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A B S T R A C T  

 

The worldwide prevalence of coronavirus disease (COVID-19) and the severe problems in the 
distribution of medical equipment have led to the modeling of multi-depot vehicle routing under 
uncertainty in the COVID-19 pandemic. The primary purpose of the proposed model is to locate 

warehouses and production centers and route vehicles for the distribution of medical goods to hospitals. 
A robust fuzzy method controls uncertain parameters, such as demand, transmission, and distribution 
costs. The effect of uncertainty using a neutrosophic fuzzy programming method shows that by 
increasing demand, the volume of medical goods exchanges and the number of vehicles used to 

distribute goods increase. This leads to an increase in the total cost of the problem and the amount of 
greenhouse gas (GHG) emissions. The results also show that using more vehicles reduces staff fatigue 
to distribute medical products and reduces the prevalence of the COVID-19 pandemic. In the most 
important sensitivity analysis of the problem on the capacity of the vehicle, it  was determined that by 

increasing the capacity of the vehicle, fewer vehicles are used, and as a result, the cost and amount of 
greenhouse gas emissions are reduced. On the other hand, this has led to a decrease in the prevalence 
of the COVID-19 virus. 

doi: 10.5829/ije.2022.35.02b.12 
 

 
1. INTRODUCTION1 
 

Logistics is a recognized science as a value-added 

activity for companies and their products and services by 

coordinating activities , such as materials management  

and management, optimizing resource use, minimizing  

costs, and maximizing service levels. In traditional 

systems, traffic flows are provided from one category of 

the supply chain to another. More flexible systems allow 

for relocation at one level, divide inventory between 

wholesalers and thus inventory, and manage costs 

without changing the level of service [1]. Logistics 

systems are emerging as an essential tool for competition 

and efficiency for companies to maintain sustainable 

business and achieve global scale [2]. Their primary  

purpose is to coordinate activities  (e.g., transportation, 

order processing, warehousing, inventory management, 

and maintenance) designated as inventory management. 
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(R. Tavakkoli-Moghaddam). 

Along with the level of services, the total logistical cost 

of these activities has become one of the most important 

economic indicators for the efficiency of a supply chain 

[3]. In 2014, logistics costs accounted for 11.2% of 

Brazilian companies’ revenues. Vehicle routing and 

inventory management are essential for logistics systems 

that directly impact design costs [4]. 

Dantzig and Ramser [5] first proposed the problem of 

vehicle routing in 1959. This is a combination of the two 

issues of the traveling salesman (unlimited consideration 

of vehicle capacity) and the packing of boxes (zero  

consideration of freight costs on the ridges), trying to 

optimally design a set of routes for the transport fleet in 

such a way that a certain number of customers to be 

served and has different side restrictions [6]. The variety 

of this problem is so great that it is challenging and time -

consuming to classify them and express the various states 

in which it occurs. Since its inception in the 1960s, many 
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extensions have been derived based on their different 

applications in the real world as there are now versions, 

such as heterogeneous type [7], simultaneous receipt and 

delivery [8], open type [9], and others [10].  

One of the factors is the application of this issue in 

the real world that has made the issue of vehicle routing 

as one of the most important issues of combinatorial 

optimization and has attracted the attention of many 

researchers. For example, suppose that a factory can 

reduce the length of time, on when it takes to deliver 

goods to its customers or the number of its vehicles and 

thus its cost [10, 11]. Therefore, by reducing the length 

of the delivery or receipt of goods, the company can 

provide better services to its customers by reducing the 

cost of goods and increasing delivery speed [12]. As a 

result, the company will increase its competitiveness 

against other similar companies, expand its product 

market, and ultimately make more profit [13]. In general, 

inventory and transportation are two important factors in 

the cost component [14]. This shows why companies and 

academic researchers are working so hard to find 

efficient and economical hybrid management systems for 

transportation and inventory. According to Anderson et 

al. [4], no commercial systems are available to support 

decisions about inventory management and vehicle 

routing issues simultaneously. In this regard, a recurring 

theme in recent research is the inventory-routing problem 

(IRP), which results from a combination of vehicle 

routing and inventory management. 

The use of IRP models allows the simultaneous 

determination of the optimal level of inventory, delivery 

routes, and vehicle schedules based on the minimum cost 

criterion. Guemri et al. [15] considered minimizing  

distribution and inventory costs as the goals of the IRP. 

