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A B S T R A C T  

 

This paper presents a reliability analysis of a two-span reinforced concrete beam, taking into account of 

random variations in cross-sectional dimensions, area and position of reinforcement for sagging and 

hogging bending moments, material strengths, loads and model uncertainties. In addition, the limit state 
functions for the statically indeterminate beam were derived; considering the static equilibrium 

requirement after the moments were redistributed as well as the codified allowable limit for the adjusted 

moment at each beam section. A large number of Monte Carlo simulations were performed in which the 
basic variables were modeled with normal, lognormal and Gumbel distributions. When the elastic 

moment distribution was used in evaluating the beam reliability, the two-span beam behaved as a series 

system with three critical nodes located at the interior support and midspan sections. The probability that 
the system had at least one overloaded node was greater than the failure probability of an individual 

node. However, considering moment redistribution made it possible to reduce the amount of 

reinforcement whilst maintaining the reliability of the beam. When the reinforcement area was reduced 
by 26% at the support section or 14% at the midspan sections, the failure probability was predicted to be 

6.9010-5, which is deemed acceptable for a 50 year reference period.  

doi: 10.5829/ije.2022.35.04a.24 
 

 
1. INTRODUCTION1 
 
Building structures are to satisfy requirements including 

safety of the structures against collapse, limitations on 

damage, deflection, vibration or other criteria.  

According to current structural codes, the design of 

reinforced concrete beams as well as other structural 

members is normally based on partial safety factors and 

characteristic values of action and resistance effects [1]. 

The code-based method is a refined version of the 

deterministic approach and can be classified as semi-

probabilistic. On the other hand, a full probabilistic 

approach would not use partial factors of safety but 

directly consider inherent uncertainties in the loading, 

material properties and other random variables relevant 

to the structure behavior and safety.    

Reliability is the ability of a structure to satisfy the 

specified requirements at any time during its design life 
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[2]. Each requirement can be considered as a limit state. 

Let R and E be the resistance and load effect respectively. 

The failure probability Pf of a structure can be written as 

Pf = P(R < E) or Pf = P(R/E < 1) or in general:  

Pf = P(Z(R, E) < 0) (1) 

where Z is the limit state function and Pf is the probability 

of limit state violation [3]. The measurement of reliability 

can be identified with the survival probability Ps = (1Pf) 

or the reliability index   which is the ratio of the mean 

value of Z to its standard deviation if Z is normally 

distributed. For other distribution of Z,  is just a 

conventional measure of the reliability and using Pf or Ps 

would be more meaningful. For structural members of 

residential and office buildings assessed at the ultimate 

limit state, the recommended target reliability index is 3.8 

corresponding to a target failure probability of 7.2310-5 

for a reference period of 50 years [4]. Examples of 
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application of reliability analysis in building structures 

include prediction of flexural behavior of beams 

subjected to pitting corrosion [5], evaluation of shear 

strength of deep beams with and without web 

reinforcement [6], torsional design of reinforced concrete 

beams strengthened with CFRP laminate [7]. The list also 

includes assessment of existing reinforced concrete 

beams when strengthened with additional reinforcing 

bars [8], evaluation of bearing capacity of slabs 

considering compressive membrane action [9], structural 

fire safety assessment of slabs exposed to fire [10], 

reliability analysis of seismic hazard [11], seismic 

assessment of buildings with soft-story and torsional 

irregularities [12]. As a contribution to the trend of 

reliability-based design, the present paper discusses a 

probabilistic procedure for evaluation of flexural strength 

of a statically indeterminate reinforced concrete beam 

considering the effect of moment redistribution. 

Whilst a beam is normally designed based on its 

elastic moment envelope, moment redistribution allows 

the transfer of moments from critical sections where 

plastic hinges have formed to underutilized sections. 

Experimental studies showed that moment redistribution 

in reinforced concrete beams could occur not only at the 

ultimate limit state but also at the serviceability limit state 

[13]. A good capacity for plastic rotation and moment 

redistribution was also observed in high-strength 

concrete beams with low tensile reinforcement ratios 

[14]. The neutral axis depth of the beam was found to 

effect the redistribution ratio [15]. The plastic zones in 

the beam after yielding could behave like rotational 

springs [16]. The practical approach to allow for moment 

redistribution is using codified moment redistribution 

factor to adjust the bending moment diagram obtained 

from a linear elastic analysis without explicit verification 

of the rotation capacity. Alternatively, a plastic analysis 

is performed to determine the rotational demand and 

capacity of the hinges from first principles [17]. Some 

nonlinear failure analysis models have been proposed 

such as a stress resultant beam element with embedded 

discontinuity in rotations [18], a damaged–plasticity 

model for the concrete [19], and a fictitious crack model 

based on nonlinear fracture mechanics [20]. To ensure 

rotation capacity at the section of plastic hinges, 

contemporary design codes specify the allowable 

redistribution ratio as a function of the ratio of neutral 

axis depth to the section effective depth [21, 22]. The 

redistribution limit can also be based on the net tensile 

strain of the reinforcement [23]. 

In this paper, a two-span concrete beam is first 

reinforced in accordance with Eurocode 2. The limit state 

functions for flexural strength of the beam are then 

developed considering the codified limits for the 

redistribution ratio as well as the requirement for static 

equilibrium after the moments were redistributed, 

following the lower bound approach of plastic theory [1]. 

The effectiveness of moment redistribution in maintaing 

the beam reliability when the provided steel areas are less 

than the elastic-moment-based steel areas is examined 

via a large number of Monte Carlo simulations. 

 

 

2. METHODS 
 

2. 1. Ultimate Bending Strength and Moment 
Redistribution to Eurocode 2            The design 

moment capacity at the ultimate limit state of a singly 

reinforced rectangular beam, MRd, assuming that the 

reinforcement has yielded, can be obtained from the 

following expressions: 

𝑀𝑅𝑑 = 𝐴𝑠𝑓𝑦𝑑(𝑑 − 0.5𝑥) (2) 

 𝑥𝑏𝑓𝑐𝑑 = 𝐴𝑠𝑓𝑦𝑑 (3) 

where As and fyd are the area and design yield strength of 

the tension reinforcement, d and b are the effective depth 

and width of the section respectively; fcd is the design 

compressive strength of concrete and x corresponds to the 

depth of the equivalent rectangular concrete stress block. 

The design strengths are taken as fcd = 0.85fck/c and fyd = 

fyk/s in which fck and fyk are the characteristic compressive 

strength of concrete and yield strength of reinforcement, 

c = 1.5 and s = 1.15 are the partial factors of safety for 

the concrete and reinforcement, respectively [1]. 

In case moment redistribution is implemented, the 

redistribution ratio , which is the ratio of the modified 

moment to elastic moment at a section, for concrete with 

fck less than or equal to 50 MPa, should satisfy: 

𝛿  0.44 + 1.25𝑐/𝑑 (4) 

where c = x/0.8 is the depth of the neutral axis of the 

section. It is also recommended that the bending moment 

capacity at any section should not be less than 70% of the 

elastic moment, i.e.   0.7. Static equilibrium must be 

maintained after redistribution of moments. Do Carmo 

and Lopes tested 10 two-span beams up to failure [14]. 

The recommendations of Eurocode 2 were found to be 

within safety limits and very similar to the experimental 

results for both normal-strength and high-strength 

concrete beams. The test also showed that the 

recommendations of ACI 318 were conservative for 

high-strength concrete beams whilst the Canadian code 

prediction for high values of c/d might be unsafe.   

 

2. 2. Case Study Beam and Random Variables for 
Reliability Analysis           Figure 1 depicts a two-span 

beam subjected to the concentrated permanent loads G1, 

G2 with the same characteristic value of Gk and imposed 

load Q1, Q2 with the same characteristic value of Qk. The 

beam self-weight was already included in the permanent 

load. The beam has a span length of 8 meters and is part 

of a floor system for general office use. The characteristic  
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Figure 1. Bending moment diagram and cross sections 

details of investigated beam 
 

 

compression strength of the concrete is fck = 25 MPa and 

yield strength of the steel reinforcement is fyk = 500 MPa. 

The cross sections have a nominal overall depth of h = 

600 mm, width b = 300 mm and reinforcement axis 

distance of a = 60 mm. The maximum moments derived 

from an elastic analysis are ME1, ME2 and ME3. The areas 

of tension reinforcement provided at the critical sections 

with maximum moments are As1 and As3 at midspans and 

As2 over the interior support of the beam. The moments 

of resistance of the sections associated with the steel 

areas As1, As2 and As3 are MR1, MR2 and MR3, respectively. 
Table 1 presents the statistical properties of basic 

random variables X adopted by the reliability analysis, 

which include dimensions of cross sections, areas and 

positions of reinforcements, strengths of materials, loads 

and model uncertainties. The statistical data of the 

variables are obtained from real buildings in European 

countries and reported in the European publication EUR 

29410 [24]. The normal distribution is suitable for 

symmetric random variables with low variation 

(coefficient of variation less than 0.3) such as the dead 

load and geometrical dimensions of cross-sections. The 

lognormal distribution with lower limit at zero is 

recommended for representation of mechanical 

properties of materials whose logarithms are normally 

distributed. The Gumbel distribution, which has a simple 

exponential shape, can be used to represent the 

distribution of extreme values of random variables such 

as the live load and wind pressure. In Table 1, the 

subscripts 1, 2, 3 included in the parameters h, b, As, a, fs, 

fc correspond to the midspan section of the left span, the 

interior support section, and the midspan section of the 

right span, respectively. The live loads Q1, Q2 were 

modeled by a Gumbel distribution with an average of  
 

TABLE 1. Statistical properties of random variables 

Symbol, X Mean, X 
Standard 

deviation, X 
Distribution 

b1, b2, b3 b 10 mm Normal 

As1, As2, As3 As1, As2, As3 0.02X Normal 

a1, a2, a3 a 10 mm Normal 

fy1, fy2, fy3 fyk + 2X 0.053X Lognormal 

fc1, fc2, fc3 fck + 2X 0.121X Lognormal 

G1, G2 Gk 0.1X Normal 

Q1, Q2 0.6Qk 0.35X Gumbel 

R  1 0.1 Normal 

E 1 0.1 Normal 

 

 

0.6Qk and coefficient of variation of 0.35 as 

recommended by the EUR 29410 for general offices with 

a 50 year reference period. The model uncertainties 

factors E and R take account of imprecision and 

incompleteness of the relevant theoretical models for 

load and resistance effects [24]. 
 
2. 3. Limit State Functions 
2. 3. 1. Without Moment Redistribution       Since 

redistribution of moment is not considered, the bending 

capacity of each critical section of the beam must be 

checked against the elastic moment at that section. The 

limit state functions Z1(X), Z2(X) and Z3(X) for flexural 

strength of individual cross sections (left midspan, 

interior support, right midspan) are given by Equations 

(5)-(7) where the expressions for moment capacity MR1, 

MR2 and MR3 were derived from Equations (2)-(3). The 

expressions of maximum moments ME1, ME2 and ME3 at 

the midspan and support sections were obtained from a 

conventional elastic structural analysis of the two-span 

beam [25]. 

𝑍1(𝑋) = 𝑀𝑅1−𝑀𝐸1 = 𝜃𝑅𝐴𝑠1𝑓𝑦1 (𝑑1 −
0.5𝐴𝑠1𝑓𝑦1

0.85𝑏1𝑓𝑐1
) −

 𝜃𝐸{0.2031(𝐺1 + 𝑄1) − 0.0469(𝐺2 + 𝑄2)}𝐿  
(5) 

𝑍2(𝑋) = 𝑀𝑅2−𝑀𝐸2 = 𝜃𝑅𝐴𝑠2𝑓𝑦2 (𝑑2 −
0.5𝐴𝑠2𝑓𝑦2

0.85𝑏2𝑓𝑐2
) −

 𝜃𝐸(𝐺1 + 𝑄1 + 𝐺2 + 𝑄2)0.09375𝐿  
(6) 

𝑍3(𝑋) = 𝑀𝑅3−𝑀𝐸3 = 𝜃𝑅𝐴𝑠3𝑓𝑦3 (𝑑3 −
0.5𝐴𝑠3𝑓𝑦3

0.85𝑏3𝑓𝑐3
) −

 𝜃𝐸{0.2031(𝐺2 + 𝑄2) − 0.0469(𝐺1 + 𝑄1)}𝐿  
(7) 

 

2. 3. 2. With Moment Redistribution       When 

moment redistribution is considered, it is not compulsory 

to reinforce each beam section based on the elastic 

moment. The beam can be designed on the basis of the 

lower bound approach (or “safe” or “static” method) 

which is allowed by Eurocode 2. The modified moments 

can now be taken as the moments of resistance MR1, MR2 
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and MR3 of the sections as shown in Figure 1. The yield 

condition is hence not violated anywhere. In order to 

maintain static equilibrium after the moments were 

redistributed as required by the lower bound method [1], 

the limit state functions Z4(X) and Z5(X) are written as 

Equations (8) and (9) for the left and right spans. The 

total bending resistance is (MR1 + 0.5MR2) for the whole 

left span and (MR3 + 0.5MR2) for the whole right span. The 

total static applied moment of the left and right spans are 

(G1 + Q1)L/4  and (G2 + Q2)L/4 respectively when the 

concentrated loads are applied at midspan of the beam. 

𝑍4(𝑋) = 𝜃𝑅 {𝐴𝑠1𝑓𝑦1 (𝑑1 −
0.5𝐴𝑠1𝑓𝑦1

0.85𝑏1𝑓𝑐1
) +

0.5𝐴𝑠2𝑓𝑦2 (𝑑2 −
0.5𝐴𝑠2𝑓𝑦2

0.85𝑏2𝑓𝑐2
)} −  𝜃𝐸(𝐺1 + 𝑄1)𝐿/4  

(8) 

𝑍5(𝑋) = 𝜃𝑅 {𝐴𝑠3𝑓𝑦3 (𝑑3 −
0.5𝐴𝑠3𝑓𝑦3

0.85𝑏3𝑓𝑐3
) +

0.5𝐴𝑠2𝑓𝑦2 (𝑑2 −
0.5𝐴𝑠2𝑓𝑦2

0.85𝑏2𝑓𝑐2
)} −  𝜃𝐸(𝐺2 + 𝑄2)𝐿/4  

(9) 

In addition, the limit state functions Z6(X), Z7(X) and 

Z8(X) of Equations (10)-(12) are derived to reflect the 

allowable limits for the redistribution ratio given by 

Equation (4). These functions relate the adjusted moment 

ratios MR1/ME1, MR2/ME2 and MR3/ME3 to the ratio of the 

depth of the compression zone to the effective depth of 

the sections c1/d1, c2/d2 and c3/d3. Eurocode 2 suggests 

that  using the codified redistribution ratios with linear 

elastic analysis is possible without explicit verification of 

the rotation capacity in continuous beams [1]. 

𝑍6(𝑋) =
𝑀𝑅1

𝑀𝐸1
− 𝑚𝑎𝑥 { (0.44 +

1.25𝑓𝑦1𝐴𝑠1

0.68𝑓𝑐1𝑏1𝑑1
) ; 0.7}  (10) 

𝑍7(𝑋) =
𝑀𝑅2

𝑀𝐸2
− 𝑚𝑎𝑥 { (0.44 +

1.25𝑓𝑦2𝐴𝑠2

0.68𝑓𝑐2𝑏2𝑑2
) ; 0.7}  (11) 

𝑍8(𝑋) =
𝑀𝑅3

𝑀𝐸3
− 𝑚𝑎𝑥 { (0.44 +

1.25𝑓𝑦3𝐴𝑠3

0.68𝑓𝑐3𝑏3𝑑3
) ; 0.7}  (12) 

 

 

2. 3. 3. Monte Carlo Simulation and Strength 
Evaluation        A large number of Monte Carlo 

simulations were performed to evaluate the ultimate 

flexural strength of individual cross sections as well as 

the whole beam. Firstly, independent random values of 

the variables with statistical properties given by Table 1 

were generated using MATLAB built-in random number 

generators [26]. The limit state functions, or safety 

margins, of individual cross sections, Equations (5)-(7), 

and the whole beam, Equations (8)-(12), were then 

calculated. The random simulation process was repeated 

for 10 million times during which the number of failure 

events with negative safety margins were counted. Table 

2 presents the criteria for a failure event relating to the 

strengths of an individual cross section and of the whole 

beam. The ratio of the number of failure events to the 

total number of trials defines the failure probability Pf.  

TABLE 2. Failure criteria for individual cross sections and 

whole beam 

Checked item Failure criteria 

Left midspan section, without 

moment redistribution  

Z1(X) < 0 

Interior support section, 
without moment redistribution  

Z2(X) < 0 

Right midspan section, without 

moment redistribution 

Z3(X) < 0 

Whole beam, without moment 

redistribution  

(Z1(X) < 0) or (Z2(X) < 0) or 

(Z3(X) < 0) 

Whole beam, with moment 
redistribution  

(Z4(X) < 0) or (Z5(X) < 0) or (Z6(X) 
< 0) or (Z7(X) < 0) or (Z8(X) < 0) 

 

 

 
Figure 2. Load arrangements for design bending moment 

 

 

3. RESULTS AND DISCUSSIONS 
 

3. 1. Design Reinforcement to Eurocode 2         The 

required reinforcement areas were first dermined using 

the Eurocode 2 conventional approach. For this 

symmetric beam, the elastic moment envelope can be 

obtained by considering the load arrangements shown in 

Figure 2; with the load set 1 aiming at getting the 

maximum sagging moment at the left midpsan section 

and the load set 2 aiming at finding the maximum 

hogging moment at the interior support section.  
At the ultimate limit state, the partial safety factors 

are G = 1.35 and Q = 1.5 for the permanent and imposed 

loads respectively. The maximum design moments were 

MEd2 = 317 kNm at the interior support  and MEd1 = 298 

kNm at the midspan section. The corresponding 

reinforcement areas computed using Equations (2)-(3) 

were As2 = 1591 mm2 at the interior support and As1 = As3 

= 1476 mm2 at the midspan sections. 

 
3. 2. Reliability of Individual Cross Sections versus 
Whole Beam          The reinforcement areas based on the 
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elastic moment envelope were considered as the mean 

values of the reinforcement areas used in the Monte Carlo 

simulations. Table 3 presents the failure probability Pf 

and reliability index  for individual sections and the 

whole beams with and without moment redistribution 

(MR), obtained from 107 simulations.  

The  values of both the midspan and support sections 

were higher than the recommended target value of 3.8. 

The Pf values for the individual sections and the whole 

beam either with or without moment redistribution were 

all well below the target failure probability of 7.2310-5, 

indicating that the traditional design approach was 

conservative. Without moment redistribution, the 

probability that the beam had at least one overloaded 

section was higher than the failure probability of any 

individual cross section. By contrast, considering 

moment redistribution resulted in the failure probability 

of the beam being significantly lower than the elastic-

moment-based failure probability (Table 3). 

Further Monte Carlo simulations were performed in 

which the mean reinforcement areas were reduced. 

Figure 3 shows the probability density functions (PDFs) 

of the elastic-based-moment and safety margin for the 

interior support section when its steel reinforcement area  
 
 
TABLE 3. Reliability of beam with Eurocode-2-based 

reinforcement areas 

Individual cross sections Whole beam 

Midspan Interior support 
Without 

MR 

With 

MR 

Pf  Pf  Pf Pf 

2.3910-5 4.401 0.4610-5 4.320 5.0210-5 1.2010-5 

 
 

 
Figure 3. PDF of moment capacity of cross section at 

support with 20% reduction in As2 

was reduced by 20%. The elastic-moment-based Pf of the 

interior support section was found to be 2.8410-4 which 

is nearly four times higher the recommended target 

failure probability. However, the redistributed-moment-

based Pf of the corresponding beam was 4.7610-5 which 

is below the target failure probability (Figure 4). In the 

event that the reinforcement amount of each midspan 

section was reduced by 10%, the elastic-moment-based 

Pf of the midspan sections was 1.1210-4 (Figure 5) 

whilst the beam with moment redistribution was still 

robust with a Pf value of 4.1610-5 (Figure 6). 

 

 

 
Figure 4. PDF of moment capacity of whole beam with 20% 

reduction in As2 

 

 

 
Figure 5. PDF of moment capacity of cross section at 

midspan with 10% reduction in As1 and As3 
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Figure 6. PDF of moment capacity of whole beam with 10% 

reduction in As1 and As3 
 

 

Let As,prov be the steel areas provided for the beam 

sections and As be the steel areas resulted from the elastic 

moment envelope. Considering the As,prov to As ratio 

varying from 0.7 to 1, the random simulations were 

performed again with As,prov assigned to the mean values 

of the reinforcement areas. Figures 7 and 8 compare the 

elastic-moment-based Pf and  values of the sections with 

the modified-moment-based Pf and  values of the beam, 

for various As,pro/As values. 
 

 

 
Figure 7. Reliability of individual cross sections and whole 

beam with reduction in As2 

 
Figure 8. Reliability of individual cross sections and whole 

beam with reduction in As1 and As3 

 
 
3. 3. Reinforcement Modification and Beam 
Performance            Figure 9 allows identification of the 

failure probability and reliability index of the beam with 

moment redistribution considered when the  

 

 

 
Figure 9. Performance of beam with reduced reinforcement 

areas 
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reinforcement areas at either the support or midspan 

sections were modified. For instance, using As,pro/As = 0.9 

at the interior support section would provide Pf = 

2.5310-5 and   = 4.529 for the beam. Alternatively, 

taking As,pro/As = 0.9 at the midspan sections would result 

in Pf = 4.1810-5 and  = 4.410 for the beam. For a further 

steel reduction with As,pro/As equal to 0.74 at the support 

section or 0.86 at the midspan sections, the beam would 

still be acceptable with Pf = 6.9010-5 and  = 4.280. The 

advantage of moment redistribution in statically 

indeterminate reinforced concrete beams was also 

confirmed by experimental data presented in the relevant 

literature. Testing 33 two-span beams, Scott and Whittle 

[13] observed that 23 specimens which failed in flexure 

essentially all achieved the designed 30% moment 

modification by the end of the test. The redistribution 

ratio limit of 0.7 specified by Eurocode 2 was hence 

guaranteed. The formation of plastic hinges was well 

recognized by the test. Another experimental work on 

two-span beams performed by Ehsani et al. [27] revealed 

a reduction of 18.5% in the measured moment compared 

with the elastic moment at the ultimate load, indicating a 

redistribution ratio of 0.815. 

Moreover, the desired reliability of the beam could 

still be maintained when the reinforcement areas at all 

three critical sections (midspan sections 1, 3 and support 

section 2) were reduced properly. For instance, Table 4 

presents the failure probability Pf, survival probability Ps 

and reliability index  of the beam in response to some 

reinforcement modification scenarios. As can be seen, all 

the obtained Pf values were lower than the target failure 

probability of 7.2310-5 and the predicted  values were 

higher than the target reliability index of 3.80 for a 

reference period of 50 years.   

 

 
TABLE 4. Examples of successful reinforcement 

modifications options 

As,pro/As at section Beam performance 

1 2 3 Pf Pf  

0.89 0.94 0.89 6.74  10-5 0.999933 4.283 

0.91 0.90 0.91 6.66  10-5 0.999933 4.290 

0.93 0.87 0.93 6.68  10-5 0.999933 4.284 

0.95 0.83 0.95 6.97  10-5 0.999930 4.275 

0.97 0.80 0.97 6.90  10-5 0.999931 4.282 

 

 

4. CONCLUSIONS  
 
From the research that has been carried out, the effect of 

moment redistribution on the flexural strength reliability 

of the statically indeterminate reinforced concrete beam 

can be seen.   

 When the elastic moment distribution was used, the 

two-span beam behaved as a series system with three 

critical nodes located at the interior support and 

midspan sections. The probability that the system had 

at least one overloaded node was proved to be greater 

than the failure probability of each node.  

 Without using moment redistribution, a 9% reduction 

in the support reinforcement area or a 2% reduction in 

the midspans reinforcement area was found to place the 

elastic-based beam in a vulnerable state with a Pf of 

7.5010-5 which exceeded the target value. 

 When moment redistribution was considered, it was 

possible to reduce the amount of reinforcement whilst 

maintaining the reliability of the beam. The beam can 

still be deemed acceptable with a Pf of 6.9010-5 when 

the reinforcement area was reduced by 26% at the 

support section or 14% at the midspan sections.  

 Reasonable adjustments of the reinforcements of the 

support section simultaneous with the midspan 

sections were also found to ensure the beam reliability 

yet save the steel reinforcement amount. 
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Persian Abstract 

 چکیده
 یرورفتگف یخمش یهاممان یآرماتور برا تیدر ابعاد مقطع، مساحت و موقع یتصادف راتییکه تغ کند،یبتن مسلح دو دهانه را ارائه م ریت کی نانیاطم تیقابل لیتحل کیمقاله  نیا

 ییستایتعادل ا ازیبا در نظر گرفتن ن ن،ینامع یکیاز نظر استات ریت یراب یتوابع حالت حد ن،یعلاوه بر ا .ردیگیمدل را در نظر م یهاتیمقاومت مواد، بارها و عدم قطع ز،یو گر

مونت کارلو انجام شد که در آن  یسازهیشب یادیتعداد ز .شده در هر مقطع پرتو، استخراج شد میگشتاور تنظ یحد مجاز مدون برا نیمجدد ممان ها و همچن عیپس از توز

دو دهانه  ریمورد استفاده قرار گرفت، ت ریت نانیاطم تیقابل یابیدر ارز کیگشتاور الاست عیکه توز یهنگام .شدند یسازو گامبل مدل النرمال، لگ نرم یهاعیبا توز هیپا یرهایمتغ

مال از احت شتریباشد ب اشتهگره اضافه بار د کیحداقل  ستمیس نکهیاحتمال ا .رفتار کرد یانیو بخش م یداخل یبانیواقع در بخش پشت یبا سه گره بحران یسر ستمیس کیبه عنوان 

 26آرماتور  هیکه ناح یزمان .ممکن کرد ریت نانیاطم تیحفظ قابل نیآرماتور را در ع زانیمجدد لنگر، کاهش م عیحال، در نظر گرفتن توز نیبا ا .گره منفرد بود کیشکست 
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