Evaluation of Corrosion Resistance of Bi-layered Plasma-sprayed Coating on Titanium Implants

Document Type : Original Article

Authors

Materials and Energy Research Center, Karaj, Iran

Abstract

There are several attempts to improve surface characteristics of biomaterials with thick film coatings. In this research, a class of protective coating layers of bi-layered Hydroxyapatite (HA)/Al2O3-SiO2 (with 10, 20, 30 %wt SiO2) were deposited on titanium (Ti) surfaces by plasma spray technique. The surface features of the applied coating layers were evaluated in detail to confirm the effectiveness of the technique for further biomedical applications. The results demonstrated that uniform and bi-layered plasma sprayed coatings can be successfully prepared through the optimization of engineering parameters. Also, it was found that the roughness of the bi-layered coatings increases with increasing the number of coating layers. The corrosion behavior of the coated and uncoated samples was comparatively investigated using electrochemical tests. The measured current densities (icorr) for HA, (HA)/Al2O3-SiO2 (with 10, 20, 30 %wt SiO2) were 0.27μA/cm2, 0.28 μA/cm2, 0.23 μA/cm2, 0.79 μA/cm2, respectively. According to the results, corrosion resistance of samples with 20% SiO2 is significantly improved compared to the single-layer HA and bare Ti. The outcomes of FESEM results revealed that porosity and cavities related to evaporation of adhesive PVA and it is confirmed by increasing the percentage of silica to more than 20%, porosity has increased. In conclusion, the proposed coating system showed promising abilities for future biomedical applications. It could be optimized and improved by changing the structural characteristics of the substrate, chemical composition and porosity of the coating layers.