They also mentioned some components, including the 

vehicle and the storage capacity of the facility. According 

to Coelho et al. [16], scientific research on the IRP is 

relatively new than optimization issues , such as vehicle 

routing problems (VRP). They also noted that although 

several studies have reviewed the literature on inventory 

management and routing issues, relatively few have 

examined the integration of these two issues. Inventory 

systems are hierarchical, with traffic flowing from one 

floor of the supply chain to another, from manufacturers 

to wholesalers, and then from wholesalers to retailers.  

More flexible systems allow for lateral transportation on 

one level (i.e., between wholesalers or retailers). In this 

case, members of the same category can share their 

inventory, which allows them to reduce the inventory 

level while ensuring some of the required level services. 

When transport is included, the problem is defined as IRP 

with transportation (IRPT) [17]. 

The importance of a multi-depot VRP has led to the 

inventory discussion leading to the design of a new model 

under uncertainty under the COVID-19 pandemic. 

Today, due to the presence of COVID-19, the 

transportation of products, especially medical equipment, 

is of the greater importance, and researchers are seeking 

to provide models to reduce vehicle traffic to reduce 

congestion and the spread of COVID-19. Considering the 

stability aspects of the model in the COVID-19 pandemic 

conditions has led to the design of a multi-depot vehicle 

routing model consisting of production centers, 

warehouses, and hospitals. The most important decisions 

taken in this issue include locating warehouses and 

production centers, optimal routing of medical 

equipment transportation to hospitals, determining the 

optimal amount of inventory in warehouses. Since the 

demand for medical goods in the pandemic conditions of 

COVID-19 is very variable, the robust fuzzy method is 

used to control the demand parameters, transmission, and 

distribution costs. 

The remaining structure of this paper is as follows. 

Section 2 reviews the research literature and determines 

the research gap. In Section 3, a model of the VRP is 

presented several times, and the fuzzy parameters of the 

problem are controlled using the robust fuzzy method. 

Section 4 describes the neutrosophic fuzzy programming  

method as a tri-objective model solution. In section 5, a 

numerical example and its sensitivity are analyzed. 

Finally, in section 6, the conclusions of the model and 

solution method are presented. 

 

 

2. LITERATURE REVIEW 
 

The importance of vehicle routing has extensively been 

studied in recent decades with various developments and 

solutions. One of the areas considered recently in the 

routing issue is the green VRP, whose objective is to 

route vehicles considering the effects of the environment 

and fuel consumption [18]. Sustainable vehicle routing 

issues are divided into three general routing branches: 

optimized fuel consumption, environmental pollution, 

and logistics. In the routing field with optimization of 

fuel consumption, a model minimizat ion of energy 

consumption in the VRP was presented. The objective 

function presented in this model was the product of the 

distance traveled in the vehicle's total weight, including 

the weights of the vehicle and cargo [19]. In addition to 

the distance traveled and the total weight, the vehicle 

speed was studied to calculate the fuel consumption in 

the time-dependent VRP and solved using the 

refrigeration simulation algorithm. Of course, a 

mathematical model for the problem was not presented 

[20].  

Xiao et al. [21] considered a capacity routing problem 

in the distribution of goods minimizing fuel consumption 

and used a refrigeration simulation algorithm. The 

problem of cross-docking two-tier vehicle routing in a 

three-tier supply chain includes suppliers, cross-dock, 

and retailers. Two levels (i.e., suppliers and cross-docks) 
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of network routing are considered and solved by the 

genetic algorithm (GA) and local search method [22]. 

The open VRP uses cross storage while comparing the 

results of CPLEX and refrigeration simulation algorithm 

[23]. Lalla-Ruiz et al. [24] proposed a new mathematical 

model for the multi-depot VRP by adding further 

limitations to previous papers. The computational results 

obtained from the sample problems showed the high 

efficiency of the mathematical model. Du et al. [25] 

developed a fuzzy linear programming model to 

minimize the risk of expected transportation when 

preparing hazardous materials and transporting products 

from different warehouses to customers. To solve the 

problem, four meta-innovative algorithms (i.e., GA, 

particle swarm optimization, refrigeration simulation, 

and ant colony optimization) were used, and comparisons 

were made between the proposed algorithms  by 

providing numerical examples .  

