
IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681

Please cite this article as: S. M. Jameii, K. Khanzadi, A Latency Reduction Method for Cloud-fog Gaming based on Reinforcement Learning,
International Journal of Engineering, Transactions C: Aspects, Vol. 35, No. 09, (2022) 1674-1681

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

A Latency Reduction Method for Cloud-fog Gaming based on Reinforcement Learning

S. M. Jameii*a, K. Khanzadib

a Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
b Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

P A P E R I N F O

Paper history:
Received 27 January 2022
Received in revised form 27 March 2022
Accepted 01 April 2022

Keywords:
Reinforcement Learning
Computation Latency
Cloud-fog Gaming
Principal Component Analysis

A B S T R A C T

Unlike traditional gaming where a game run locally on a user's device, in cloud gaming, an online video

game runs on remote servers and streams directly to a user's device. This caused players to become

independent of having high hardware resources in their local computers. Since video games are a kind
of latency-sensitive application, cloud servers far from users are not suitable. In fog computing, fog

nodes are in the vicinity of users and can reduce the latency. In this paper, a latency reduction method

based on reinforcement learning is proposed to determine which computing fog node can run the video
games with the lowest latency. In the proposed method, a Principal Component Analysis (PCA) based

approach is used to extract the most important features of each video game as the input of the learning

process. The proposed method was implemented using Python. Experimental results show that the
proposed method compared to some existing methods can reduce the frame latency and increase the

frame rate of video games.

doi: 10.5829/ije.2022.35.09c.01

1. INTRODUCTION1

Nowadays, users are capable of executing video games

on different platforms such as smartphones, personal

computers, etc. Execution of these video games is

independent of the computation resources of the users’

local devices. In 2009, cloud gaming was introduced and

its main idea was to run the video game on remote servers

and stream them directly to a user's device [1]. Hence,

video games would be developed for computers in the

cloud rather than for personal computers. Afterward,

game producers rent the cloud’s computer and

bandwidth. User Experience (UX) is an important aspect

of playing video games in which latency is one of the

most important issues in UX for playing video games in

Cloud-Fog Computing (CFC). In 2013, Huang et al. [2]

proposed the first open-source cloud gaming system

called “Gaming anywhere”. Cloud gaming systems such

as Gaikai, OnLive, and Stream My Game, had been

proposed before Gaming anywhere but these cloud

gaming systems suffered from inappropriate response

*Corresponding Author Institutional Email: Jamei@qodsiau.ac.ir

(S. M. Jameii)

time. Bonomi et al. [3] proposed the first fog computing

paradigm in 2012. Fog computing has characteristics

such as low latency which can bring services to the edge

of the network. Another advantage of fog computing is

geographical distribution. In a fog computing

environment, many nodes in each region can serve as

sufficiently as possible. We should consider another type

of latency called system latency for playing a video game

on the fog and cloud nodes1.2This latency is the delay

between the mouse or keyboard actions and the resulting

pixel changes on the user’s display and should be

considered for calculating the total latency of video

games.

In this paper, a latency reduction method based on

reinforcement learning is proposed to determine which

computing fog node can run the video games with the

lowest latency. At the first of the proposed method, a

Principal Component Analysis (PCA) based approach is

used to extract the most important features of each video

game as the input of the learning process.

Reinforcement learning is dynamically learning by

12https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-

platform

mailto:Jamei@qodsiau.ac.ir
https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-platform
https://www.nvidia.com/en-us/geforce/news/reflex-low-latency-platform

S. M. Jameii and K. Khanzadi / IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681 1675

adjusting actions based on continuous feedback to

maximize a reward [4]. Since the objective of this paper

is dynamically select the best fog node in a distributed

manner to play the video game, we can have a learning

agent for each fog node to interact with the environment.

This kind of learning expresses how states can be mapped

to actions to maximize reward signals. This way the agent

does not tell what actions it should do, but it discovers

which actions have the most reward signal.

Markov Decision Processes (MDP) is a

mathematical framework to describe an environment in

reinforcement learning. It provides a mathematical

framework for modeling decision-making in situations

where outcomes are partly random and partly under the

control of a decision-maker [5]. Since the problem of this

paper will be solved by reinforcement learning, the

Markov chain is a very useful framework to model this

problem based on by taking a sequence of actions. From

a time perspective, MDPs can be sub-divided into two

categories named Discrete-Time Markov Chain (DTMC)

and Continuous-Time Markov Chain (CTMC) [6]. A

random process can be defined as a chain of random

variables. There is a feature named Markov property that

refers to a memory-less property of random processes. A

random process has Markov property if the future

probability distribution is dependent only on the current

state but not on a sequence of events that preceded it [6].

MDPs, consist of three aspects: sensing, action, and goal.

An agent must sense the state of the environment and

then consider actions that take effect on the state. Each

method that can solve this kind of problem, is known as

the reinforcement learning method.

Since each video game has many features (more than

26 features) and analyzing these features incurs high

overhead, we have used PCA to reduce the number of

features. So essential features which are a lot informative

will be selected and less informative features will not be

considered. PCA combines essential features with a

substituted feature which leads to smaller sets of features.

Since the feature reduction is done before starting the

game and it is done on the machines of the users (not on

fog nodes), it does not incur significant overhead .

The contributions of this paper are as follows:

1) A PCA-based approach is used to extract the most

important features of each video game to be

considered as the input of the learning process.

2) A distributed reinforcement learning process is

proposed that can compute the score of each fog nod

and select the best fog node to play each video game

based on its characteristics and consuming

resources.

3) The proposed method can significantly reduce the

frame latency and increase the frame rate of video

games.

The rest of our paper is organized as follows: In section

2, we overview the related works. In section 3, we present

the proposed algorithm. Section 4 is the simulation and

experimental results. Finally, we conclude the paper in

section 5.

2. RELATED WORKS

In this section, some of the works that used reinforcement

learning for decision-making in cloud-fog environments

were reviewed. Talaat et al. [7] used reinforcement

learning for resource allocation and process migration.

For resource allocation, the reinforcement algorithm

selects the best fog server based on the fast response time.

For process migration, the reinforcement algorithm

selects the process for migration based on the process

weight to designate priority for selecting the suitable

process for migration. Zhang et al. [8] proposed a

framework named EdgeGame to adjust video bit rate

adaptively to match the network dynamics. Also, in the

paradigm of cloud gaming to compensate for the dynamic

nature of networks; they used deep reinforcement

learning to adjust the traffic from the edge nodes to the

users and to accommodate the varying bandwidth in the

dynamic network. In the paradigm of Mobile Edge

Computing (MEC), Zhang and Zheng [9] proposed a

technique for task migration based on the Deep-Q

network. In their work, the agent can learn optimal task

migration policy from previous experiences without the

need for a user’s mobility pattern in the future. Chen et

al. [10] proposed an adaptive real-time video game

streaming policy in the dynamic network based on deep

reinforcement learning to control bit rate adaptively. In

2018, Chen et al. [11] proposed a computation of floading

algorithm based on deep q-network named Darling to

learn the optimal policy without knowing prior

knowledge of network dynamics. This algorithm was

proposed for the MEC in which mobile devices are not

fully capable of computing intensive tasks locally. Thus

there should be a policy to determine whether to compute

the tasks locally or offload them to the MEC server,

considering the dynamic nature of the network. Dutreilh

et al. [12] proposed an automatic decision-making

approach for resource allocation without previous

knowledge of the application performance model. In their

work, the agent learns to add, maintain or reduce the

number of VMs allocated to the application. In 2018,

Wang et al. [13] tried to make a tradeoff between energy

consumption and service delay in vehicular networks.

They proposed a novel model to depict the users’

willingness of contributing their resources to the public.

In 2018, Dinh et al. [14] proposed a model-free

reinforcement learning offloading mechanism in which

mobile users can learn their long-term offloading strategy

to maximize their long-term utilization. This mechanism

1676 S. M. Jameii and K. Khanzadi / IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681

was proposed to prevent a scenario in which many mobile

users offload their tasks to the same edge node at the

same time. In 2019, Huang et al. [15] proposed an online

offloading framework that utilizes deep reinforcement

learning that learns the offloading decisions from the

experience. This offloading policy was done in the MEC

network which could decide to compute tasks locally or

offload them to the MEC server. Because the channel

state conditions are time-varying in wireless networks,

the offloading decisions and resource allocations should

adapt themselves to these dynamic conditions.

3. THE PROPOSED METHOD

In this section, a latency reduction method based on

reinforcement learning is proposed to determine which

computing fog node can run the video games with the

lowest latency. At first in subsection 3.1, a Principal

Component Analysis (PCA) based approach is used to

extract the most important features of each video game as

the input of subsection 3.2.

3. 1. Feature Selection using PCA PCA is a

feature reduction method in which the original data

transfers to a smaller space which leads to the reduction

of the features. On the other hand, PCA combines

essential features with a substituted feature which leads

to a smaller set of features. In this section, by utilizing the

PCA method, we try to apply PCA to reduce the 26

features of video games to 2 primary components and

then extract the most important features from them. The

steps of applying PCA to reduce the features are as

follows:
1. Assume X1, X2, … ,XZ are feature set and each Xi

represents as N×1 vectors. (Z is the total number of

features and is assumed equal to 26 and N is the

number of rows in the dataset. At the first step, each

feature is normalized between 0 to 1).

2. The average vector is calculated as follows:

�̅� =
1

𝑍
∑ 𝑋𝑍
𝑖=1 𝑖

 (1)

3. For each vector, subtract the average vector of it and

produce the matrix A=[Φ1, Φ2. … .Φ𝑍] (N×Z

matrix) as follows:

 Φ𝑖 = 𝑋𝑖 − �̅� (2)

4. Covariance matrix is calculated as follows:

𝐶𝑜𝑣 =
1

𝑍
∑ Φ𝑖
𝑍
𝑖=1 Φ𝑖

𝑇 (3)

where Φ𝑖
𝑇 is the transformation matrix of Φ𝑖

5. From the covariance matrix, we can compute

eigenvalues and eigenvectors and sort the

eigenvectors ascendingly. The highest value of

eigenvalue means the highest significance of the

corresponding features. Top 2 eigenvectors with the

highest eigenvalue form the principal components

of the data set.
The impact of the important features on the 2 primary

components categorized by video games are depicted in

Figure 1.

In Table 1, the selected features for each video game

that have more impact on the primary components are

demonstrated.

3. 2. Fog Node Score Calculation Algorithm1

calculates the score for each fog node. The less difference

between video game consumed resource and fog node

remainder resource is, the more score the related fog node

(a) Apex legends game

Features

Im
p

ac
t

o
n

 t
h

e
fi

rs
t

co
m

p
o

n
en

t
(%

) (%
)

Features

Im
p

ac
t

o
n

 t
h

e
se

co
n
d

co
m

p
o

n
en

t
(%

)

Features

Im
p

ac
t

o
n

 t
h

e
fi

rs
t

co
m

p
o

n
en

t
(%

)

S. M. Jameii and K. Khanzadi / IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681 1677

(b) Battlefield 4 game

(c) Warthunder game

(d) Forza horizon 4 game

(e) CS: GO game

Figure 1. The impact of the important features on the 2

primary components categorized by video games

TABLE 1. Selected features for each video game

Selected features Video game

CPU.usage, CPU.power, Commit. charge Apex Legends

CPU.power, CPU.usage, FB.usage Battlefield 4

CPU.usage, CPU.power, GPU.usage Warthunder

CPU.usage, CPU.power, RAM.usage Forza horizon 4

CPU.temprature, CPU.power, CPU.usage CS: GO

Algorithm 1

• Input: Randomly generated numbers for fog nodes

resources and the captured resources from video games.

• Output: Fog node scores for each video game

 For each video game

 For each fog node

Calculate the difference between video

game consumed resources and the

remainder of fog nodes resources

Calculate the plural of differences of all

fog node resources

Sort plural of differences in ascending

manner

Give more scores to fewer plural

differences

 Return the calculated fog node score.

Features

Im
p

ac
t

o
n

 t
h

e
se

co
n
d

co

m
p
o

n
en

t
(%

)

Features

Im
p

ac
t

o
n

 t
h

e
fi

rs
t

co
m

p
o

n
en

t
(%

)

(%
)

Features

Im
p

ac
t

o
n

 t
h

e
se

co
n
d

co
m

p
o

n
en

t
(%

)

Features

Im
p

ac
t

o
n

 t
h

e
fi

rs
t

co
m

p
o

n
en

t
(%

)

(%
)

Features

Im
p

ac
t

o
n

 t
h

e
se

co
n
d

co
m

p
o

n
en

t
(%

)

Im
p

ac
t

o
n

 t
h

e
fi

rs
t

co
m

p
o

n
en

t

(%
)

Features

Features

Im
p

ac
t

o
n

 t
h

e
se

co
n
d

co
m

p
o

n
en

t
(%

)

1678 S. M. Jameii and K. Khanzadi / IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681

will receive. To be more clear, for example, two fog

nodes have been compared to see which of them is a

better fog node in terms of remainder resources.

In this paper, only 3 fog nodes have been considered,

thus scores are designated between 0 to 2. Only features

that have been selected by PCA are considered for

selecting the fog node. In the next subsection, the

produced scores for fog nodes are used as input for the

reinforcement algorithm for selecting the best fog node.

3. 3. Calculating the Fog Node Selection Priorities
using Reinforcement Learning In this

subsection, an algorithm based on reinforcement learning

is proposed for selecting the best fog node. After

calculating the scores of the fog nodes by Algorithm 1,

the Q matrix will be initialized. Each element of this

matrix has two parts which are called the actions 0 and 1.

With these actions, we can say whether the agent selects

the current fog node or selects another fog node with a

higher score. Each action has its related q-value. The

action with a higher q-value will be selected. The agent

periodically monitors the environment that consists of

fog nodes. The agent learns which fog nodes could

receive more scores. The problem is modeled as a

Markov Decision Process (MDP) in Figure 2. The MDP

that models our approach to select the best fog node is

defined as Equation (4):

= (4)

in which,

 = {(n, p) | 1< n < nmax ⋀ 1< p < pmax} is the state of the

MDP where n is the fog node index and p is the score

which is calculated for fog node.

• A = {a | 0 < a ≤ 1} is the action set. When the agent

compares two fog nodes’ scores, if the first fog node

has higher a score than the second fog node, the

action 0 will be selected which means the selection

of the first fog node with the probability of Ps1s1 or

Ps2s2. But if the second fog node has a higher score

than the first fog node, action 1 will be selected

which means the selection of the second fog node

with the probability of Ps1s2 or Ps2s1.

P is the probability distribution p (r| s, a) of observing

reward r when the agent is in state s and action a is taken.

Figure 2. MDP for solving the stated problem

• γ, 0< γ <1 is defined as a discount factor that

determines how important a future reward is. When

it has a value near 0, the agent tends more to the

current state and when it has a value near 1, the

agent tends more to the future state.

• T is the probability distribution P (s’| s, a) of

transition to state s’ when the agent is in state s and

action a is taken.

According to Dutreilh et al. [12], T and P are difficult

to estimate because they require heavy experimentation

and measurement. Due to this fact and to overcome these

limitations, reinforcement learning has been proposed to

learn these two parameters by interaction with the

environment. In the proposed method, Q-learning has

been used as one of the reinforcement learning

approaches. After calculating each score of fog nodes by

Algorithm 1, the Q-matrix will be created with

mentioned characteristics. In this step, the agent interacts

with the environment and then updates the current state

and q-value in Q-matrix. Then the action with a higher q-

value will be selected. Eventually, the q-values in Q-table

will be updated. The agent updates Q-values by Q-

learning formula which is as Equation (5):

(, Action) (1) *

*

(*)

q

q

Q CurrentState LearningRate

Current LearningRate

reward Discount MaxFuture

= −

+

+

()

Now the Q-table has been formed and we can use its

policies for selecting the fog nodes. Algorithm 2 for

calculating the Q-table is as follows:

Algorithm 2

• Input: Calculated scores by Algorithm 1 for each video

game.

• Output: Q-table policies for selecting the best fog node

 For each score calculated score by Algorithm 1

 Create fog node objects and assign the related scores

 Initialize the Q-table

 Agent updates the current state and actions by

interaction with the environment

 Observing possible actions from Q-table, then the

agent selects the action with higher q-value

 Updating q-values in q-table

 If learning process reward == pre-designated

reward:

 Move to the next episode

Else:

 Continue steps from the beginning

 The end of the episodes

S. M. Jameii and K. Khanzadi / IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681 1679

4. PERFORMANCE EVALUATION

4. 1. Experimental Setup The proposed method

was implemented using Python 3.6. At first, we ran 5

video games distinctly to capture resource consumption

by MSI Afterburner. The obtained data frame in CSV

format had 26 columns of features. Thus we had to

extract the most important features which had the most

variance among others. By using the PCA approach

mentioned in the previous section, the first 3 features

have been extracted. Then by using Python and utilizing

object-oriented programming, fog nodes have been

created as objects. A total of 3 fog nodes have been

considered. For each fog node and each episode of the

learning process, resources have been initialized using

calculated scores by Algorithm 1. By assigning fog node

scores, the learning process starts. Totally 5000 episodes

have been considered. For each episode, 200 steps have

been considered.

4. 2. Experimental Results Our data has been

captured from playing 15 minutes of 5 video games

named Battlefield 4, Warthunder, Counter Strike Global

Offensive (CS:GO), Forza horizon 4, Apex legends. Each

tuple of the data contains 26 attributes. Each tuple

indicates one second. All of the features have been

normalized, transferred into the same scale between zero

and one.
The results of the reinforcement learning for

determining each fog node priority are stated in Table 2

categorized by each video game. For instance, to play

apex Legends video game, fog node number 0 has the

highest priority.

To evaluate the suggested fog nodes priorities, the

frame rate per second and frame latency have been

measured for three fog nodes and all of the five video

games during 15 minutes. Each game was run for 15

minutes and the average of the results is demonstrated in

Table 3. The fog node with a higher frame rate has a

lower frame latency. As can be seen in Table 3, for the

Apex legends game, fog node 0 has the lowest latency

compared to the other fog nodes. For Battlefield 4 game,

fog node 2 has the lowest latency and for CS: GO game,

fog node 0 has the lowest latency. Fog node 1 has the

lowest latency for the Forza Horizon 4 game and the

Warthunder game, fog node 0 has the lowest latency.

TABLE 2. Fog node priority for each video game

Priority #3 Priority #2 Priority #1

Fog node #2 Fog node #1 Fog node #0 Apex Legends

Fog node #1 Fog node #0 Fog node #2 Battlefield 4

Fog node #2 Fog node #1 Fog node #0 CS: GO

Fog node #0 Fog node #2 Fog node #1 Forza horizon 4

Fog node #1 Fog node #2 Fog node #0 Warthunder

TABLE 3. The average of FPS and frame latency of fog nodes

for video games

Video Games Fog nodes
Average

FPS

Average frame

latency (ms)

Apex legends

Fog node # 0 143 6.26

Fog node # 1 139 6.31

Fog node # 2 135 6.37

Battlefield 4

Fog node # 0 195 4.61

Fog node # 1 166 5.36

Fog node # 2 268 3.19

CS: GO

Fog node # 0 123 7.3

Fog node # 1 55 23.8

Fog node # 2 22 45.5

Forza

horizon 4

Fog node # 0 120 7.1

Fog node # 1 240 3.9

Fog node # 2 184 5

Warthunder

Fog node # 0 290 2.8

Fog node # 1 42 29.3

Fog node # 2 129 6.7

Based on Table 3, the best fog nodes are selected for

each video game and the corresponding results (FPS and

latency) are compared to the approaches proposed by

Zhang et al. [8] and Chen et al. [11]. Table 4 and Figure

3 demonstrate the results of comparing the average frame

per second of the proposed method and the approaches

proposed by Zhang et al. [8] and Chen et al. [11].

As can be seen, the proposed method has a higher

average frame rate in all video games. This is because, in

the proposed method, reinforcement learning is utilized

to determine the best fog node for playing video games

considering the frame rate. The objective of Zhang et al.

[8] was to reduce bandwidth consumption and the

objective of Chen et al. [11] was to maximize the long-

term utility performance. After the proposed method, the

EdgeGame has a better frame rate than the Darling

approach.

Table 5 and Figure 4 demonstrate the result of

comparing the average frame latency of the proposed

method and the approaches proposed by Zhang et al. [8]

and Chen et al. [11].

TABLE 4. The average of frame per second

Warthunder
Forza

horizon 4

CS:

GO
Battlefield 4

Apex

Legends

290 240 123 268 143
proposed

method

188 200 115 255 118
EdgeGame

[8]

90 110 45 145 80 Darling [11]

1680 S. M. Jameii and K. Khanzadi / IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681

Figure 3. Comparing the average of frame per second

TABLE 5. The average frame latency

Warthunder
Forza

horizon 4

CS:

GO

Battlefield

4

Apex

Legends

2.8 3.9 7.3 3.19 6.26
proposed

method

5.6 6.3 9 5 8.8
EdgeGame

[8]

11 12 13.4 8.1 14 Darling [11]

Figure 4. Comparing the average of frame latency

It can be observed that the average frame latency in

the proposed method is less than two other approaches.

This can be explained by the reason that the proposed

method has q better frame rate and more frame rate leads

to less frame latency. Among all video games, playing

Battlefield 4 resulted in the least frame latency, and

CS:GO resulted in the most frame latency.

5. CONCLUSION

Cloud gaming is a new paradigm that makes game

players independent of having high-end hardware on

their local computers. Since video games are a kind of

latency-sensitive application, a latency reduction method

based on reinforcement learning was proposed in this

paper to appropriately select the fog node for running the

video games on it with the lowest latency. We tried to

apply PCA to reduce the 26 features of video games to 2

primary components and then extracted the most

important features from them. The proposed method was

implemented using Python and 5 video games named

Battlefield 4, Warthunder, Counter Strike Global

Offensive (CS:GO), Forza horizon 4, Apex legends were

run for 15 minutes. Experimental results demonstrated

that the proposed method compared to some existing

methods reduced the frame latency and increase the

frame rate of video games.

6. REFERENCES

1. Ross, P. E., "Cloud computing's killer app: Gaming," IEEE

Spectrum, Vol. 46, No. 3, (2009), 4-14, doi:
10.1109/MSPEC.2009.4795441.

2. Huang, C. Y., Hsu, C. H., Chang, Y.C., and Chen, K.T.,
"GamingAnywhere: an open cloud gaming system," in 4th ACM
multimedia systems conference, Oslo, Norway (2013), 36-47,
https://doi.org/10.1145/2537855.

3. Bonomi, F., Milito, R., Zhu, J., and Addepalli, S., "Fog computing
and its role in the internet of things," first edition of the MCC
workshop on Mobile cloud computing, New York, United States,
(2012), 13-16, https://doi.org/10.1145/2342509.2342513.

4. Yaghmaee, F., Koohi, H., " Dynamic Obstacle Avoidance by
Distributed Algorithm based on Reinforcement Learning,"
International Journal of Engineering, Transactions B:

Applications, Vol. 28, No. 2, (2015), 198-204, doi:
10.5829/idosi.ije.2015.28.02b.05.

5. rezaei, H., Motameni, H., Barzegar, B., " A Hidden Markov
Model for Morphology of Compound Roles in Persian Text Part
of Tagging," International Journal of Engineering,

Transactions B: Applications, Vol. 34, No. 11, (2021), 2494-
2507, doi: 10.5829/IJE.2021.34.11B.12.

6. Mo, J., "Performance modeling of communication networks with
Markov chains," Synthesis Lectures on Data Management, Vol.
3, No. 1, (2010), 1-90, doi:
10.2200/S00269ED1V01Y201004CNT005.

7. Talaat, F.M., Saraya, M.S., Saleh, A.I., Ali, H. A., and Ali, S.H.,
"A load balancing and optimization strategy (LBOS) using
reinforcement learning in fog computing environment", Journal

of Ambient Intelligence and Humanized Computing (2020), 1-
16, https://doi.org/10.1007/s12652-020-01768-8.

8. Zhang, X., Chen, H., Zhao, Y., Ma, Z., Xu, Y., Huang, H., and
Wu, D. O. "Improving cloud gaming experience through mobile
edge computing", IEEE Wireless Communications, Vol. 26, No.
4, (2019), 178-183, doi: 10.1109/MWC.2019.1800440.

9. Zhang, C., and Zheng, Z., "Task migration for mobile edge
computing using deep reinforcement learning," Future

Generation Computer Systems, Vol. 96, (2019), 111-118,
https://doi.org/10.1016/j.future.2019.01.059.

10. Chen, H., Zhang, X., Xu, Y., Ren, J., Fan, J., Ma, Z. and Zhang,
W., "T-Gaming: A Cost-Efficient Cloud Gaming System at
Scale", IEEE Transactions on Parallel and Distributed Systems,
Vol. 30, No. 12, (2019), 2849-2865, doi:
10.1109/TPDS.2019.2922205.

0

30

60

90

120

150

180

210

240

270

300

A
ve

ra
ge

 F
P

S

Video Games

proposed

method

EdgeGame [9]

Darling [12]

0

2

4

6

8

10

12

14

16

18

20

Apex legends Battlefield 4 CS:GO Forza horizon

4

Warthunder

A
v

e
ra

g
e

 F
ra

m
e

 L
a
te

n
c
y

Video Games

proposed

Method

EdgeGame [9]

Darling [12]

S. M. Jameii and K. Khanzadi / IJE TRANSACTIONS C: Aspects Vol. 35, No. 09, (September 2022) 1674-1681 1681

11. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y. and Bennis, M.,
"Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning," IEEE

Internet of Things Journal, Vol. 6, No. 3, (2018), 4005-4018,
doi: 10.1109/JIOT.2018.2876279.

12. Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre,
N. and Truck, I., "Using reinforcement learning for autonomic
resource allocation in clouds: towards a fully automated
workflow," The Seventh International Conference on Autonomic
and Autonomous Systems, Venice, Italy, (2011), 67-74, ISBN:
978-1-61208-134-2.

13. Wang, Y., Wang, K., Huang, H., Miyazaki, T. and Guo, S.,
"Traffic and computation co-offloading with reinforcement

learning in fog computing for industrial applications," IEEE

Transactions on Industrial Informatics, Vol. 15, No. 2, (2018),
976-986, doi: 10.1109/TII.2018.2883991.

14. Dinh, T.Q., La, Q.D., Quek, T.Q. and Shin, H., "Learning for
Computation Offloading in Mobile Edge Computing," IEEE

Transactions on Communications, Vol. 66, No. 12, (2018),
6353-6367, doi: 10.1109/TCOMM.2018.2866572.

15. Huang, L., Bi, S. and Zhang, Y.J.A., "Deep reinforcement
learning for online computation offloading in wireless powered
mobile-edge computing networks," IEEE Transactions on

Mobile Computing, Vol. 19, No. 11, (2019), 2581-2593, doi:
10.1109/TMC.2019.2928811.

Persian Abstract

 چکیده
شد، در بازی های ابری یک بازی ویدئویی برخط روی سرورهای راه دور ابری اجرا بازی های قدیمی که یک بازی روی یک دستگاه کاربر بصورت محلی اجرا میبر خلاف

ت افزاری با قابلیت بالا در کامپیوتر های شود که بازیکنان از داشتن منابع سخ شوند. این باعث میشوند و نتایج پردازش ها بصورت مستقیم به دستگاه کاربر ارسال می می

های ویدئویی نوعی از برنامه های حساس به تاخیر هستند، سرورهای ابری که دور از کاربران قرار گرفته اند مناسب نیستند. در محلی خود بی نیاز شوند. از آنجا که بازی

درند تاخیر را کاهش دهند. در این مقاله، روشی مبتنی بر یادگیری تقویتی جهت کاهش تاخیر ارائه شده است محاسبات مه، گره های مه در مجاورت کاربران قرار گرفته اند و قا

(PCAبر تحلیل مولفه اصلی) تا مشخص کند کدام گره محاسباتی مه می تواند بازی های ویدئویی را با کمترین تاخیر اجرا کند. همچنین در روش پیشنهادی، یک روش مبتنی

افزار پایتون استفاد نرم پیشنهادی توسط یادگیری استخراج کند. روش به عنوان ورودی فرآیند بازی ویدئویی را تا مهمترین ویژگی های هر نتایج ه شده پیاده سازی شد.

 .ا کاهش داده و نرخ فریم را افزایش دهدهای موجود می تواند برای بازی های ویدئویی تاخیر فریم رآزمایشات نشان می دهد روش پیشنهادی در مقایسه با برخی روش