Keywords

Main Subjects


  1. Bai, Y., Deng, Y., Zheng, Y., Li, Y., Zhang, R., Lv, Y., Zhao, Q., Wei, S.J.M.S. and C, E., "Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low young's modulus", Materials Science and Engineering: C, Vol. 59, (2016), 565-576, doi: 10.1016/j.msec.2015.10.062
  2. Zhang, L.C. and Chen, L.Y.J.A.e.m., "A review on biomedical titanium alloys: Recent progress and prospect", Advanced Engineering Materials, Vol. 21, No. 4, (2019), 1801215, doi: 10.1002/adem.201801215
  3. Qosim, N., Supriadi, S., Puspitasari, P. and Kreshanti, P.J.I.J.o.E., "Mechanical surface treatments of Ti-6Al-4v miniplate implant manufactured by electrical discharge machining", International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 7, (2018), 1103-1108. doi: 10.5829/ije.2018.31.07a.14
  4. Yu, S. and Scully, J.J.C., "Corrosion and passivity of ti-13% nb-13% zr in comparison to other biomedical implant alloys", Corrosion, Vol. 53, No. 12, (1997), doi: 10.5006/1.3290281
  5. Kokubo, T.J.B., "Hm kim and m. Kawashita", Biomaterials, Vol. 24, (2003), 2161, doi: 10.1016/S0142-9612(03)00044-9
  6. Ermis, M., Antmen, E. and Hasirci, V.J.B.m., "Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective", Bioactive Materials, Vol. 3, No. 3, (2018), 355-369, doi: 10.1016/j.bioactmat.2018.05.005
  7. Shirdar, M.R., Izman, S., Kheimehsari, H.M., Ahmad, N. and Ma’aram, A.J.S.I., "Evaluation of mechanical and electrochemical properties of fha-coated co–cr implant", Surface Innovations, Vol. 5, No. 2, (2017), 90-96, doi: 10.1680/jsuin.16.00028
  8. Singh, J., Chatha, S.S. and Singh, H., "Synthesis and characterization of plasma sprayed functional gradient bioceramic coating for medical implant applications", Ceramics International, Vol. 47, No. 7, (2021), 9143-9155, doi: 10.1016/j.ceramint.2020.12.039
  9. Bordbar-Khiabani, A., Yarmand, B. and Mozafari, M.J.S.I., "Functional peo layers on magnesium alloys: Innovative polymer-free drug-eluting stents", Surface Innovations, Vol. 6, No. 4–5, (2018), 237-243, doi: 10.1680/jsuin.18.00011
  10. Çomaklı, O., Yazıcı, M., Yetim, T., Yetim, A. and Çelik, A.J.C.I., "Effect of ti amount on wear and corrosion properties of ti-doped Al2O3 nanocomposite ceramic coated cp titanium implant material", Ceramics International, Vol. 44, No. 7, (2018), 7421-7428, doi: 10.1016/j.ceramint.2018.01.046
  11. Xu, J., Joguet, D., Cizek, J., Khor, K.A., Liao, H., Coddet, C., Chen, W.N.J.S. and Technology, C., "Synthesis and characterization on atomphospheric plasma sprayed amorphous silica doped hydrxoyapatite coatings", Surface and Coatings Technology, Vol. 206, No. 22, (2012), 4659-4665, doi: 10.1016/j.surfcoat.2012.05.042
  12. Ebrahimi, N., Zadeh, A.S.A.H., Vaezi, M., Mozafari, M.J.S. and Technology, C., "A new double-layer hydroxyapatite/alumina-silica coated titanium implants using plasma spray technique", Surface and Coatings Technology, Vol. 352, (2018), 474-482, doi: 10.1016/j.surfcoat.2018.08.022
  13. Bahraminasab, M., Bozorg, M., Ghaffari, S., Kavakebian, F.J.M.S. and C, E., "Corrosion of Al2O3-ti composites under inflammatory condition in simulated physiological solution", Materials Science and Engineering: C, Vol. 102, (2019), 200-211, doi: 10.1016/j.msec.2019.04.047
  14. Farhadian, M., Raeissi, K., Golozar, M., Labbaf, S., Hajilou, T. and Barnoush, A.J.A.S.S., "3d-focused ion beam tomography and quantitative porosity evaluation of ZrO2-SiO2 composite coating; amorphous SiO2 as a porosity tailoring agent", Applied Surface Science, Vol. 511, (2020), 145567, doi: 10.1016/j.apsusc.2020.145567
  15. Bahraminasab, M., Sahari, B.B., Edwards, K.L., Farahmand, F. and Arumugam, M., "Aseptic loosening of femoral components – materials engineering and design considerations", Materials & Design, Vol. 44, (2013), 155-163, doi: 10.1016/j.matdes.2012.07.066
  16. Xie, H., Zhang, L., Xu, E., Yuan, H., Zhao, F. and Gao, J.J.C.I., "Sialon– Al2O3 ceramics as potential biomaterials", Ceramics International, Vol. 45, No. 14, (2019), 16809-16813, doi: 10.1016/j.ceramint.2019.05.22
  17. Askari, N., Yousefpour, M. and Rajabi, M.J.I.J.o.A.C.T., "Determination of optimum al content in ha‐al2o3 nanocomposites coatings prepared by electrophoretic deposition on titanium substrate", International Journal of Applied Ceramic Technology,, Vol. 15, No. 4, (2018), 970-979, doi: 10.1111/ijac.12826
