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The innovation of the present paper is the analytical study of Brownian motion effects on nanofluid flow
and electromagnetic force between parallel disks with a heat source. Nanoparticle effects on
nondimensional temperature field and velocity of fluid flow were analyzed using Akbari-Ganji’s Method
and radial basis function approximation based on Hardy multiquadric function. Akbari-Ganji’s Method
(AGM) is a strong analytical method that solves any linear and nonlinear differential equation with any
degree of variables. Radial basis functions is an approximation method for analyzing functions and
equations at high degrees, especially when it is necessary to apply the interpolation problem for scattered
data on irregular geometry. The results signified that the maximum difference between AGM and RBF
methods, for nondimensional horizontal velocity on CuO nanofluid at Sg = 1 and n = 0is 0.2251 and
the minimum difference for the nondimensional vertical velocity of Al,O; nanofluid at n = 0 is equal
to 0.0018. Also, the effects of the Hartmann number (Ha) on nondimensional horizontal and vertical
velocities field for Al,O3 nanoparticles at n = 0 have a slight difference from the other Hartmann values
using the AGM method. The maximum of nondimensional horizontal velocities at7 = 0 and Ha = 8 is
equal to 1.9354.

doi: 10.5829/ije.2022.35.08b.21

NOMENCLATURE
a Compressed parameter U viscosity of fluid (kg/m.s)
K thermal conductivity (W/m. K) Usrasic effective viscosity of the component static
(kg/m.s)
s effective viscosity of Brownian motion part
B magnetic field HBrownian (kg/m.s) 4 P
B, primary magnetic field Uerr effective viscosity (kg/m.s)
S heat source F electromagnetic force (N)
So primary heat source Pry electromagnetic force (N)
H place of the plate (m) Sq squeeze number (a %)
u,v vlosity components Ha hartmann number <H. BO'E)
f
X, Y coordinates (m) ¢ nanofluid volume fraction
T euclidean norm dy particle diameter (m)
X; centers of radial base function Pns density of nanofluid (kg/m3)
4 polynomial Py density of fluid (kg/m3)
N number of the distinct points at RBF Ds density of nanoparticles (kg/m3)
A interpolation coefficient at RBF Ong electrical conductivity of nanofluid (s/m)
€ shape parameter oy electrical conductivity of fluid (s/m)
T temperature (K) O electrical conductivity of nanoparticles (s/m)
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6 nondimensional temperature kg thermal conductivity of nanofluid (W/m.K)
f electric current ke thermal conductivity of fluid (W/m.K)

ks thermal conductivity of nanoparticles (W/m. K) Subscripts

Kstatic effective thermal conductivity of the component static (W/m. K) nf nanofluid

Kgrownian  €ffective thermal conductivity of Brownian motion part (W/m. K) s solid

kerr effective thermal conductivity (W/m.K) f fluid

Ung viscosity of nanofluid (kg/m.s) eff effective

1. INTRODUCTION

Electromagnetic effects on a nanofluid with squeezing
flow and Brownian motion effects between two parallel
disks have been analytically investigated. Squeezing
flow is used in industrial applications such as metallurgy,
magnetic hydrodynamic (MHD) generators [1], and
petroleum industries. Asefi et al. [2] examined the
hydromagnetic flow of a micropolar fluid on a tensile
sheet with unstable properties. Also, they investigated the
conduction heat transfer numerically with ununiformed
heat sources. Ravindran et al. [3] studied the effects of
chemical reaction, heat generation, and absorption on
unstable MHD flow. This process takes place on top of a
vertical cone with ununiformed mass transfer. Motahar
[4] studied the effect of entropy production on the
magnetic hydrodynamic magnetic flow of a nanofluid in
a vertical channel. Asgari and Tariverdilo [5] studied the
flow of the MHD boundary layer of an Oldroyd-B fluid
in the vicinity of the vertical stretching sheet. They used
a non-thermal flux to define the equilibrium energy
relation. Han et al. [6,7] studied the significance of Hall
current and Joule heating on the dynamics of Darcy—
Forchheimer peristaltic flow of Rabinowitsch fluid and
also studied partial slips and temperature Jumps of a
nanofluid flow over a stretched or shrinking surface.
Rashidi et al. [8] studied the modeling and analysis of
sensitivity and thermal conductivity of water-based
ethylene glycol nanofluids with alumina nanoparticles.
Alagumalai et al [9] studied conceptual analysis
framework development to understand barriers to
nanofluid commercialization. Nouri et al. [10, 11] and
Dadsetadi et al. [12] analytically and numerically
investigated the system of fractional differential
equations based on the hybrid functions. Pourziaei
Araban et al. [13] numerically surveyed a cavity with
heat source using the lattice Boltzmann method based on
the D3Q19 model and compared with experimental
results.