Alinaghian and Shokouhi [26] presented a 

mathematical model to solve the reservoir routing 

problem. The objective function of this model was to 

minimize the number of vehicles and then minimize the 

distance between the total routes traveled. Each vehicle's 

cargo space has several sections; each tank is assigned to 

one type of product. They used a hybrid algorithm to 

solve the model and compared the obtained results with 

the results of the exact method, which concluded that the 

hybrid algorithm presented by them has high efficiency  

in problem-solving. Brandao [27] designed an open VRP 

with a time window in mind and used an iterative local 

search algorithm to solve it. This algorithm was used for 

larger size data and was implemented on a total of 418 

sample problems. The results showed the high efficiency  

of this algorithm in solving larger-sized problems. 

Polyakovskiy et al. [28] examined and modeled the 

product layout problem in two-dimensional space. For 

this purpose, they presented a mixed-integer linear 

programming (MILP) model and solved the model in 

small sizes by CPLEX software. They also used 

innovative algorithms to solve problems in larger sizes. 

Ghahramani et al. [29] implemented a new fuzzy method 

in a closed-loop supply chain (CLSC) network, including 

locating potential facilities and optimally allocating 

product flows. They used the whale optimization  

algorithm to solve their model and showed that the 

efficiency of the proposed algorithm is higher than the 

existing algorithms. Li et al. [30] determined the optimal 

location of warehouses and vehicle routing. They used 

the firewall algorithm to solve the problem. Sadati et al. 

[31] presented a skeleton game to determine the optimal 

location of warehouses and vehicle routing to reduce 

costs. In the first and second levels, the decision-maker 

as the leader chooses the facility's optimal location and 

determines the vehicles' optimal route, respectively. 

Mojtahedi et al. [32]. Developing a sustainable vehicle 

routing problem considering different fleet sizes for 

coordinated solid waste management.  

Zhang et al. [33] considered a multi-depot green VRP 

and proposed an ant colony algorithm to solve the 

problem. In their study, a significant limitation is the 

vehicle capacity added to the model to make it more 

meaningful and closer to the real world. Dell Amico et al. 

[34] solved their model by the branch-and-price 

algorithm and examined their problem under various 

problems. Mirzaei and Seifi [35] considered the IRP for 

perishable goods and proposed a combined algorithm of 

tabu search of simulated annealing to solve large-sized  

problems. Soysal et al. [36] proposed an IRP model for 

perishable products based on environmental impacts and 

uncertainty demand. This model was confirmed through 

a case study of a fresh tomato supply chain. Nunes 

Bezerra et al. [37] proposed a location-inventory model 

for a CLSC and considered an integer nonlinear 

programming model under some constraints. Guimarães  

et al. [38] minimized the loss of the IRP using a GA. 

Chen et al. [39] modeled a VRP to distribute food among 

residents under COVID-19 conditions. They used the 

PEABCTS algorithm to solve the problem. Xu et al. [40] 

proposed a mixed-integer linear programming model to 

optimize the routing problem of the benzene emergency 

distribution vehicle by considering the time window. 

They used a particle swarm optimization algorithm to 

solve the problem. Ghiyasvand et al. [41] modeled and 

solved the home health care routing and scheduling 

problem with public and private transportation modes. 

The objective minimizes the total travel distance and 

overtime costs. They used three algorithms (i.e., IWO, 

GOA, and SA) to solve their problem. 

Saffarian et al. [2] developed a hybrid genetic-

simulated annealing-auction algorithm for a fully fuzzy  

multi-period multi-depot vehicle routing problem. The 

obtained results showed that the algorithm provides 

satisfactory results in terms of different performance 

criteria. Salamati [42] considered an Integrated 

Neutrosophic SWARA and VIKOR method for ranking 

risks of green supply chain. Fallah and Nozari [43] used 

neutrosophic mathematical programming for 

optimization of multi-objective sustainable biomass 

supply chain network design. By examining the rate of 

uncertainty, it was observed that with increasing this rate, 

the total costs of supply chain network design, 

greenhouse gas emissions, and product transfer times 

have increased. In contrast, the potential employment  

rate of individuals has decreased. Is lam et al [44] 