  18. Jiao, C., Gu, J., Cao, Y., Xie, D., Liang, H., Chen, R., Shi, T., Shen, L., Wang, C. and Tian, Z.J.J.o.t.E.C.S., "Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing", Journal of the European Ceramic Society, Vol. 40, No. 15, (2020), 6087-6094, doi: 10.1016/j.jeurceramsoc.2020.06.024
  19. Mazur, A., Szczurek, A., Chęcmanowski, J.G., Szczygieł, B.J.S. and Technology, C., "Corrosion resistance and bioactivity of SiO2-Y2O3 coatings deposited on 316l steel", Surface and Coatings Technology, Vol. 350, (2018), 502-510, doi: 10.1016/j.surfcoat.2018.07.042
  20. Farrokhi-Rad, M.J.J.o.A. and Compounds, "Effect of morphology on the electrophoretic deposition of hydroxyapatite nanoparticles", Journal of Alloys and Compounds, Vol. 741, (2018), 211-222, doi: 10.1016/j.jallcom.2018.01.101
  21. Batebi, K., Khazaei, B.A., Afshar, A.J.S. and Technology, C., "Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate", Surface and Coatings Technology, Vol. 352, (2018), 522-528, doi: 10.1016/j.surfcoat.2018.08.021
  22. Akbari, G., Nikravesh, M. and Poladi, A.J.I.J.o.E., "Mechanical properties and microstructural evolution of ta/tanx double layer thin films deposited by magnetron sputtering", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 2, (2017), 288-293, doi: 10.5829/idosi.ije.2017.30.02b.16
  23. Ren, J., Zhao, D., Qi, F., Liu, W. and Chen, Y.J.J.o.t.m.b.o.b.m., "Heat and hydrothermal treatments on the microstructure evolution and mechanical properties of plasma sprayed hydroxyapatite coatings reinforced with graphene nanoplatelets", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 101, (2020), 103418, doi: 10.1016/j.jmbbm.2019.103418
  24. Celik, E., Ozdemir, I., Avci, E., Tsunekawa, Y.J.S. and Technology, C., "Corrosion behaviour of plasma sprayed coatings", Surface and Coatings Technology, Vol. 193, No. 1-3, (2005), 297-302, doi: 10.1016/j.surfcoat.2004.08.143
  25. Gkomoza, P., Vardavoulias, M., Pantelis, D., Sarafoglou, C.J.S. and Technology, C., "Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder, for applications in medical implants", Surface and Coatings Technology, Vol. 357, (2019), 748-758, doi: 10.1016/j.surfcoat.2018.10.044
  26. Bansal, P., Singh, G., Sidhu, H.S.J.S. and Technology, C., "Investigation of surface properties and corrosion behavior of plasma sprayed ha/zno coatings prepared on az31 mg alloy", Surface and Coatings Technology, Vol. 401, (2020), 126241, doi: 10.1016/j.surfcoat.2020.126241
  27. Bogya, E.S., Károly, Z. and Barabás, R.J.C.I., "Atmospheric plasma sprayed silica–hydroxyapatite coatings on magnesium alloy substrates", Ceramics International, Vol. 41, No. 4, (2015), 6005-6012, doi: 10.1016/j.ceramint.2015.01.041
  28. Noorakma, A.C., Zuhailawati, H., Aishvarya, V. and Dhindaw, B.K., "Hydroxyapatite-coated magnesium-based biodegradable alloy: Cold spray deposition and simulated body fluid studies", Journal of Materials Engineering and Performance, Vol. 22, No. 10, (2013), 2997-3004, doi: 10.1007/s11665-013-0589-9
  29. Vu, A.A., Robertson, S.F., Ke, D., Bandyopadhyay, A. and Bose, S.J.A.b., "Mechanical and biological properties of zno, SiO2, and ag2o doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications", Acta Biomaterialia, Vol. 92, (2019), 325-335, doi: 10.1016/j.actbio.2019.05.020
  30. Girija, E., Kumar, G.S., Thamizhavel, A., Yokogawa, Y. and Kalkura, S.N.J.P.t., "Role of material processing on the thermal stability and sinterability of nanocrystalline hydroxyapatite", Powder Technology, Vol. 225, (2012), 190-195, doi: 10.1016/j.powtec.2012.04.007
  31. Elias, C., Lima, J., Valiev, R. and Meyers, M.J.J., "Biomedical applications of titanium and its alloys", JOM, Vol. 60, No. 3, (2008), 46-49, doi: 10.1007/s11837-008-0031-1
  32. Puspitasari, P. and Budi, L.J.I.J.o.E., "Physical and magnetic properties comparison of cobalt ferrite nanopowder using sol-gel and sonochemical methods", International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 5, (2020), 877-884, doi: 10.5829/ije.2020.33.05b.20
  33. Kokubo, T. and Takadama, H.J.H.u.i.S.i.p.i.v.b.b., Biomaterial, "Leading opinion", Biomaterials, Vol. 27, (2006), 2907-2915, doi: 10.1016/j.biomaterials.2006.01.017
  34. Palanivelu, R., Kalainathan, S. and Kumar, A.R.J.C.I., "Characterization studies on plasma sprayed (at/ha) bi-layered nano ceramics coating on biomedical commercially pure titanium dental implant", Ceramics International, Vol. 40, No. 6, (2014), 7745-7751, doi: 10.1016/j.ceramint.2013.12.116
  35. Jam, A., Derakhshandeh, S.M.R., Rajaei, H. and Pakseresht, A.H.J.C.I., "Evaluation of microstructure and electrochemical behavior of dual-layer nicraly/mullite plasma sprayed coating on high silicon cast iron alloy", Ceramics International, Vol. 43, No. 16, (2017), 14146-14155, doi: 10.1016/j.ceramint.2017.07.155
  36. Kumar, A.M., Rajendran, N.J.S. and Technology, C., "Influence of zirconia nanoparticles on the surface and electrochemical behaviour of polypyrrole nanocomposite coated 316l ss in simulated body fluid", Surface and Coatings Technology, Vol. 213, (2012), 155-166, doi: 10.1016/j.surfcoat.2012.10.039
  37. Ch, A., Sagadevan, S. and Dakshnamoorthy, A.J.I.j.o.p.s., "Synthesis and characterization of nano-hydroxyapatite (n-hap) using the wet chemical technique", International Journal of Physical Sciences, Vol. 8, No. 32, (2013), 1639-1645, doi: 10.5897/IJPS2013.3990
  38. Poinern, G., Brundavanam, R., Le, X.T., Djordjevic, S., Prokic, M. and Fawcett, D.J.I.j.o.n., "Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic", International Journal of Nanomedicine, Vol. 6, (2011), 2083, doi: 10.2147/IJN.S24790
  39. Song, E.P., Ahn, J., Lee, S., Kim, N.J.J.S. and Technology, C., "Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3–8 wt.% TiO2 coatings plasma-sprayed with nanopowders", Surface and Coatings Technology, Vol. 202, No. 15, (2008), 3625-3632, doi: 10.1016/j.surfcoat.2008.01.002
  40. Lima, R.S., Kucuk, A. and Berndt, C.C., "Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia", Materials Science and Engineering: A, Vol. 327, No. 2, (2002), 224-232, doi: 10.1016/S0921-5093(01)01530-1
  41. Yılmaz, Ş.J.C.I., "An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3–13 wt.% TiO2 with bond coat on pure titanium substrate", Ceramics International, Vol. 35, No. 5, (2009), 2017-2022, doi: 10.1016/j.ceramint.2008.11.017
  42. Zamani, S., Salahi, E. and Mobasherpour, I.J.C.C.T., "Removal of nickel from aqueous solution by nano hydroxyapatite originated from persian gulf corals", Canadian Chemical Transactions, Vol. 1, No. 3, (2013), 173-190, doi: 10.13179/canchemtrans.2013.01.03.0033
  43. Ben-Nissan, B.J.A.i.C.P.B., "Advances in calcium phosphate biomaterials preface", Vol. 2, (2014), Ix-Xi, doi: 10.1007/978-3-642-53980-0
  44. Singh, G., Singh, S. and Prakash, S., "Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4v alloy", Surface and Coatings Technology, Vol. 205, No. 20, (2011), 4814-4820, doi: 10.1016/j.surfcoat.2011.04.064
  45. Morks, M. and Kobayashi, A.J.A.S.S., "Effect of gun current on the microstructure and crystallinity of plasma sprayed hydroxyapatite coatings", Applied Surface Science, Vol. 253, No. 17, (2007), 7136-7142, doi: 10.1016/j.apsusc.2007.02.183
  46. Di Girolamo, G., Marra, F., Blasi, C., Serra, E., Valente, T. "Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings", Ceramics International, Vol. 37, No. 7, (2011), 2711-2717, doi: 10.1016/j.ceramint.2011.04.024
  47. Levingstone, T.J., Ardhaoui, M., Benyounis, K., Looney, L., Stokes, J.T.J.S. and Technology, C., "Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis", Surface and Coatings Technology, Vol. 283, (2015), 29-36, doi: 10.1016/j.surfcoat.2015.10.044
  48. Sun, L., Berndt, C.C., Grey, C.P.J.M.S. and A, E., "Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings", Materials Science and Engineering: A, Vol. 360, No. 1-2, (2003), 70-84, doi: 10.1016/S0921-5093(03)00439-8
  49. Abualigaledari, S., "Development of an anti-corrosion thermally sprayed coating system for oil and gas transmission pipeline", (2018).
  50. Salimijazi, H., Hosseini, M., Mostaghimi, J., Pershin, L., Coyle, T.W., Samadi, H. and Shafyei, A., "Plasma sprayed coating using mullite and mixed alumina/silica powders", Journal of Thermal Spray Technology, Vol. 21, No. 5, (2012), 825-830, doi: 10.1007/s11666-012-9766-x
  51. Pakseresht, A., Rahimipour, M., Vaezi, M., Salehi, M.J.M.C. and Physics, "Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder", Materials Chemistry and Physics, Vol. 173, (2016), 395-403, doi: 10.1016/j.matchemphys.2016.02.028
  52. Henao, J., Poblano-Salas, C., Monsalve, M., Corona-Castuera, J., Barceinas-Sanchez, O.J.J.o.M.R. and Technology, "Bio-active glass coatings manufactured by thermal spray: A status report", Journal of Materials Research and Technology, Vol. 8, No. 5, (2019), 4965-4984, doi: 10.1016/j.jmrt.2019.07.011
  53. Odhiambo, J.G., Li, W., Zhao, Y. and Li, C.J.C., "Porosity and its significance in plasma-sprayed coatings", Coatings, Vol. 9, No. 7, (2019), 460, doi: 10.3390/coatings9070460