In the present study, a combination of squeezing
flow with Brownian motion effects and electromagnetic
force is modeled to improve the thermal field between
two parallel disks with a heat source. All numerical
implementations and executions have been done by
Maple software to investigate the nondimensional
temperature and velocity field due to nanoparticle effects
and a heat source between two parallel disks with
electromagnetic  boundary  conditions, alongside

hardware configuration: Core (TM) i3-7130U CPU @
2.70 GHz 2.71 GHz 4GB RAM. First, with the similarity
transformation, the governing equations with partial
differential equations (PDE) transform to a set of
nonlinear ordinary differential equations (ODE). These
equations are simulated according to their boundary
conditions with  AGM and RBF based on Hardy
multiquadric (MQ) function. Finally, to study more
precisely, the Hartmann number, the squeeze number,
and the heat source parameter between two parallel disks
have been investigated.

2. PROBLEM DEFINITION

According to Figure 1, if we consider the bottom disk at

z = 0, the upper disk is located at z = 2H+/(1 — at). H
is a place of the plate at z=0. a is a compressed
parameter that at a > 0, referred two plates were

compressed until t = 1/a and so, at a < 0, two plates
separated from each other. In this case, the general
governing equations on physics of the problem are as
follows:

v.V=0 @
v . N

p—=—Vp+uviV + F 2
at

or _ k wop S

== pcpv T+pCpT 3)

Here, u is the dynamic viscosity, p is the fluid density, k
is the thermal conductivity coefficient and S is a heat
source that is defined as follows [14].

©
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\:\ S= 50/(1 at)
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z=2H/( - ad)

Heat Source

z=0
B = By(1—at)

Figure 1. Schematic diagrams of MHD nanofluid flow that
compressed between two limited parallel disks
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A magnetic field B applied perpendicular to the disk
plates goes downwards. Of course, the magnetic
Reynolds number is very small and the induced magnetic
field is also neglected. So, a magnetic field is defined as
follows:

B =Bé,, B=By(1-at) (5)

The electric current J and the magnetic field B created the
electromagnetic force F defined as follows:
J =0V xB]
Lo o o o o (6)
F=]xB=0[VxB|xB

We replaced expressions (4), (5), and (6) in momentum
and energy equations for the 2D unsteady flow of a
nanofluid. So, the following results are obtained [15]:

du 617_

a+@—0 ™
onB*u

ooy (G tugsvy) = =Pt [E5E] @
Z_:+ug_§+vg_;=(p’;:§nf %+%€]+mT (10)

The boundary conditions for governing equations
according to present physics are expressed as follows:

vszzdh/dtz_aH =

at y = h(t)

6_u=0 at y=0 (1)
dy

6_T=0 at y=0

ay

Some of the governed equations should be changed for
modeling the nanofluid because of changes in the fluid
thermal conductivity, density, heat capacitance, and
electrical conductivity, some of the governed equations

should be changed. Thermo-physical nanofluid
properties except for density, which is obtained by
Boussinesq approximation, are assumed invariant and are
given in Table 1 [16].
The electrical conductivity is written as [17]:
Onf