introduced a novel particle swarm optimization-based  

grey model to predict warehouse performance. Beiki et al 

[45] developed a multi-objective model as a multi-

vehicle relief logistic problem considering satisfaction 

levels by concerning the environmental conditions 

paying attention to uncertainty. To solve the problem, an  
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exact solver by using the epsilon-constraint method is 

conducted to validate the model. Fallahtafti et al [46] 

proposed a two-echelon location routing framework for 

cash-in-transit. To mitigate the risk of robbery in cash 

transportation, a dynamic risk index is considered. The 

case study is researched in more depth to obtain 

managerial insights. The results show that depending on 

the risk or cost efficiency of the solutions on a Pareto 

frontier, the risk of traversing longer routes or 

transporting more significant amounts of cash can be 

determined in locating new bank vaults. 

By examining the literature, some researchers have 

modeled the multi-depot VRP, each of which has unique 

characteristics. Therefore, considering the 

comprehensiveness of the model, the main features of the 

present paper can be summarized as follows: 

 Considering the sustainability in the multi-depot VRP 

in COVID-19 pandemic conditions . 

 Using the neutrosophic fuzzy programming method 

to solve the problem. 

 Using the robust fuzzy method to control demand, 

transfer, and operating costs . 
 
 

3. PROBLEM DEFINITION AND MODELING 
 

According to Figure 1, this paper presents a multi-depot  

vehicle routing model for distributing essential medical 

supplies to hospitals under the COVID-19 pandemic. 

Accordingly, the main goal is to make integrated 

strategic and tactical decisions for the location of 

warehouses and the routing of the vehicle for the 

distribution of medical goods. According to this figure, 

as the last level of the supply chain, several hospitals have 

different demands for essential medical goods in 

different periods. Each warehouse has a level of 

inventory capacity that, after receiving the demand of 

hospitals, distributes medical goods to hospitals based on 

its inventory. Each hospital has a time window to receive 

essential medical supplies. This is due to the reduced 

traffic for the outbreak of the COVID-19 virus. In case of 

a shortage of inventory, the warehouses send their order 

for production to the production centers. 
 
 

 
Figure 1. Multi-depot vehicle routing network 

In this paper, in addition to the objective function of 

reducing the costs of location, routing and inventory of 

goods, the economic and social aspects are also 

addressed (i.e., minimizing greenhouse gas emissions 

and reducing the maximum working hours of drivers). 

Therefore, the timely delivery of medical goods 

according to a difficult time window leads to social 

distance, and the prevalence of the COVID-19 virus is 

reduced due to reduced driver density. Considering the 

mentioned aspects in problem modeling will lead to the 

closeness of the model to the real world, given that the 

multi-depot vehicle routing model is considered in 

sustainable conditions. Therefore, in one of the objective 

functions, the environmental aspect is discussed. Hence, 

minimizing greenhouse gas emissions as an 

environmental aspect has been proposed as an objective 

function in the problem. According to the definition of 

the above problem, the multi-depot VRP can be modeled 

according to the following assumptions: 

 It is a multi-period and multi-product model. 

 The number and location of hospitals are fixed and 

known in advance. 

 All the capacity of production centers and 

warehouses is known and specified. 

 A difficult time window is set for the distribution of 

essential medical supplies. 

 Medical goods are transported from a production 

center to hospitals to minimize pollution with 

identical vehicles. 

 Demand parameters, transmission costs, and 

distribution costs are considered indefinitely, and 

fuzzy triangular numbers are considered. 

In the following, according to the problem 

assumptions, the symbols used in problem modeling are 

described. These symbols include model sets, 

parameters, and decision variables. 

 
3. 1. Sets 

𝐾  Set of production centers  

𝐿  Set of warehouses  

𝐶   Set of hospitals  

𝑃  Set of medical goods  

𝑇  Period set 

𝑉  Set of vehicles  

 
3. 2. Parameters 

𝐻𝑘  Cost of establishing warehouse 𝑘 

𝑈𝑙   Cost of establishing distribution center 𝑙 
𝐹𝑣   Fixed cost of using vehicle 𝑣 

𝑇𝑘,𝑙 ,𝑣  The cost of transportation between 

production center 𝑘 and warehouse 𝑙 by 

vehicle 𝑣 

𝑇𝑙 ,c,v  The cost of transportation between 

warehouse 𝑙 and hospital 𝑐  by vehicle 𝑣                       
𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶  

1 

4 

5 

2 3 

1 
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Production 
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Warehouse Hospitals 



364                                        H. Nozari et al. / IJE TRANSACTIONS B: Applications  Vol. 35, No. 02, (February 2022)   360-371 

 

𝐶𝑜2𝑘,𝑙 ,𝑣  The amount of greenhouse gas emissions in 

the movement of vehicle 𝑣 between 

production center 𝑘 and warehouse 𝑙 
𝐶𝑜2𝑙 ,c,v  The amount of greenhouse gas (GHG) 

emissions in the movement of vehicle 𝑣 

between warehouse 𝑙 and hospital 𝑐        

(𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶) 

𝑇𝑖𝑙,𝑐,𝑣  Transportation time between warehouse 𝑙 
and hospital 𝑐  by vehicle 𝑣  (𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶) 

𝐻𝑙 ,𝑝  The cost of maintaining each unit of 

medical goods 𝑝 in warehouse 𝑙 
𝐶𝑙,𝑝  Cost of distribution per unit of medical 

goods 𝑝 by warehouse 𝑙 
𝐷𝑒�̃�𝑐,𝑝,𝑡   Hospital c demand for medical goods 𝑝 in 

period 𝑡 
𝐶𝑎𝑝𝐾𝑘 ,𝑝  Maximum capacity of the production center 

𝑘 of the production of medical goods 𝑝 

𝐶𝑎𝑝𝐿𝑙 ,𝑝  Maximum capacity of warehouse 𝑙 of 

storage and distribution of medical goods 𝑝 

𝐶𝑎𝑝𝑣   Maximum capacity of vehicle 𝑣 

[𝐴𝐻𝑐 , 𝐵𝐻𝑐 ]  Hard time window for delivery of medical 

goods to hospital 𝑐  

 
3. 3. Decision Variables 

𝑋𝑘 ,𝑙,𝑝,𝑡   Amount of medical goods p transferred 

between production center 𝑘 and warehouse 𝑙 
in period 𝑡 

𝑉′ 𝑙 ,𝑝,𝑡  The total amount of medical goods 𝑝 

transferred from warehouse 𝑙 in period 𝑡 
𝑄𝑙,𝑝,𝑡   Inventory level of medical goods 𝑝 in stock 𝑙 

in period 𝑡 
𝑍𝑘  1 if production center 𝑘 is established; 0, 

otherwise 

𝑍𝑙  1 if warehouse 𝑙 is established; 0, otherwise 

𝑍𝑣  1 if vehicle 𝑣 is used; 0, otherwise 

𝑌𝑙,𝑐,𝑡  1 if hospital 𝑐  is allocated to warehouse l in 

period 𝑡; 0, otherwise 

𝑍𝑙,𝑐,𝑣,𝑡   1 if hospital 𝑐  is visited by vehicle v in period 

𝑡 after warehouse 𝑙; 0, otherwise (𝑙, 𝑐 ∈ 𝐿 ∪
𝐶) 

𝑈𝑐,𝑣 ,𝑡   Auxiliary variable for sub-tour remove 

constraint 

𝑅𝑘,𝑙 ,𝑣,𝑡   1  if the route between production center 𝑘 

and warehouse 𝑙 is visited by vehicle 𝑣 in 

period 𝑡; 0, otherwise 

𝑇𝑐𝑙,𝑐,𝑣 ,𝑡   Time of arrival of vehicle 𝑣 to hospital 𝑐  and 

out of warehouse 𝑙 in period 𝑡 
𝑇𝑤𝑙 ,𝑣,𝑡   Maximum working hours of the driver of 

vehicle  𝑣 who leaves warehouse 𝑙 in period 𝑡 

 
3. 4. Multi-depot VRP Model              Given the 

expression of the sets, parameters, and decision variables 

expressed, the multi-depot VRP under the COVID-19 

pandemic as a mixed-linear programming model is as 

follows: 

(1) 

Min  𝜔1 = ∑ 𝐻𝑘𝑍𝑘
𝐾
𝑘=1 +∑ 𝑈𝑙𝑍𝐿

𝐿
𝑙=1 +

∑ 𝐹𝑣
𝑉
𝑣=1 𝑍𝑣 +∑ ∑ ∑ ∑ �̃�𝑙,𝑐,𝑣

𝑇
𝑡=1 𝑍𝑙,𝑐,𝑣,𝑡

𝑉
𝑣=1

𝐿∪𝐶
𝑐=1

𝐿∪𝐶
𝑙=1 +

∑ ∑ ∑ ∑ �̃�𝑘,𝑙,𝑣
𝑇
𝑡=1 𝑅𝑘,𝑙,𝑣,𝑡

𝑉
𝑣=1

𝐿
𝑙=1

𝐾
𝑘=1 +

∑ ∑ ∑ 𝐻𝑙 ,𝑝
𝑇
𝑡=1 𝑄𝑙,𝑝,𝑡

𝑃
𝑝=1

𝐿
𝑙=1 +

∑ ∑ ∑ �̃�𝑙,𝑝
𝑇
𝑡=1 𝑉 ′𝑙,𝑝,𝑡

𝑃
𝑝=1

𝐿
𝑙=1   

(2) 
Min  𝜔2 = ∑ ∑ ∑ ∑ 𝐶𝑜2𝑙,𝑐,𝑣

𝑇
𝑡=1 𝑍𝑙,𝑐,𝑣,𝑡

𝑉
𝑣=1

𝐿∪𝐶
𝑐=1

𝐿∪𝐶
𝑙=1 +

 ∑ ∑ ∑ ∑ 𝐶𝑜2𝑘,𝑙,𝑣
𝑇
𝑡=1 𝑅𝑘,𝑙,𝑣,𝑡

𝑉
𝑣=1

𝐿
𝑙=1

𝐾
𝑘=1   

(3) Min  𝜔3 = 𝑚𝑎𝑥{𝑇𝑊𝑙,𝑣,𝑡,    ∀𝑙 ∈ 𝐿, 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇}  

 s. t. 

(4) ∑ ∑ ∑ 𝐷𝑒�̃�𝑐,𝑝,𝑡𝑍𝑙,𝑐,𝑣,𝑡
𝑃
𝑝=1

𝐶∪𝐿
𝑙=1

𝐶
𝑐=1 ≤ 𝐶𝑎𝑝𝑣𝑍𝑣,     ∀𝑣, 𝑡  

(5) 𝑉 ′𝑙,𝑝,𝑡 = ∑ ∑ 𝐷𝑒�̃�𝑐,𝑝,𝑡𝑍𝑙,𝑐,v,𝑡
𝑉
𝑣=1

𝐶
𝑐=1 ,     ∀𝑙, 𝑝, 𝑡  

(6) ∑ ∑ 𝑍𝑙,𝑐,𝑣,𝑡
𝐶∪𝐿
𝑙=1

𝑉
𝑣=1 = 1,     ∀𝑐, 𝑡  

(7) 𝑄𝑙,𝑝,𝑡 = ∑ 𝑋𝑘,𝑙 ,𝑝,𝑡
𝐾
𝑘=1 +𝑄𝑙 ,𝑝,𝑡−1− 𝑉

′
𝑙,𝑝,𝑡,     ∀𝑙,𝑝, 𝑡  

(8) 
𝑈𝑚,𝑣,𝑡 −𝑈𝑐,𝑣,𝑡+ |𝐶|𝑍𝑚,𝑐,𝑣,𝑡 ≤ |𝐶| −1,     ∀𝑚,𝑐 ∈
𝐶,𝑣, 𝑡   

(9) ∑ 𝑍𝑙,𝑐,𝑣,𝑡
𝐶∪𝐿
𝑐=1 = ∑ 𝑍𝑐,𝑙,𝑣,𝑡

𝐶∪𝐿
𝑐=1 ,     ∀𝑣, 𝑡, 𝑙 ∈ 𝐶 ∪ 𝐿  

(10) ∑ ∑ 𝑍𝑙,𝑐,𝑣,𝑡
𝐶
𝑐=1

𝐿
𝑙=1 ≤ 1,     ∀𝑣, 𝑡  

(11) −𝑌𝑙,𝑐,𝑡+ ∑ (𝑍𝑙,𝑢,𝑣,𝑡+ 𝑍𝑢,𝑐,𝑣,𝑡)
𝐶∪𝐿
𝑢=1 ≤ 1,     ∀𝑙, 𝑐, 𝑣, 𝑡  

(12) ