzed using Akbari-Ganji’s Method 
and radial basis function approximation based on Hardy multiquadric function. Akbari-Ganji’s Method 

(AGM) is a strong analytical method that solves any linear and nonlinear differential equation with any 

degree of variables. Radial basis functions is an approximation method for analyzing functions and 
equations at high degrees, especially when it is necessary to apply the interpolation problem for scattered 

data on irregular geometry. The results signified that the maximum difference between AGM and RBF 

methods, for nondimensional horizontal velocity on CuO nanofluid at 𝑆𝑞 = 1 and 𝜂 = 0 is 0.2251 and 

the minimum difference for the nondimensional vertical velocity of Al2O3 nanofluid at 𝜂 = 0  is equal 

to 0.0018. Also, the effects of the Hartmann number (Ha) on nondimensional horizontal and vertical 

velocities field for Al2O3 nanoparticles at 𝜂 = 0 have a slight difference from the other Hartmann values 

using the AGM method. The maximum of nondimensional horizontal velocities at 𝜂 = 0 and 𝐻𝑎 = 8 is 

equal to 1.9354. 

doi: 10.5829/ije.2022.35.08b.21 
 

 

NOMENCLATURE 

a Compressed parameter 𝜇𝑓 viscosity of fluid (kg/m.s) 

k thermal conductivity (W/m. K) 𝜇𝑠𝑡𝑎𝑡𝑖𝑐 
effective viscosity of the component static  

(kg/m.s) 

B magnetic field 𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 
effective viscosity of Brownian motion part  
(kg/m.s) 

𝐵0 primary magnetic field 𝜇𝑒𝑓𝑓 effective viscosity  (kg/m.s) 

S heat source 𝐹 electromagnetic force (N) 

𝑆0 primary heat source 𝑃𝑟𝑓 electromagnetic force (N) 

𝐻 place of the plate (m) 𝑆𝑞 squeeze number (𝑎
.𝐻2

2𝜐𝑓
) 

𝑢, 𝑣 vlosity components 𝐻𝑎 hartmann number (𝐻. 𝐵0. √
𝜎𝑓

𝜇𝑓
) 

x, y coordinates (m) 𝜙 nanofluid volume fraction 

𝑟𝑗 euclidean norm 𝑑𝑠 particle diameter (m) 

𝑥𝑗 centers of radial base function 𝜌𝑛𝑓 density of nanofluid (kg/m3) 

Ψ polynomial 𝜌𝑓 density of fluid (kg/m3) 

N number of the distinct points at RBF 𝜌𝑠 density of nanoparticles (kg/m3) 

𝜆𝑗 interpolation coefficient at RBF 𝜎𝑛𝑓 electrical conductivity of nanofluid (s/m) 

𝜖 shape parameter 𝜎𝑓  electrical conductivity of fluid (s/m) 

T temperature (K) 𝜎𝑠 electrical conductivity of nanoparticles (s/m) 
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𝜃 nondimensional temperature 𝑘𝑛𝑓  thermal conductivity of nanofluid (W/m.K) 

𝐽 electric current 𝑘𝑓  thermal conductivity of fluid (W/m.K) 

𝑘𝑠 thermal conductivity of nanoparticles (W/m. K) Subscripts  

𝑘𝑠𝑡𝑎𝑡𝑖𝑐 effective thermal conductivity of the component static  (W/m. K) 𝑛𝑓 nanofluid 

𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 effective thermal conductivity of  Brownian motion part (W/m. K) s solid 

𝑘𝑒𝑓𝑓 effective thermal conductivity (W/m.K) f fluid 

𝜇𝑛𝑓 viscosity of nanofluid (kg/m.s) eff effective 

 
1. INTRODUCTION 
 
Electromagnetic effects on a nanofluid with squeezing 

flow and Brownian motion effects between two parallel 

disks have been analytically investigated. Squeezing 

flow is used in industrial applications such as metallurgy, 

magnetic hydrodynamic (MHD) generators [1], and 

petroleum industries. Asefi et al. [2] examined the 

hydromagnetic flow of a micropolar fluid on a tensile 

sheet with unstable properties. Also, they investigated the 

conduction heat transfer numerically with ununiformed 

heat sources. Ravindran et al. [3] studied the effects of 

chemical reaction, heat generation, and absorption on 

unstable MHD flow. This process takes place on top of a 

vertical cone with ununiformed mass transfer. Motahar 

[4] studied the effect of entropy production on the 

magnetic hydrodynamic magnetic flow of a nanofluid in 

a vertical channel. Asgari and Tariverdilo [5] studied the 

flow of the MHD boundary layer of an Oldroyd-B fluid 

in the vicinity of the vertical stretching sheet. They used 

a non-thermal flux to define the equilibrium energy 

relation. Han et al. [6,7] studied the significance of Hall 

current and Joule heating on the dynamics of Darcy–

Forchheimer peristaltic flow of Rabinowitsch fluid and 

also studied partial slips and temperature Jumps of a 

nanofluid flow over a stretched or shrinking surface . 

Rashidi et al. [8] studied the modeling and analysis of 

sensitivity and thermal conductivity of water-based 

ethylene glycol nanofluids with alumina nanoparticles. 

Alagumalai et al [9] studied conceptual analysis 

framework development to understand barriers to 

nanofluid commercialization. Nouri et al. [10, 11] and 

Dadsetadi et al. [12] analytically and numerically 

investigated the system of fractional differential 

equations based on the hybrid functions. Pourziaei 

Araban et al. [13] numerically surveyed a cavity with 

heat source using the lattice Boltzmann method based on 

the D3Q19 model and compared with experimental 

results.                                                        

In the present study, a combination of squeezing 

flow with Brownian motion effects and electromagnetic 

force is modeled to improve the thermal field between 

two parallel disks with a heat source.  All numerical 

implementations and executions have  been done by 

Maple  software to investigate the nondimensional 

temperature and  velocity field due to nanoparticle effects 

and a heat source between  two parallel disks with 

electromagnetic boundary conditions, alongside 

hardware configuration: Core (TM) i3-7130U CPU @ 

2.70 GHz 2.71 GHz 4GB RAM. First, with the similarity 

transformation, the governing equations with partial 

differential equations (PDE) transform to a set of 

nonlinear ordinary differential equations (ODE). These 

equations are simulated according to their boundary 

conditions with AGM and RBF based on Hardy 

multiquadric (MQ) function. Finally, to study more 

precisely, the Hartmann number, the squeeze number, 

and the heat source parameter between two parallel disks 

have been investigated.  
 

 

2. PROBLEM DEFINITION 

 

According to Figure 1, if we consider the bottom disk at 

𝑧 = 0, the upper disk is located at 𝑧 = 2𝐻√(1 − 𝑎𝑡). H 

is a place of the plate at 𝑧 = 0. a is a compressed 

parameter that at 𝑎 > 0, referred two plates were 

compressed until 𝑡 = 1
𝑎⁄  and so, at 𝑎 < 0, two plates 

separated from each other. In this case, the general 

governing equations on physics of the problem are as 

follows: 

�⃗⃗�. �⃗⃗� = 0 (1) 

𝜌
𝜕�⃗⃗�

𝜕𝑡
= −�⃗⃗�𝑝 + 𝜇∇2�⃗⃗� + �⃗� (2) 

𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝐶𝑝
∇2𝑇 +

𝑆

𝜌𝐶𝑝
𝑇  (3) 

Here, 𝜇 is the dynamic viscosity, 𝜌 is the fluid density, k 

is the thermal conductivity coefficient and S is a heat 

source that is defined as follows [14]. 

 

 
Figure 1. Schematic diagrams of MHD nanofluid flow that 

compressed between two limited parallel disks 

 

𝑧 

𝑥 

  

𝑆 = 𝑆0 (1 − 𝑎𝑡)  

𝐻 𝑎𝑡 𝑆 𝑢𝑟   

𝑧 = 2𝐻√(1 − 𝑎𝑡) 

𝑧 =0 

𝐵 = 𝐵0(1 − 𝑎𝑡) 

 𝑎𝑛 𝑝𝑎𝑟𝑡      



E. Tayari et al. / IJE TRANSACTIONS B: Applications  Vol. 35, No. 08, (August 2022)    1651-1661                                    1653 
 

𝑆 =
𝑆0

(1 − 𝑎𝑡)⁄  (4) 

A magnetic field �⃗⃗� applied perpendicular to the disk 

plates goes downwards. Of course, the magnetic 

Reynolds number is very small and the induced magnetic 

field is also neglected. So, a magnetic field is defined as 

follows: 

�⃗⃗� = 𝐵 ⃗𝑦 ,   𝐵 = 𝐵0(1 − 𝑎𝑡) (5) 

The electric current 𝐽 and the magnetic field �⃗⃗� created the 

electromagnetic force �⃗� defined as follows: 

𝐽 = 𝜎[�⃗⃗� × �⃗⃗�] 

�⃗� = 𝐽 × �⃗⃗� = 𝜎[�⃗⃗� × �⃗⃗�] × �⃗⃗�  
(6) 

We replaced expressions (4), (5), and (6) in momentum 

and energy equations for the 2D unsteady flow of a 

nanofluid. So, the following results are obtained [15]: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕 
= 0 (7) 

𝜌𝑛𝑓 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇𝑛𝑓 [

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
] −

𝜎𝑛𝑓𝐵
2𝑢  

(8) 

𝜌𝑛𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇𝑛𝑓 [

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
]  (9) 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓
[
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
] +

𝑆

(𝜌𝐶𝑝)𝑛𝑓
𝑇  (10) 

The boundary conditions for governing equations 

according to present physics are expressed as follows: 

𝑣 = 𝑣𝑤 = 𝑑ℎ
𝑑𝑡⁄ = −𝑎𝐻

√(1 − 𝑎𝑡)⁄   

𝑎𝑡    = ℎ(𝑡) 

𝜕𝑢

𝜕 
= 0     𝑎𝑡       = 0   

𝜕𝑇

𝜕 
= 0      𝑎𝑡       = 0 

(11) 

Some of the governed equations should be changed for  

modeling the nanofluid because of changes in the fluid 

thermal conductivity, density, heat capacitance, and 

electrical conductivity, some of the governed equations 

should be changed. Thermo-physical nanofluid 

properties except for density, which is obtained by 

Boussinesq approximation, are assumed invariant and are 

given in Table 1 [16]. 

The electrical conductivity is written as [17]:  

𝜎𝑛𝑓

𝜎𝑓
= 1 +

3(
𝜎𝑠
𝜎𝑓
−1)𝜙

(
𝜎𝑠
𝜎𝑓
+2)−(

𝜎𝑠
𝜎𝑓
−1)𝜙

  (12) 

The effect of density at the reference temperature is given 

by: 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠  (13) 

and the heat capacitance of nanofluid can be given as 

follows [18]: 

(𝜌 𝑝)𝑛𝑓 =
(1 − 𝜙)(𝜌 𝑝)𝑓 + 𝜙(𝜌 𝑝)𝑠  (14) 

The effective thermal conductivity of the component static 

entities and a Brownian motion part due to micromixing in 

suspensions were introduced by Koo and Kleinstreuer [19] 

as follows:  

𝑘𝑒𝑓𝑓 = 𝑘𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 (15) 

The component static based on Maxwell’s classical 

correlation significantly impacts the effective thermal 

conductivity. 

𝑘𝑠𝑡𝑎𝑡𝑖𝑐 = (1 +
3(

𝑘𝑠
𝑘𝑓
−1)𝜙

(
𝑘𝑠
𝑘𝑓
+2)−(

𝑘𝑠
𝑘𝑓
−1)𝜙

)𝑘𝑓  (16) 

Koo [20] obtained a particle’s Brownian motion via 

simulating Stokes’ flow around a nano-particle and 

combined the interaction between nano-particles and the 

temperature effect. So, the Brownian motion part is  

presented as follows: 

𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛  = 5 × 104𝜙𝜌𝑓 𝑝,𝑓√
𝑘𝑠𝑇

𝜌𝑠𝑑𝑠
g′(𝑇,𝜙, 𝑑𝑠)  (17) 

Li [21] developed the g′ function with particle diameter, 

temperature, and volume fraction. 

g′(𝑇, 𝜙, 𝑑𝑠) = (−26.5933 − 0.4038 ln(𝑑𝑠) −
33.3517 ln(𝜙) −
1.9158 ln(𝜙) ln(𝑑𝑠) + 0.0642 ln(𝑑𝑠)

2) ln(𝑇) +
(48.4034 − 9.7878 ln(𝑑𝑠) + 190.2456 ln(𝜙) +
10.9285 ln(𝜙) ln(𝑑𝑠) − 0.7201 ln(𝑑𝑠)

2)  

(18) 

 

 

 
TABLE 1. Thermo-physical properties of water and nanoparticles [16] 

Material 𝝆 (𝒌𝒈/𝒎^𝟑) 𝑪𝑷(𝑱/𝑲𝒈𝑲) K (W/mK) 𝝁 × 𝟏𝟎𝟔  (𝑵𝒔𝒎−𝟐) 𝝈  (𝑺𝒎−𝟏) 

Pure water 997.10 4179 0.613 855 0.05 

Copper oxide (Cuo) 6500 540 18 - 5.96 × 107 

Alumina (Al2O3) 3970 765 25 - 3.69 × 107 
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The effective viscosity of the static and a Brownian motion 

part due to micromixing in suspensions was introduced by 

Koo and Kleinstreuer [16] as follows: 

𝜇𝑒𝑓𝑓 = 𝜇𝑠𝑡𝑎𝑡𝑖𝑐 + 𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 = 𝜇𝑠𝑡𝑎𝑡𝑖𝑐 +
𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛

𝑘𝑓
×

𝜇𝑓

𝑃𝑟𝑓
 

(19) 

The viscosity of the nanofluid containing a dilute suspension 

of small rigid spherical particles is given by the Brinkman 

model [18] as: 

𝜇𝑠𝑡𝑎𝑡𝑖𝑐 =
𝜇𝑓

(1 − 𝜙)2.5
 (20) 

For the partial differential Equations 7-10, we introduce the 

following similarity parameters [22]: 

𝜂 =
𝑦

𝐻√1−𝑎𝑡
  

𝑢 =
𝑎𝑥

2(1−𝑎𝑡)
𝑓′(𝜂)  

𝑣 = −
𝑎𝐻

2√1−𝑎𝑡
𝑓(𝜂)  

𝜃 =
𝑇

𝑇𝐻
 

(21) 

  By replacing these parameters in the main equations, the 

dimensionless equations are as follows: 

(
𝜇𝑒𝑓𝑓

𝜇𝑓
) 𝑓(4) − 𝑆𝑞 (

𝜌𝑛𝑓

𝜌𝑓
)  

[𝜂𝑓(3) + 3𝑓′′ + 𝑓′𝑓′′ − 𝑓𝑓(3)] −𝐻𝑎2 (
𝜎𝑛𝑓

𝜎𝑓
)𝑓′′ = 0  

(22) 

(
𝑘𝑒𝑓𝑓

𝑘𝑓
)𝜃′′ − 𝑃𝑟𝑆𝑞 (

(𝜌𝑐𝑝)𝑛𝑓

(𝜌𝑐𝑝)𝑓
) [𝑓 − 𝜂]𝜃′ +𝑆𝜃 = 0 (23) 

The boundary conditions for the non-dimensional 

momentum and energy equations are presented as follows: 

  𝑓(0) = 0, 𝑓′′(0) = 0, 𝑓(1) = 1,  

  𝑓′(1) = 0,   
(24) 

   𝜃(1) = 1,     𝜃′(0) = 0  (25) 

Here, Ha is the Hartmann number, Sq is the squeeze 

number, Pr is the Prandtl number and S is the heat source 

parameter. So, the parameters presented are as follows : 

𝐻𝑎 = 𝐻𝐵0√
𝜎𝑓

𝜇𝑓
  (26) 

𝑆𝑞 =
𝑎𝐻2

2𝜐𝑓
  (27) 

𝑃𝑟 =
𝜇𝑓(𝜌𝑐𝑝)𝑓

𝜌𝑓𝑘𝑓
  (28) 

𝑆 =
𝑆0𝐻

2

𝑘𝑓
  (29) 

3. SIMULATION METHODOLOGY 
 

3. 1. Radial Basis Function Approximation        The 

approximate method of the Radial Basis Functions (RBF) is 

an efficient tool for analyzing functions and equations at 

high degrees, especially when it is necessary to apply the 

interpolation problem for scattered data on an irregular 

geometry [23]. The general form of the radial base function 

is presented as follows: 

𝛷〖(𝑟〗𝑗) = 𝛷(‖𝑥 − 𝑥𝑗‖),   𝛷 ∶  ℛ𝑑 → ℛ     (30) 

Here, 𝑟𝑗 = ‖𝑥 − 𝑥𝑗‖ is a Euclidean norm, and 𝑥𝑗 , 𝑥 ∈ ℛ𝑑 . 

Also, 𝑥𝑗 is the center of radial base functions. The 

interpolation of the radial basis functions is presented as 

follows: 

𝑢(𝑥) = ∑ 𝜆𝑗𝛷(‖𝑥 − 𝑥𝑗‖)
𝑁
𝑗=1   (31) 

If exist N distinct points {𝑥𝑗}𝑗=1
𝑁

 and values {𝑓𝑗}𝑗=1
𝑁

 such 

as these points are given, so, coefficients 𝜆𝑗 are specified 

using the interpolation condition as follows: 

 𝑢(𝑥𝑗) = 𝑓𝑗 ,    𝑗 = 0,1… ,   (32) 

Approximation of function 𝑢(𝑥) can be written as a linear 

combination of the N radial basis function as follows: 

𝑢(𝑥) = ∑ 𝜆𝑗𝛷𝑗(𝑥) + 𝛹(𝑥)𝑁
𝑗=1   (33) 

Also, the above approximation can be written without 

adding Ψ polynomials. In the present study, the radial basis 

function based on Hardy multiquadric (MQ) is presented as 

follows: 

𝛷𝑗(𝑥) = √𝑟𝑗
2 + 𝜖2 (34) 

Here, ϵ, is a shape parameter that significantly affects on the 

accuracy of the answer [24, 25]. 

 

3. 2. Application of RBF          For the application of RBF 

based on Hardy multiquadric (MQ) on governing equations 

of the present problem, the general form of the 

nondimensional momentum and energy equations are 

considered as follows: 

𝑓(4) = 𝐹(𝜂, 𝑓, 𝑓’, 𝑓”, 𝑓(3)) 

𝜃′′ = 𝛩(𝜂, 𝜃, 𝜃′, 𝑓) 
(35) 

The boundary conditions for governing equations of the 

present problem are presented as follows: 

𝑓(0) = 0, 𝑓′′(0) = 0, 𝑓(1) = 1,  

  𝑓′(1) = 0, 𝜃(1) = 1,     𝜃′(0) = 0.  
(36) 

Radial basis function based on Hardy multiquadric (MQ) for 

nondimensional momentum and energy equations are 

presented as follows: 
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𝑓(𝜂) = ∑ 𝑤𝑖𝜑𝑖(
𝑁
𝑖=0 𝜂)  

𝜃 (𝜂) = ∑ 𝑣𝑖𝜑𝑖(
𝑀
𝑖=0 𝜂)  

(37) 

Also, the pth derivation of the nondimensional f  function is 

represented as follows: 

𝑑𝑃𝑓(𝜂)

𝑑𝜂𝑃
=

𝑑𝑃

𝑑𝜂𝑃
(∑ 𝑤𝑖𝜑𝑖(

𝑁
𝑖=0 𝜂))  

= ∑ 𝑤𝑖(𝑑
𝑃𝜑𝑖(

𝑁
𝑖=0 𝜂)/𝑑𝜂𝑃)  

= ∑ 𝑤𝑖ℎ𝑖
[𝑝]
(𝑁

𝑖=0  𝜂)  

(38) 

Nondimensional θ is represented according to Equation 

(38), so, with applied the Equations (37) and (38) into 

Equation (35): 

∑ 𝑤𝑖ℎ𝑖
[4]
(𝑁

𝑖=0  𝜂) =

𝐹 (
𝜂, ∑ 𝑤𝑖𝜑𝑖(

𝑁
𝑖=0 𝜂), ∑ 𝑤𝑖ℎ𝑖

[1]
(𝑁

𝑖=0  𝜂),

 ∑ 𝑤𝑖ℎ𝑖
[2]
(𝑁

𝑖=0  𝜂), ∑ 𝑤𝑖ℎ𝑖
[3]
(𝑁

𝑖=0  𝜂)
)  

∑ 𝑣𝑖ℎ𝑖
[2]
(𝑀

𝑖=0  𝜂) =

𝛩 (
𝜂, ∑ 𝑣𝑖𝜑𝑖(

𝑀
𝑖=0 𝜂), ∑ 𝑣𝑖ℎ𝑖

[1]
(𝑀

𝑖=0  𝜂),

∑ 𝑤𝑖𝜑𝑖(
𝑁
𝑖=0 𝜂)

)  

(39) 

Set the residual (39) equal to zero at the set of collocation 

points 𝜂𝑗 as follows: 

∑ 𝑤𝑖ℎ𝑖
[4]
(𝑁

𝑖=0  𝜂𝑗) −

F(
𝜂𝑗 , ∑ 𝑤𝑖φ𝑖(

𝑁
𝑖=0 𝜂𝑗), ∑ 𝑤𝑖ℎ𝑖

[1]
(𝑁

𝑖=0  𝜂𝑗),

 ∑ 𝑤𝑖ℎ𝑖
[2]
(𝑁

𝑖=0  𝜂𝑗), ∑ 𝑤𝑖ℎ𝑖
[3]
(𝑁

𝑖=0  𝜂𝑗)
) = 0  

∑ 𝑣𝑖ℎ𝑖
[2]
(𝑀

𝑖=0  𝜂𝑗) −

Θ(
𝜂𝑗 , ∑ 𝑣𝑖φ𝑖(

𝑀
𝑖=0 𝜂𝑗), ∑ 𝑣𝑖ℎ𝑖

[1]
(𝑀

𝑖=0 𝜂𝑗),

∑ 𝑤𝑖φ𝑖(
𝑁
𝑖=0 𝜂𝑗)

) = 0  

(40) 

Then, for solving M+N-4 nonlinear equations, we set the 

boundary conditions (36) as follows: 

𝑓(0) = ∑ 𝑤𝑖φ𝑖(
𝑁
𝑖=0 0) = 0,    

𝑓′′(0) = ∑ 𝑤𝑖ℎ𝑖
[2]
(𝑁

𝑖=0  0) = 0,  

𝑓(1) = ∑ 𝑤𝑖φ𝑖(
𝑁
𝑖=0 1) = 1,  

𝑓′(1) = ∑ 𝑤𝑖ℎ𝑖
[1]
(𝑁

𝑖=0  1) = 0,  

𝜃(1) = ∑ 𝑣𝑖φ𝑖(
𝑀
𝑖=0 1) = 1,  

𝜃′(0) = ∑ 𝑤𝑖ℎ𝑖
[1]
(𝑀

𝑖=0  0) = 0.  

(41) 

Equations (40) and (41) are represented the M+N+2 

nonlinear equations and unknowns, and with solving 

these equations, 𝑤𝑖  and 𝑣𝑖 are obtained. So, by 

substituting 𝑤𝑖  and 𝑣𝑖 at Equations (37), 𝑓 and 𝜃 are 

obtained. 
 

3. 3. Application of Akbari-Ganji’s Method            
This method has been presented by Akbari-Ganji and 

applied by many researchers [26-30]. For the application 

of AGM to the nondimensional momentum and energy 

equations, the detail of these equations are considered as 

follows: 

𝐹(𝜂) =  (
𝜇𝑒𝑓𝑓

𝜇𝑓
)𝑓(4) − 𝑆𝑞 (

𝜌𝑛𝑓

𝜌𝑓
) [𝜂𝑓(3) + 3𝑓′′ +

𝑓′𝑓′′ − 𝑓𝑓(3)] − 𝐻𝑎2 (
𝜎𝑛𝑓

𝜎𝑓
) 𝑓′′ = 0  

Θ(𝜂) = (
𝑘𝑒𝑓𝑓

𝑘𝑓
) 𝜃′′ − 𝑃𝑟𝑆𝑞 (

(𝜌𝑐𝑝)𝑛𝑓

(𝜌𝑐𝑝)𝑓
) [𝑓 − 𝜂]𝜃′ +

𝑆𝜃 = 0  

(42) 

Total answers with constant coefficients for nondimensional 

momentum and energy equations are considered as follows: 

𝑓(𝜂) = 𝑎0. 𝜂
0 + 𝑎1. 𝜂

1 + 𝑎2. 𝜂
2 + 𝑎3. 𝜂

3  

+𝑎4. 𝜂
4 + 𝑎5. 𝜂

5, 

𝜃 = 𝑏0. 𝜂
0 + 𝑏1. 𝜂

1 + 𝑏2. 𝜂
2 + 𝑏3. 𝜂

3.  

(43) 

Equation (43) sustituted into governing Equations (42) and 

considered boundary conditions as follows: 

𝑓(0) = 0,
𝑑2𝑓

𝑑𝜂2
(0) = 0,  

𝑓(1) = 1,
𝑑𝑓

𝑑𝜂
(1) = 0,   

𝜃(1) = 1,
𝑑𝜃

𝑑𝜂
(0) = 0    

(44) 

Since the proposed problem engaged with four trial 

functions which contain ten constant coefficients and this 

geometry has six equations according to Equation (44) and 

created four additional equations in the following order: 

𝐹(0) = 0, 𝐹(1) = 0, Θ(0) = 0, Θ(1) = 0. 
So by utilizing the above procedures, we have obtained a set 

of polynomials containing ten equations and ten constants 

which by solving them we would be able to obtain Equation 

(43). By substituting obtained constant coefficients from 

mentioned procedures, Equation (43)  could easily be 

yielded nondimensional momentum and energy equations, 

respectively as follows: 

𝑓(𝜂) = −0.4816𝜂5 + 0.4631𝜂3 + 1.0184𝜂  

𝜃(𝜂) = 0.1902𝜂3 + 0.2699𝜂2 + 0.5399  
(45) 

 
3. 4. Differential Transform Method (DTM)            

Basic definitions and operations of differential 

transformation are introduced as follows. Differential 

transformation of the function 𝑓(𝜂) is defined as follows: 

𝐹(𝑘) =
1

𝑘!
 
𝑑𝑘𝑓(𝜂)

𝑑𝜂𝑘
⎸𝜂=𝜂0   (46) 

In Equation (46), 𝑓(𝜂) is the original function and F (k) is 

the transformed function which is called the T -function (it 

is also called the spectrum of the 𝑓(𝜂) at 𝜂 = 𝜂0, in the k 

domain). The differential inverse transformation of F (k) is 

defined as: 

𝑓(𝜂) = ∑ 𝐹(𝑘)(𝜂 − 𝜂0)
𝑘∞

𝑘=0   (47) 
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By combining Equations (46) and (47) 𝑓(𝜂) can be 

obtained: 

𝑓(𝜂) = ∑ [
𝑑𝑘𝑓(𝜂)

𝑑𝜂𝑘
⎸𝜂=𝜂0]  

(𝜂−𝜂0)
𝑘

𝑘!
 ∞

𝑘=0   (48) 

Equation (48) implies that the concept of the differential 

transformation is derived from Taylor’s series expansion, 

but the method does not evaluate the derivatives 

symbolically. However, relative derivatives are calculated 

by an iterative procedure that is described by the 

transformed equations of the original functions. From the 

definitions of Eqautions (46) and (47), it is easily proven that 

the transformed functions comply with the basic 

mathematical operations shown below. In real applications, 

the function 𝑓(𝜂)  in Equation (48) is expressed by a finite 

series and can be written as: 

𝑓(𝜂) = ∑ 𝐹(𝑘)(𝜂 − 𝜂0)
𝑘𝑁

𝑘=0   (49) 

Equation (49) implies that 𝑓(𝜂) = ∑ 𝐹(𝑘)(𝜂 − 𝜂0)
𝑘∞

𝑘=𝑁+1  

is negligibly small, where N is series size. Theorems to be 

used in the transformation procedure, which can be 

evaluated from Equations (46) and (47), are given by 

Sheikholeslami and Domairry Ganji [31]. Also, refer to the 

same reference to solve the model with DTM. 

 

3. 5. Validation for Analytical Methods           The 

comparison and verification between the simulation of the 

nondimensional velocity profile of CuO-water multiphase 

fluid flow and the Differential Transformation Method 

(DTM) by Sheikholslami and Domiri Ganji. [31] is 

represented in  Figure 2. This figure shows the velocity 

profiles are close together and according to the physical 

condition of the problem, there is good accuracy between 

the Akbari-Ganji’s Method (AGM) and Radial Basis 

Function approximation (RBF) based on Hardy 

multiquadric (MQ) function and DTM [31]. 
 
 

 

 
Figure 2. Comparison of the nondimensional velocity 

profile of CuO-water multiphase fluid flow (present work) 

and DTM for previous work ([31]) at 𝑆 = −1, 𝑃𝑟 = 6.2, 

𝐻𝑎 = 8, and 𝑆𝑞 = 1.  

Table 2, represented the numerical comparison between 

the Akbari-Ganji’s Method (AGM), Radial Basis 

Function approximation (RBF) based on Hardy 

multiquadric (MQ) function, and Differential 

Transformation Method (DTM) as shown in Figure 2. 
 
 

4. RESULTS AND DISCUSSION 
 

In this research, Brownian motion with heat source 

effects between parallel disks on nondimensional 

velocity and temperature fields are illustrated. Also, 

electromagnetic force effects on squeezing flow between 

parallel disks are surveyed. Figure 3 is represented the 

effect of squeeze number on nondimensional velocity 

and temperature profiles of copper oxide (CuO) 

nanoparticles. The velocity and temperature profiles are 

depicted using Akbari-Ganji’s Method (AGM) and 

Radial Basis Function approximation (RBF) based on 

Hardy multiquadric (MQ) function. At the AGM method, 

the vertical velocity of nanofluid flow is increased with 

increasing squeeze number, and with extending more 

than 𝑆𝑞 = 1, the concavity of the diagrams is close to 

each other and almost coincides. But at a squeeze number 

more than 𝑆𝑞 = 1, the vertical velocity profile of 

nanofluid flow is slightly reduced. At the RBF method, 

the vertical velocity of the nanofluid is increased with the 

enhancement of the squeeze number. The graphs 

converge and the vertical velocity of the nanoparticles is 

not changed significantly because the graphs are matched 

together. 

The numerical values of nondimensional velocity and 

temperature of CuO nanoparticles are illustrated at AGM 

and RBF (MQ) methods and the numerical difference  
(|Δ| = |AGM − RBF|) between them in Tables 3-5. 

 

 
TABLE 2. Numerical comparison between  AGM, RBF, and 

DTM for nondimensional velocity profile of CuO-water 

multiphase fluid flow at 𝑆 = −1, 𝑃𝑟 =  6.2, 𝐻𝑎 = 8, and 𝑆𝑞 =
1 

𝜼 RBF AGM DTM [31] 

0.0 0 0 0 

0.1 0.1984 0.1964 0.2033 

0.2 0.3871 0.3834 0.3962 

0.3 0.5566 0.5518 0.5683 

0.4 0.6994 0.6943 0.7116 

0.5 0.8116 0.8072 0.8225 

0.6 0.8933 0.8900 0.9014 

0.7 0.9477 0.9457 0.9526 

0.8 0.9800 0.9791 0.9821 

0.9 0.9957 0.9955 0.9962 

1.0 1 1 1 
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(a) 

 
(b)  

 
(c) 

 
(d) 

Figure 3. Comparison between AGM (a,b) and RBF (c,d) 

for effects of squeeze number on dimensionless vertical 

velocity and temperature profile for CuO-water multiphase 

fluid flow at 𝑆 = −1, 𝑃𝑟 = 6.2 and 𝐻𝑎 = 1 

TABLE 3. Numerical comparison of vertical velocity between 

AGM and RBF for CuO-water multiphase fluid flow at 𝐻𝑎 =
1, 𝑆 = −1, 𝑃𝑟 = 6.2, 𝑆𝑞 = 3. 

 𝑓 

𝜼  AGM RBF(MQ) |𝚫| 

0.0 0 0 0 

0.1 0.1850 0.1629 0.0221 

0.2 0.3628 0.3215 0.0413 

0.3 0.5265 0.4718 0.0547 

0.4 0.6702 0.6104 0.0598 

0.5 0.7894 0.7330 0.0564 

0.6 0.8810 0.8350 0.0460 

0.7 0.9445 0.9126 0.0319 

0.8 0.9816 0.9643 0.0173 

0.9 0.9973 0.9920 0.0053 

1.0 1 1 1 

 

 

TABLE 4. Numerical comparison of  horizontal velocity 

between  AGM and RBF for CuO-water multiphase fluid flow 

at 𝐻𝑎 = 1, 𝑆 = −1, 𝑃𝑟 = 6.2, 𝑆𝑞 = 3. 

  𝑓′  

𝜼  AGM RBF(MQ) |𝚫| 

0.0 1.8623 1.6372 0.2251 

0.1 1.8257 1.6142 0.2115 

0.2 1.7182 1.5501 0.1681 

0.3 1.5463 1.4507 0.0956 

0.4 1.3209 1.3135 0.0074 

0.5 1.0571 1.1310 0.0739 

0.6 0.7745 0.9031 0.1286 

0.7 0.4971 0.6463 0.1492 

0.8 0.2531 0.3913 0.1382 

0.9 0.0751 0.1695 0.0944 

1.0 0 0 0 

 
 

These Tables are shown at 𝑆𝑞 = 3 and 𝜂 = 0, the 

maximum difference in horizontal velocity is 0.2251 and 

the minimum difference at 𝜂 = 0.9 is 0.0053. Also, the 

nondimensional temperature at 𝜂 = 0.3 and 𝜂 = 0.4 has 

a maximum difference of 0.0627 and the minimum 

difference at 𝜂 = 0.9 is equal to 0.0213. 

Figure 4 represents the effects of squeeze number on 

nondimensional vertical velocity and temperature profile 

for Al2O3-water multiphase fluid flow using AGM and 

RBF (MQ) at 𝑆 = −1, 𝑃𝑟 = 6.2, and 𝐻𝑎 = 1.  

This figure has depicted the same behavior as CuO-

water   multiphase   fluid   flow;   however,   there  is  no  
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TABLE 5. Numerical comparison of temperature between  

AGM and RBF for CuO-water multiphase fluid flow at 𝐻𝑎 =
1, 𝑆 = −1, 𝑃𝑟 = 6.2, 𝑆𝑞 = 3. 

  𝜃  

𝜼  AGM RBF (MQ) |𝚫| 

0.0 0 0 0 

0.1 0.1850 0.1629 0.0221 

0.2 0.3628 0.3215 0.0413 

0.3 0.5265 0.4718 0.0547 

0.4 0.6702 0.6104 0.0598 

0.5 0.7894 0.7330 0.0564 

0.6 0.8810 0.8350 0.0460 

0.7 0.9445 0.9126 0.0319 

0.8 0.9816 0.9643 0.0173 

0.9 0.9973 0.9920 0.0053 

1.0 1 1 1 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Comparison between AGM(a,b) and RBF (c,d) for 

effects of squeeze number on dimensionless vertical velocity 

and temperature profile for Al2O3-water multiphase fluid 

flow at 𝑆=−1, 𝑃𝑟=6.2, and 𝐻𝑎=1. 

 
significant change with increasing the squeeze number 

on this nanofluid in the RBF method. 
Figure 5 investigated the effect of the Hartmann 

number on Alumina (Al2O3)-water multiphase fluid flow 

using AGM and RBF methods. With an increase in the 

Hartmann number, the nanofluid's nondimensional 

horizontal and vertical velocities are increased using the 

AGM method. Except for 𝐻𝑎 = 0, the graphs converged 

together and the heat transfer didn’t change by increasing 

the Hartmann number. With increasing Hartmann 

number, the nondimensional horizontal and vertical 

velocities of nanofluid are increased, the graphs 

converged together, and the heat transfer didn’t change 

using the RBF method. 

Figure 6 illustrated the effect of the Prandtl number 

on the nondimensional temperature profiles of Al2O3 and 

CuO nanofluids using the AGM method. According to 

this figures., maximum values for nondimensional 

temperature profile were at 𝑃𝑟 = 2. 
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(a) 

 
(b)  

 
(c)       

 
(d) 

Figure 5. Comparison between AGM (a,b) and RBF (c,d) 

for effects of Hartman number on dimensionless vertical 

velocity and temperature profile for Al2O3-water 

multiphase fluid flow at 𝑆=−1, 𝑃𝑟=6.2, and 𝑆𝑞=1 

 
Alumina (Al2O3) 

 
Copper oxide (CuO) 

Figure 6. Comparison between Al2O3 and CuO 

nanoparticles for effects of Prandtl number on dimensionless 

temperature profile at 𝑆=−1, 𝑆𝑞=1, and 𝐻𝑎=1. 

 

 

Figure 7 shows the residual error function graph for 

the Al2O3 nanoparticle because there is no exact solution 

in this geometry, we obtain the residual error function 

using the RBF method. 

 

 

 
Figure 7. Graph of  residual error function using RBF 

method on velocity profile for Al2O3-water multiphase fluid 

flow at 𝑆 = −1, 𝑃𝑟 = 6.2, and 𝑆𝑞 = 1. 
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5. CONCLUSION 
 

In the present study, squeezing flow with Brownian 

motion effects on nondimensional vertical, horizontal 

velocity, and temperature profiles were surveyed 

between parallel disks with a heat source. Also, for 

simulating the nanoparticle effects on nondimensional 

temperature fields and velocity profiles were used the 

Akbari-Ganji’s Method (AGM) and Radial Basis 

Function approximation (RBF) were based on Hardy 

multiquadric (MQ) function. We investigated Al2O3 and 

CuO nanoparticle’s effects on nondimensional velocity 

and temperature fields between parallel disks with a heat 

source and electromagnetic force. Finally, some of the 

main points are summarized:  

• The effects of squeezes number on nondimensional 

horizontal and vertical  velocity and temperature 

field for Al2O3 and CuO nanoparticles have a 

similar behaviour using the AGM method. 

• With increasing the squeezes number on Al2O3 and 

CuO nanofluid flow, the nondimensional 

temperature field did not change using the RBF 

method. 

• The minimum difference between AGM and RBF 

methods for nondimensional vertical velocities field 

at 𝜂 = 0.9 and 𝐻𝑎 = 8. 

• The effects of the Hartmann number on 

nondimensional vertical velocities field for Al2O3 

nanoparticles at 𝜂 = 0 have a slight difference from 

the other Hartmann values using the AGM method. 

• Also, increasing the Prandtl number for Al2O3 and 

CuO nanoparticles in AGM and RBF methods, 

decreased the nondimensional temperature field, 

which has the minimum difference between AGM 

and RBF methods at 𝑃𝑟 = 1, 𝜂 = 0.9 is equal to 

0.0019. 
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Persian Abstract 

 چکیده 
  دان یبا منبع حرارت است. اثرات نانوذرات بر م  یموازهای  سکید  ن یب  یسیالکترومغناط  یرویو ن   الینانوس  انیبر جر  براونیاثرات حرکت    ی لیتحل  ی مقاله حاضر بررس  ینوآور

  ک ی  یگنج  یشده است. روش اکبر  لیتحل  یهارد مربعیبر اساس تابع چند    یشعاعپایه  تابع    بیو تقر  ی گنج  یبا استفاده از روش اکبر  الیس  ان یسرعت جر  بعد وبییی  دما

توابع و   لی و تحل  هیتجز  ی برا  ی بیروش تقر کی  ی شعاع  ه ی. توابع پاکندیحل م  رهایاز متغ   یرا با هر درجه ا  ی رخطی و غ  یخط   لیفرانسیاست که هر معادله د  یقو  یل یروش تحل

 های روش   نی نشان داد که حداکثر تفاوت ب  جیپراکنده در هندسه نامنظم اعمال شود. نتا  هایداده  یبرا  ی ابیدرون    لهکه لازم است مسئ  یزمان  ژهیمعادلات در درجات بالا است، به و

 ال ینانوس  بعدبی  یسرعت عمود  یو حداقل تفاوت برا  0.2251برابر     η = 0و    Sq = 1در    CuO  الینانوس  ی رو  بعدبی  یسرعت افق  یبرا  تابع پایه شعاعیو    اکبری گنجی

3O2Al  ردη = 0      3نانوذرات    یبرا  بعدبی  یو عمود  یافق  هایسرعت  دانیاثرات عدد هارتمن بر م  نیاست. . همچن  0.0018برابر باO2Al    درη = 0    ر ی با سا  یزئتفاوت ج  

 .است 1.9354برابر با  Ha = 8و  η = 0در  بعدبی یافق یدارد. حداکثر سرعت ها AGMهارتمن با استفاده از روش  ریمقاد
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