3(?—1)¢
P RN AN 12
(-2 )o
The effect of density at the reference temperature is given
by:

pny = (1 —P)ps + dps (13)

and the heat capacitance of nanofluid can be given as
follows [18]:

(ocp),; = (1= $)(pcy), + P(pcp), (14)

The effective thermal conductivity of the component static
entities and a Brownian motion part due to micromixing in
suspensions were introduced by Koo and Kleinstreuer [19]
as follows:

keff = kstatic + kBrawnian (15)

The component static based on Maxwell’s classical
correlation significantly impacts the effective thermal
conductivity.

ks_
kstatic = <1 + %) kf (16)

Koo [20] obtained a particle’s Brownian motion via
simulating Stokes” flow around a nano-particle and
combined the interaction between nano-particles and the
temperature effect. So, the Brownian motion part is
presented as follows:

’kST
kprownian =5 X% 104¢>,chp,f psds

Li [21] developed the g’ function with particle diameter,
temperature, and volume fraction.

g'(T, $,d;) = (~26.5933 — 0.4038In(d;) —

33.3517 In(¢) —

1.91581n(¢) In(dy) + 0.06421n(d,)?) In(T) + (18)
(48.4034 — 9.78781n(d,) + 190.2456 In(¢p) +

10.9285 In($) In(d,) — 0.7201 In(d,)?)

g'(T, ¢, ds) (A7)

TABLE 1. Thermo-physical properties of water and nanoparticles [16]

Material p (kgim"3) Cr(JIKgK) K (W/mK) ux10% (Nsm=2) o (Sm™)
Pure water 997.10 4179 0.613 855 0.05

Copper oxide (Cuo) 6500 540 18 - 5.96 x 107
Alumina (AlI203) 3970 765 25 - 3.69 x 107
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The effective viscosity of the static and a Brownian motion
part due to micromixing in suspensions was introduced by
Koo and Kleinstreuer [16] as follows:

Brownian
— X

k
Merf = HUstatic T UBrownian = Mstatic T Ky
Prg

The viscosity of the nanofluid containing a dilute suspension
of small rigid spherical particles is given by the Brinkman
model [18] as:

u
Hstatic = ﬁ (20)

For the partial differential Equations 7-10, we introduce the
following similarity parameters [22]:

_ Yy
= ivicat

__ax ’
u= 2(1—at)f (77)

H (21)

V== th(n)
g = T

= T,

By replacing these parameters in the main equations, the
dimensionless equations are as follows:

Hefr) £(4) _ (m)
(lif)f Sq Pf

@)
[f @ +3f7 + 1" = O] ~Ha? (ZL) " = 0

("k—if) 6" — Prsq ((& C:p))’;f ) [f 16’ +S6 =0 (23)

The boundary conditions for the non-dimensional
momentum and energy equations are presented as follows:

f@) =0, f"(0)=0, f(1) =1,

24
fr=0o, 9

(1) =1, 6'(0)=0 (25)

Here, Ha is the Hartmann number, Sq is the squeeze
number, Pr is the Prandtl number and S is the heat source
parameter. So, the parameters presented are as follows:

Ha = HB, \/z:; (26)

aH?

Sq = 20, 27
pr = M) (28)
prkys
— SoH?
S= . (29)

3. SIMULATION METHODOLOGY

3. 1. Radial Basis Function Approximation The
approximate method of the Radial Basis Functions (RBF) is
an efficient tool for analyzing functions and equations at
high degrees, especially when it is necessary to apply the
interpolation problem for scattered data on an irregular
geometry [23]. The general form of the radial base function
is presented as follows:

*10);) = e(lx - x[), @ R >R (30)

