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A B S T R A C T  
 

 

Unlike traditional gaming where a game run locally on a user's device, in cloud gaming, an online video 

game runs on remote servers and streams directly to a user's device. This caused players to become 

independent of having high hardware resources in their local computers. Since video games are a kind 
of latency-sensitive application, cloud servers far from users are not suitable. In fog computing, fog 

nodes are in the vicinity of users and can reduce the latency. In this paper, a latency reduction method 

based on reinforcement learning is proposed to determine which computing fog node can run the video 
games with the lowest latency. In the proposed method, a Principal Component Analysis (PCA) based 

approach is used to extract the most important features of each video game as the input of the learning 

process. The proposed method was implemented using Python. Experimental results show that the 
proposed method compared to some existing methods can reduce the frame latency and increase the 

frame rate of video games. 

doi: 10.5829/ije.2022.35.09c.01 
 

 
1. INTRODUCTION1 
 
Nowadays, users are capable of executing video games 

on different platforms such as smartphones, personal 

computers, etc. Execution of these video games is 

independent of the computation resources of the users’ 

local devices. In 2009, cloud gaming was introduced and 

its main idea was to run the video game on remote servers 

and stream them directly to a user's device [1]. Hence, 

video games would be developed for computers in the 

cloud rather than for personal computers. Afterward, 

game producers rent the cloud’s computer and 

bandwidth. User Experience (UX) is an important aspect 

of playing video games in which latency is one of the 

most important issues in UX for playing video games in 

Cloud-Fog Computing (CFC). In 2013, Huang et al. [2] 

proposed the first open-source cloud gaming system 

called “Gaming anywhere”. Cloud gaming systems such 

as Gaikai, OnLive, and Stream My Game, had been 

proposed before Gaming anywhere but these cloud 

gaming systems suffered from inappropriate response 
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time. Bonomi et al. [3] proposed the first fog computing 

paradigm in 2012. Fog computing has characteristics 

such as low latency which can bring services to the edge 

of the network. Another advantage of fog computing is 

geographical distribution. In a fog computing 

environment, many nodes in each region can serve as 

sufficiently as possible. We should consider another type 

of latency called system latency for playing a video game 

on the fog and cloud nodes1.2This latency is the delay 

between the mouse or keyboard actions and the resulting 

pixel changes on the user’s display and should be 

considered for calculating the total latency of video 

games.  

In this paper, a latency reduction method based on 

reinforcement learning is proposed to determine which 

computing fog node can run the video games with the 

lowest latency. At the first of the proposed method, a 

Principal Component Analysis (PCA) based approach is 

used to extract the most important features of each video 

game as the input of the learning process. 

Reinforcement learning is dynamically learning by 

12https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-

platform 
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adjusting actions based on continuous feedback to 

maximize a reward [4]. Since the objective of this paper 

is dynamically select the best fog node in a distributed 

manner to play the video game, we can have a learning 

agent for each fog node to interact with the environment. 

This kind of learning expresses how states can be mapped 

to actions to maximize reward signals. This way the agent 

does not tell what actions it should do, but it discovers 

which actions have the most reward signal.  

Markov Decision Processes (MDP) is a 

mathematical framework to describe an environment in 

reinforcement learning. It provides a mathematical 

framework for modeling decision-making in situations 

where outcomes are partly random and partly under the 

control of a decision-maker [5]. Since the problem of this 

paper will be solved by reinforcement learning, the 

Markov chain is a very useful framework to model this 

problem based on by taking a sequence of actions. From 

a time perspective, MDPs can be sub-divided into two 

categories named Discrete-Time Markov Chain (DTMC) 

and Continuous-Time Markov Chain (CTMC) [6]. A 

random process can be defined as a chain of random 

variables. There is a feature named Markov property that 

refers to a memory-less property of random processes. A 

random process has Markov property if the future 

probability distribution is dependent only on the current 

state but not on a sequence of events that preceded it [6]. 

MDPs, consist of three aspects: sensing, action, and goal. 

An agent must sense the state of the environment and 

then consider actions that take effect on the state. Each 

method that can solve this kind of problem, is known as 

the reinforcement learning method. 

Since each video game has many features (more than 

26 features) and analyzing these features incurs high 

overhead, we have used PCA to reduce the number of 

features. So essential features which are a lot informative 

will be selected and less informative features will not be 

considered. PCA combines essential features with a 

substituted feature which leads to smaller sets of features. 

Since the feature reduction is done before starting the 

game and it is done on the machines of the users (not on 

fog nodes), it does not incur significant overhead . 

The contributions of this paper are as follows: 

1) A PCA-based approach is used to extract the most 

important features of each video game to be 

considered as the input of the learning process.   

2) A distributed reinforcement learning process is 

proposed that can compute the score of each fog nod 

and select the best fog node to play each video game 

based on its characteristics and consuming 

resources. 

3) The proposed method can significantly reduce the 

frame latency and increase the frame rate of video 

games. 

The rest of our paper is organized as follows: In section 

2, we overview the related works. In section 3, we present 

the proposed algorithm. Section 4 is the   simulation and 

experimental results. Finally, we conclude the paper in 

section 5. 
 

 

2. RELATED WORKS  
 
In this section, some of the works that used reinforcement 

learning for decision-making in cloud-fog environments 

were reviewed. Talaat et al. [7] used reinforcement 

learning for resource allocation and process migration. 

For resource allocation, the reinforcement algorithm 

selects the best fog server based on the fast response time. 

For process migration, the reinforcement algorithm 

selects the process for migration based on the process 

weight to designate priority for selecting the suitable 

process for migration. Zhang et al. [8] proposed a 

framework named EdgeGame to adjust video bit rate 

adaptively to match the network dynamics. Also, in the 

paradigm of cloud gaming to compensate for the dynamic 

nature of networks; they used deep reinforcement 

learning to adjust the traffic from the edge nodes to the 

users and to accommodate the varying bandwidth in the 

dynamic network. In the paradigm of Mobile Edge 

Computing (MEC), Zhang and Zheng [9] proposed a 

technique for task migration based on the Deep-Q 

network. In their work, the agent can learn optimal task 

migration policy from previous experiences without the 

need for a user’s mobility pattern in the future. Chen et 

al. [10] proposed an adaptive real-time video game 

streaming policy in the dynamic network based on deep 

reinforcement learning to control bit rate adaptively. In 

2018, Chen et al. [11] proposed a computation of floading 

algorithm based on deep q-network named Darling to 

learn the optimal policy without knowing prior 

knowledge of network dynamics. This algorithm was 

proposed for the MEC in which mobile devices are not 

fully capable of computing intensive tasks locally. Thus 

there should be a policy to determine whether to compute 

the tasks locally or offload them to the MEC server, 

considering the dynamic nature of the network. Dutreilh 

et al. [12] proposed an automatic decision-making 

approach for resource allocation without previous 

knowledge of the application performance model. In their 

work, the agent learns to add, maintain or reduce the 

number of VMs allocated to the application. In 2018, 

Wang et al. [13] tried to make a tradeoff between energy 

consumption and service delay in vehicular networks. 

They proposed a novel model to depict the users’ 

willingness of contributing their resources to the public. 

In 2018, Dinh et al. [14] proposed a model-free 

reinforcement learning offloading mechanism in which 

mobile users can learn their long-term offloading strategy 

to maximize their long-term utilization. This mechanism 
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was proposed to prevent a scenario in which many mobile 

users offload their tasks to the same edge node at the 

same time. In 2019, Huang et al. [15] proposed an online 

offloading framework that utilizes deep reinforcement 

learning that learns the offloading decisions from the 

experience. This offloading policy was done in the MEC 

network which could decide to compute tasks locally or 

offload them to the MEC server. Because the channel 

state conditions are time-varying in wireless networks, 

the offloading decisions and resource allocations should 

adapt themselves to these dynamic conditions. 
 

 

3. THE PROPOSED METHOD 
 

In this section, a latency reduction method based on 

reinforcement learning is proposed to determine which 

computing fog node can run the video games with the 

lowest latency. At first in subsection 3.1, a Principal 

Component Analysis (PCA) based approach is used to 

extract the most important features of each video game as 

the input of subsection 3.2. 

 

3. 1. Feature Selection using PCA                    PCA is a 

feature reduction method in which the original data 

transfers to a smaller space which leads to the reduction 

of the features. On the other hand, PCA combines 

essential features with a substituted feature which leads 

to a smaller set of features. In this section, by utilizing the 

PCA method, we try to apply PCA to reduce the 26 

features of video games to 2 primary components and 

then extract the most important features from them. The 

steps of applying PCA to reduce the features are as 

follows: 
1. Assume X1, X2, … ,XZ are feature set and each Xi 

represents as N×1 vectors. (Z is the total number of 

features and is assumed equal to 26 and N is the 

number of rows in the dataset.   At the first step, each 

feature is normalized between 0 to 1). 

2. The average vector is calculated as follows: 

�̅� =
1

𝑍
∑ 𝑋𝑍
𝑖=1 𝑖

  (1) 

3. For each vector, subtract the average vector of it and 

produce the matrix A=[Φ1, Φ2. … .Φ𝑍] (N×Z 

matrix) as follows: 

 Φ𝑖 = 𝑋𝑖 − �̅�  (2) 

4. Covariance matrix is calculated as follows: 

𝐶𝑜𝑣 =
1

𝑍
∑ Φ𝑖
𝑍
𝑖=1 Φ𝑖

𝑇  (3) 

where Φ𝑖
𝑇 is the transformation matrix of Φ𝑖   

5. From the covariance matrix, we can compute 

eigenvalues and eigenvectors and sort the 

eigenvectors ascendingly. The highest value of 

eigenvalue means the highest significance of the 

corresponding features. Top 2 eigenvectors with the 

highest eigenvalue form the principal components 

of the data set.  
The impact of the important features on the 2 primary 

components categorized by video games are depicted in 

Figure 1. 

In Table 1,  the selected features for each video game 

that have more impact on the primary components are 

demonstrated.  

 
3. 2. Fog Node Score Calculation              Algorithm1 

calculates the score for each fog node. The less difference 

between video game consumed resource and fog node 

remainder resource is, the more score the related fog node 

 

 

 

 
(a) Apex legends game 
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(b) Battlefield 4 game 

 

 
(c) Warthunder game 

 

 
(d) Forza horizon 4 game 

 

 
(e) CS: GO game 

Figure 1. The impact of the important features on the 2 

primary components categorized by video games 
 

 

 
TABLE 1. Selected features for each video game 

Selected features Video game 

CPU.usage, CPU.power, Commit. charge Apex Legends 

CPU.power, CPU.usage, FB.usage Battlefield 4 

CPU.usage, CPU.power, GPU.usage Warthunder 

CPU.usage, CPU.power, RAM.usage Forza horizon 4 

CPU.temprature, CPU.power, CPU.usage CS: GO 

 

 
Algorithm 1 

• Input: Randomly generated numbers for fog nodes 

resources and the captured resources from video games. 

• Output: Fog node scores for each video game 

 
 

 For each video game 

  For each fog node 

  
Calculate the difference between video 

game consumed resources and the 

remainder of fog nodes resources 

  
Calculate the plural of differences of all 

fog node resources 

  
Sort plural of differences in ascending 

manner 

  
Give more scores to fewer plural 

differences 

  Return the calculated fog node score. 
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will receive. To be more clear, for example, two fog 

nodes have been compared to see which of them is a 

better fog node in terms of remainder resources.  

In this paper, only 3 fog nodes have been considered, 

thus scores are designated between 0 to 2. Only features 

that have been selected by PCA are considered for 

selecting the fog node. In the next subsection, the 

produced scores for fog nodes are used as input for the 

reinforcement algorithm for selecting the best fog node. 

 
3. 3. Calculating the Fog Node Selection Priorities 
using Reinforcement Learning              In this 

subsection, an algorithm based on reinforcement learning 

is proposed for selecting the best fog node. After 

calculating the scores of the fog nodes by Algorithm 1, 

the Q matrix will be initialized. Each element of this 

matrix has two parts which are called the actions 0 and 1. 

With these actions, we can say whether the agent selects 

the current fog node or selects another fog node with a 

higher score. Each action has its related q-value. The 

action with a higher q-value will be selected. The agent 

periodically monitors the environment that consists of 

fog nodes. The agent learns which fog nodes could 

receive more scores. The problem is modeled as a 

Markov Decision Process (MDP) in Figure 2. The MDP 

that models our approach to select the best fog node is 

defined as Equation (4): 

= (4) 

in which, 

 = {(n, p) | 1< n < nmax  ⋀ 1< p < pmax} is the state of the 

MDP where n is the fog node index and p is the score 

which is calculated for fog node. 

• A = {a | 0 < a ≤ 1} is the action set. When the agent 

compares two fog nodes’ scores, if the first fog node 

has higher a score than the second fog node, the 

action 0 will be selected which means the selection 

of the first fog node with the probability of Ps1s1 or 

Ps2s2. But if the second fog node has a higher score 

than the first fog node, action 1 will be selected 

which means the selection of the second fog node 

with the probability of Ps1s2 or Ps2s1. 

P is the probability distribution p (r| s, a) of observing 

reward r when the agent is in state s and action a is taken. 

 

 

 
Figure 2. MDP for solving the stated problem 

 

• γ, 0< γ <1 is defined as a discount factor that 

determines how important a future reward is. When 

it has a value near 0, the agent tends more to the 

current state and when it has a value near 1, the 

agent tends more to the future state. 

• T is the probability distribution P (s’| s, a) of 

transition to state s’ when the agent is in state s and 

action a is taken. 

According to Dutreilh et al. [12], T and P are difficult 

to estimate because they require heavy experimentation 

and measurement. Due to this fact and to overcome these 

limitations, reinforcement learning has been proposed to 

learn these two parameters by interaction with the 

environment. In the proposed method, Q-learning has 

been used as one of the reinforcement learning 

approaches. After calculating each score of fog nodes by 

Algorithm 1, the Q-matrix will be created with 

mentioned characteristics. In this step, the agent interacts 

with the environment and then updates the current state 

and q-value in Q-matrix. Then the action with a higher q-

value will be selected. Eventually, the q-values in Q-table 

will be updated. The agent updates Q-values by Q-

learning formula which is as Equation (5): 

( , Action) (1 ) *

*

( * )

q

q

Q CurrentState LearningRate

Current LearningRate

reward Discount MaxFuture

= −

+

+

 
() 

Now the Q-table has been formed and we can use its 

policies for selecting the fog nodes. Algorithm 2 for 

calculating the Q-table is as follows: 

 

 

 

Algorithm 2 

• Input: Calculated scores by Algorithm 1 for each video 

game. 

• Output: Q-table policies for selecting the best fog node 

  

  For each score calculated score by Algorithm 1 

  Create fog node objects and assign the related scores 

  Initialize the Q-table  

  Agent updates the current state and actions by 

interaction with the environment  

  Observing possible actions from Q-table, then the 

agent selects the action with higher q-value 

  Updating q-values in q-table 

  If learning process reward == pre-designated 

reward: 

                 Move to the next episode 

Else: 

                  Continue steps from the beginning 

 The end of the episodes 
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4. PERFORMANCE EVALUATION 
 
4. 1. Experimental Setup              The proposed method 

was implemented using Python 3.6. At first, we ran 5 

video games distinctly to capture resource consumption 

by MSI Afterburner. The obtained data frame in CSV 

format had 26 columns of features. Thus we had to 

extract the most important features which had the most 

variance among others. By using the PCA approach 

mentioned in the previous section, the first 3 features 

have been extracted. Then by using Python and utilizing 

object-oriented programming, fog nodes have been 

created as objects. A total of 3 fog nodes have been 

considered. For each fog node and each episode of the 

learning process, resources have been initialized using 

calculated scores by Algorithm 1. By assigning fog node 

scores, the learning process starts. Totally 5000 episodes 

have been considered. For each episode, 200 steps have 

been considered.  

 

4. 2. Experimental Results             Our data has been 

captured from playing 15 minutes of 5 video games 

named Battlefield 4, Warthunder, Counter Strike Global 

Offensive (CS:GO), Forza horizon 4, Apex legends. Each 

tuple of the data contains 26 attributes. Each tuple 

indicates one second. All of the features have been 

normalized, transferred into the same scale between zero 

and one.  
The results of the reinforcement learning for 

determining each fog node priority are stated in Table 2 

categorized by each video game. For instance, to play 

apex Legends video game, fog node number 0 has the 

highest priority. 

To evaluate the suggested fog nodes priorities, the 

frame rate per second and frame latency have been 

measured for three fog nodes and all of the five video 

games during 15 minutes. Each game was run for 15 

minutes and the average of the results is demonstrated in 

Table 3. The fog node with a higher frame rate has a 

lower frame latency. As can be seen in Table 3, for the 

Apex legends game, fog node 0 has the lowest latency 

compared to the other fog nodes. For Battlefield 4 game, 

fog node 2 has the lowest latency and for CS: GO game, 

fog node 0 has the lowest latency. Fog node 1 has the 

lowest latency for the Forza Horizon 4 game and the 

Warthunder game, fog node 0 has the lowest latency. 
 

 

TABLE 2. Fog node priority for each video game 

Priority #3 Priority #2 Priority #1  

Fog node #2 Fog node #1 Fog node #0 Apex Legends 

Fog node #1 Fog node #0 Fog node #2 Battlefield 4 

Fog node #2 Fog node #1 Fog node #0 CS: GO 

Fog node #0 Fog node #2 Fog node #1 Forza horizon 4 

Fog node #1 Fog node #2 Fog node #0 Warthunder 

TABLE 3. The average of FPS and frame latency of fog nodes 

for video games 

Video Games Fog nodes 
Average 

FPS  

Average frame 

latency (ms) 

Apex legends 

Fog node # 0 143 6.26 

Fog node # 1 139 6.31 

Fog node # 2 135 6.37 

Battlefield 4 

Fog node # 0 195 4.61 

Fog node # 1 166 5.36 

Fog node # 2 268 3.19 

CS: GO 

Fog node # 0 123 7.3 

Fog node # 1 55 23.8 

Fog node # 2 22 45.5 

Forza 

horizon 4 

Fog node # 0 120 7.1 

Fog node # 1 240 3.9 

Fog node # 2 184 5 

Warthunder 

Fog node # 0 290 2.8 

Fog node # 1 42 29.3 

Fog node # 2 129 6.7 

 

 

Based on Table 3, the best fog nodes are selected for 

each video game and the corresponding results (FPS and 

latency) are compared to the approaches proposed by 

Zhang et al. [8] and Chen et al. [11]. Table 4 and Figure 

3 demonstrate the results of comparing the average frame 

per second of the proposed method and the approaches 

proposed by Zhang et al. [8] and Chen et al. [11]. 

As can be seen, the proposed method has a higher 

average frame rate in all video games. This is because, in 

the proposed method, reinforcement learning is utilized 

to determine the best fog node for playing video games 

considering the frame rate. The objective of Zhang et al. 

[8] was to reduce bandwidth consumption and the 

objective of Chen et al. [11] was to maximize the long-

term utility performance. After the proposed method, the 

EdgeGame has a better frame rate than the Darling 

approach.  

Table 5 and Figure 4 demonstrate the result of 

comparing the average frame latency of the proposed 

method and the approaches proposed by Zhang et al. [8] 

and Chen et al. [11]. 

 

 
TABLE 4. The average of frame per second  

Warthunder 
Forza 

horizon 4 

CS: 

GO 
Battlefield 4 

Apex 

Legends 
 

290 240 123 268 143 
proposed 

method 

188 200 115 255 118 
EdgeGame 

[8] 

90 110 45 145 80 Darling [11] 
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Figure 3. Comparing the average of frame per second 

 

 
TABLE 5. The average frame latency  

Warthunder 
Forza 

horizon 4 

CS: 

GO 

Battlefield 

4 

Apex 

Legends 
 

2.8 3.9 7.3 3.19 6.26 
proposed 

method 

5.6 6.3 9 5 8.8 
EdgeGame 

[8] 

11 12 13.4 8.1 14 Darling [11] 

 

 

 
Figure 4. Comparing the average of frame latency 

 

 

It can be observed that the average frame latency in 

the proposed method is less than two other approaches. 

This can be explained by the reason that the proposed 

method has q better frame rate and more frame rate leads 

to less frame latency. Among all video games, playing 

Battlefield 4 resulted in the least frame latency, and 

CS:GO resulted in the most frame latency. 

 

 

5. CONCLUSION 
 

Cloud gaming is a new paradigm that makes game 

players independent of having high-end hardware on 

their local computers. Since video games are a kind of 

latency-sensitive application, a latency reduction method 

based on reinforcement learning was proposed in this 

paper to appropriately select the fog node for running the 

video games on it with the lowest latency. We tried to 

apply PCA to reduce the 26 features of video games to 2 

primary components and then extracted the most 

important features from them. The proposed method was 

implemented using Python and 5 video games named 

Battlefield 4, Warthunder, Counter Strike Global 

Offensive (CS:GO), Forza horizon 4, Apex legends were 

run for 15 minutes. Experimental results demonstrated 

that the proposed method compared to some existing 

methods reduced the frame latency and increase the 

frame rate of video games. 
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Persian Abstract 

 چکیده 
شد، در بازی های ابری یک بازی ویدئویی برخط روی سرورهای راه دور ابری اجرا  بازی های قدیمی که یک بازی روی یک دستگاه کاربر بصورت محلی اجرا میبر خلاف 

ت افزاری  با قابلیت بالا در کامپیوتر های  شود که بازیکنان  از داشتن منابع سخ شوند.  این باعث میشوند و نتایج پردازش ها بصورت مستقیم به دستگاه کاربر ارسال می  می

های ویدئویی نوعی از برنامه های حساس به تاخیر هستند، سرورهای ابری که دور از کاربران قرار گرفته اند مناسب نیستند. در  محلی خود بی نیاز شوند.  از آنجا که بازی

درند تاخیر را کاهش دهند. در این مقاله، روشی مبتنی بر یادگیری تقویتی جهت کاهش تاخیر ارائه شده است محاسبات مه، گره های مه در مجاورت کاربران قرار گرفته اند و قا

(  PCAبر  تحلیل مولفه اصلی )   تا مشخص کند کدام گره محاسباتی مه می تواند بازی های ویدئویی را با کمترین تاخیر اجرا کند. همچنین در روش پیشنهادی، یک  روش مبتنی

افزار پایتون  استفاد نرم  پیشنهادی توسط  یادگیری استخراج کند. روش  به عنوان ورودی فرآیند  بازی ویدئویی را   تا مهمترین ویژگی های هر  نتایج  ه شده  پیاده سازی شد. 

 .ا کاهش  داده و نرخ فریم را افزایش دهدهای موجود می تواند برای بازی های ویدئویی تاخیر فریم رآزمایشات نشان  می دهد روش پیشنهادی در مقایسه با برخی روش
 