Here, r; = ||x — x;|| is a Euclidean norm, and x;, x € R%.
Also, x; is the center of radial base functions. The

interpolation of the radial basis functions is presented as
follows:

u(x) = 25 49 ([lx - %)) S

. . . N N
If exist N distinct points {xj}j=1 and values {fj}jzl such
as these points are given, so, coefficients A; are specified
using the interpolation condition as follows:
u(x)=f;, j=01..,N (32)

Approximation of function u(x) can be written as a linear
combination of the N radial basis function as follows:

u(x) = X3 4@ (x) + ¥ (x) (33)

Also, the above approximation can be written without
adding ¥ polynomials. In the present study, the radial basis
function based on Hardy multiquadric (MQ) is presented as
follows:

@i(x) = ’rjz + €2 (34)

Here, ¢, is a shape parameter that significantly affects on the
accuracy of the answer [24, 25].

3. 2. Application of RBF For the application of RBF
based on Hardy multiquadric (MQ) on governing equations
of the present problem, the general form of the
nondimensional momentum and energy equations are
considered as follows:

f@=Fmf.r.0f®)
6" =01,6,0"f)

(35)

The boundary conditions for governing equations of the

present problem are presented as follows:
0)=0, f"(0)=0, f(1) =1,
f(0) f"(0) f) (36)
f/()=0,01)=1, 6'(0)=0.

Radial basis function based on Hardy multiquadric (MQ) for
nondimensional momentum and energy equations are
presented as follows:
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fm) =Xowipi(n)
6 () = XiLovipi(n)

Also, the pth derivation of the nondimensional f function is
represented as follows:

afran
D (B wii()

=3, wi(d"goi(n)/dn") (38)
=¥ owhP ()

@7

Nondimensional € is represented according to Equation
(38), so, with applied the Equations (37) and (38) into
Equation (35):
Tiowih () =
F(n,Zl oWi@i(n), Zilo wih| 1](77)>
LowihP (), Zowikl® (1)
ovih? () =

<77 Zl o Vi®i (M), Zl Ovlh[l]( 77)!)
ZiLowipi(n)

Set the residual (39) equal to zero at the set of collocation
points n; as follows:

S owihi(n)) -
F(ﬂle OWL(\OL(n]) Zz o Wil ]( 771)) _
Towih iz]( 1), Zilowih i3]( ;)
Movihl (np) —
0 <77j,2§vio V@i (1)), Xito ”ihlm(ﬂj)) —0
Y owiei(n))

(39)

(40)

Then, for solving M+N-4 nonlinear equations, we set the
boundary conditions (36) as follows:

f(0) = XX wi@;(0) =0,
£70) = X wih®'( 0) = 0,
f) =Y~ wie; (1) =1,
£ =32owh (1) =0,
(1) =X viei(1) =1,

6'(0) = T, wihl"'( 0) = 0.

(41)

Equations (40) and (41) are represented the M+N+2
nonlinear equations and unknowns, and with solving
these equations, w; and wv; are obtained. So, by
substituting w; and v; at Equations (37), f and @ are
obtained.

3. 3. Application of Akbari-Ganji's Method
This method has been presented by Akbari-Ganji and
applied by many researchers [26-30]. For the application
of AGM to the nondimensional momentum and energy

equations, the detail of these equations are considered as
follows:

P = ()7 = a (32 lor @ 4 377 +
FF" = 9] = Ha? (Z) £ = 0

(pcp)

eff " nf

o) = (f)e PSq(( )[f nlé
S6=0

(42)

Total answers with constant coefficients for nondimensional
momentum and energy equations are considered as follows:

f) = aog.n’ +a.n' + a.n*+az.n?
+as.n* + as.n®, (43)
0= bo.T]O -+ bl.T]l + bz.rlz -+ b3.7]3.

Equation (43) sustituted into governing Equations (42) and
considered boundary conditions as follows:

’f

f@ =0, £50) =0,

f =12 m=0 (44)
6

0(1) =1, Z—n(o) =0

Since the proposed problem engaged with four trial
functions which contain ten constant coefficients and this
geometry has six equations according to Equation (44) and
created four additional equations in the following order:
F(0)=0,F(1) =0,0(0) =0,0(1) =0.

So by utilizing the above procedures, we have obtained a set
of polynomials containing ten equations and ten constants
which by solving them we would be able to obtain Equation
(43). By substituting obtained constant coefficients from
mentioned procedures, Equation (43) could easily be
yielded nondimensional momentum and energy equations,
respectively as follows:

f(m) = —0.4816n° + 0.4631n° + 1.01847

(45)
8(n) = 0.1902n3 + 0.26997% + 0.5399

3. 4. Differential Transform Method (DTM)
Basic definitions and operations of differential
transformation are introduced as follows. Differential
transformation of the function f(n) is defined as follows:

Flk) =+ % o (46)

| n="o
In Equation (46), f(n) is the original function and F (k) is
the transformed function which is called the T -function (it
is also called the spectrum of the f(n) at n = n,, in the k
domain). The differential inverse transformation of F (k) is
defined as:

f) =X FU)(n —no)* (47)
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By combining Equations (46) and (47) f(n) can be
obtained:

o [d¥F) —no)*
@) = iz [“L2 =] T (48)

Equation (48) implies that the concept of the differential
transformation is derived from Taylor’s series expansion,
but the method does not evaluate the derivatives
symbolically. However, relative derivatives are calculated
by an iterative procedure that is described by the
transformed equations of the original functions. From the
definitions of Eqautions (46) and (47), it is easily proven that
the transformed functions comply with the basic
mathematical operations shown below. In real applications,
the function f(n) in Equation (48) is expressed by a finite
series and can be written as:

f) = Zi=o F) (M —no)* (49)

Equation (49) impliesthat £ (n) = Yp—y+1 F(K)(m — 1o)*
is negligibly small, where N is series size. Theorems to be
used in the transformation procedure, which can be
evaluated from Equations (46) and (47), are given by
Sheikholeslami and Domairry Ganji [31]. Also, refer to the
same reference to solve the model with DTM.

3. 5. Validation for Analytical Methods The
comparison and verification between the simulation of the
nondimensional velocity profile of CuO-water multiphase
fluid flow and the Differential Transformation Method
(DTM) by Sheikholslami and Domiri Ganji. [31] is
represented in Figure 2. This figure shows the velocity
profiles are close together and according to the physical
condition of the problem, there is good accuracy between
the Akbari-Ganji’s Method (AGM) and Radial Basis
Function approximation (RBF) based on Hardy
multiquadric (MQ) function and DTM [31].

RBF — — AGM - ---- DTM]

0.8

0.6

fin)

0.4

0.2

o

o 0.2 0.4 0.6 0.8 1
n

Figure 2. Comparison of the nondimensional velocity
profile of CuO-water multiphase fluid flow (present work)
and DTM for previous work ([31]) at S = —1, Pr = 6.2,
Ha = 8,and Sq = 1.

Table 2, represented the numerical comparison between
the Akbari-Ganji’s Method (AGM), Radial Basis
Function approximation (RBF) based on Hardy
multiquadric  (MQ)  function, and Differential
Transformation Method (DTM) as shown in Figure 2.

4. RESULTS AND DISCUSSION

In this research, Brownian motion with heat source
effects between parallel disks on nondimensional
velocity and temperature fields are illustrated. Also,
electromagnetic force effects on squeezing flow between
parallel disks are surveyed. Figure 3 is represented the
effect of squeeze number on nondimensional velocity
and temperature profiles of copper oxide (CuO)
nanoparticles. The velocity and temperature profiles are
depicted using Akbari-Ganji’s Method (AGM) and
Radial Basis Function approximation (RBF) based on
Hardy multiquadric (MQ) function. At the AGM method,
the vertical velocity of nanofluid flow is increased with
increasing squeeze number, and with extending more
than Sq = 1, the concavity of the diagrams is close to
each other and almost coincides. But at a squeeze number
more than Sq =1, the vertical velocity profile of
nanofluid flow is slightly reduced. At the RBF method,
the vertical velocity of the nanofluid is increased with the
enhancement of the squeeze number. The graphs
converge and the vertical velocity of the nanoparticles is
not changed significantly because the graphs are matched
together.

The numerical values of nondimensional velocity and
temperature of CuO nanoparticles are illustrated at AGM
and RBF (MQ) methods and the numerical difference
(lA] = |AGM — RBF|) between them in Tables 3-5.

TABLE 2. Numerical comparison between AGM, RBF, and
DTM for nondimensional velocity profile of CuO-water
multiphase fluid flow at S = —1, Pr = 6.2, Ha = 8,and Sq =
1

7 RBF AGM DTM [31]
0.0 0 0 0
0.1 0.1984 0.1964 0.2033
0.2 0.3871 0.3834 0.3962
03 0.5566 05518 0.5683
04 0.6994 0.6943 0.7116
05 0.8116 0.8072 0.8225
06 0.8933 0.8900 0.9014
07 0.9477 0.9457 0.9526
08 0.9800 0.9791 0.9821
0.9 0.9957 0.9955 0.9962
1.0 1 1 1
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(d)
Figure 3. Comparison between AGM (a,b) and RBF (c,d)
for effects of squeeze number on dimensionless vertical
velocity and temperature profile for CuO-water multiphase
fluid flowatS = —1,Pr=6.2and Ha = 1

TABLE 3. Numerical comparison of vertical velocity between
AGM and RBF for CuO-water multiphase fluid flow at Ha =
1,§=-1,Pr=6.2,5¢ =3.

f
n AGM RBF(MQ) A
0.0 0 0 0
01 0.1850 0.1629 0.0221
0.2 0.3628 03215 0.0413
03 0.5265 04718 0.0547
04 0.6702 0.6104 0.0598
05 0.7894 0.7330 0.0564
0.6 0.8810 0.8350 0.0460
0.7 0.9445 0.9126 0.0319
08 0.9816 0.9643 0.0173
0.9 0.9973 0.9920 0.0053
1.0 1 1 1

TABLE 4. Numerical comparison of horizontal velocity
between AGM and RBF for CuO-water multiphase fluid flow
atHa=1,S=-1Pr=6.2,5q =3.

£
n AGM RBF(MQ) 1|

0.0 1.8623 1.6372 0.2251
0.1 1.8257 1.6142 0.2115
0.2 1.7182 15501 0.1681
03 15463 1.4507 0.0956
04 1.3209 1.3135 0.0074
05 1.0571 1.1310 0.0739
0.6 0.7745 0.9031 0.1286
07 0.4971 0.6463 0.1492
08 0.2531 0.3913 0.1382
0.9 0.0751 0.1695 0.0944
1.0 0 0 0

These Tables are shown at Sq =3 and n =0, the
maximum difference in horizontal velocity is 0.2251 and
the minimum difference at n = 0.9 is 0.0053. Also, the
nondimensional temperature at 7 = 0.3 and n = 0.4 has
a maximum difference of 0.0627 and the minimum
difference at n = 0.9 is equal to 0.0213.

Figure 4 represents the effects of squeeze number on
nondimensional vertical velocity and temperature profile
for Al,Osz-water multiphase fluid flow using AGM and
RBF (MQ)atS = —1, Pr = 6.2, and Ha = 1.

This figure has depicted the same behavior as CuO-
water multiphase fluid flow; however, there is no
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TABLE 5. Numerical comparison of temperature between
AGM and RBF for CuO-water multiphase fluid flow at Ha =
1,S=-1,Pr=6.2,5¢ =3.

0
7 AGM RBF (MQ) A]
0.0 0 0 0
0.1 0.1850 0.1629 0.0221
02 0.3628 0.3215 0.0413
03 05265 04718 0.0547
04 0.6702 0.6104 0.0598
05 0.7894 0.7330 0.0564
06 0.8810 0.8350 0.0460
07 0.9445 0.9126 0.0319
08 0.9816 0.9643 0.0173
0.9 0.9973 0.9920 0.0053
1.0 1 1 1
——sg=1=—— sg=3 — - ' sq=6-- - - sq=10]

1

0.8

0.6

fin)

0.4

0.2
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1
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0.6
fin)
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—5g=] = sq=3 = " 's5g=6""" 'sq=10|
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0.9
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0.7
] 0.2 0.4 0.6 0.8 1
n
(d)

Figure 4. Comparison between AGM(a,b) and RBF (c,d) for
effects of squeeze number on dimensionless vertical velocity
and temperature profile for Al203-water multiphase fluid
flow at S=—1, Pr=6.2, and Ha=1.

significant change with increasing the squeeze number
on this nanofluid in the RBF method.

Figure 5 investigated the effect of the Hartmann
number on Alumina (Al,O3)-water multiphase fluid flow
using AGM and RBF methods. With an increase in the
Hartmann number, the nanofluid's nondimensional
horizontal and vertical velocities are increased using the
AGM method. Except for Ha = 0, the graphs converged
together and the heat transfer didn’t change by increasing
the Hartmann number. With increasing Hartmann
number, the nondimensional horizontal and vertical
velocities of nanofluid are increased, the graphs
converged together, and the heat transfer didn’t change
using the RBF method.

Figure 6 illustrated the effect of the Prandtl number
on the nondimensional temperature profiles of Al,Oz and
CuO nanofluids using the AGM method. According to
this figures., maximum values for nondimensional
temperature profile were at Pr = 2.
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Figure 5. Comparison between AGM (a,b) and RBF (c,d)
for effects of Hartman number on dimensionless vertical
velocity and temperature profile for Al203-water
multiphase fluid flow at S=—1, Pr=6.2, and Sq=1
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Figure 7 shows the residual error function graph for
the Al,O3 nanoparticle because there is no exact solution
in this geometry, we obtain the residual error function

using the RBF method.
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n

Figure 7. Graph of residual error function using RBF
method on velocity profile for Al.2Os-water multiphase fluid

flowatS = -1, Pr = 6.2,and Sq = 1.
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5. CONCLUSION

In the present study, squeezing flow with Brownian

moti

velocity,

on effects on nondimensional vertical, horizontal
and temperature profiles were surveyed

between parallel disks with a heat source. Also, for
simulating the nanoparticle effects on nondimensional
temperature fields and velocity profiles were used the

Akbari-Ganji’s Method (AGM) and Radial

Basis

Function approximation (RBF) were based on Hardy
multiquadric (MQ) function. We investigated Al,Os and
CuO nanoparticle’s effects on nondimensional velocity
and temperature fields between parallel disks with a heat
source and electromagnetic force. Finally, some of the
main points are summarized:

The effects of squeezes humber on nondimensional
horizontal and vertical velocity and temperature
field for Al,Os3 and CuO nanoparticles have a
similar behaviour using the AGM method.

With increasing the squeezes number on Al,Oz and
CuO nanofluid flow, the nondimensional
temperature field did not change using the RBF
method.

The minimum difference between AGM and RBF
methods for nondimensional vertical velocities field
atn =09and Ha = 8.

The effects of the Hartmann number on
nondimensional vertical velocities field for Al,Os;
nanoparticles at n = 0 have a slight difference from
the other Hartmann values using the AGM method.

Also, increasing the Prandtl number for Al,O3 and
CuO nanoparticles in AGM and RBF methods,
decreased the nondimensional temperature field,
which has the minimum difference between AGM
and RBF methods at Pr = 1, n = 0.9 is equal to
0.0019.
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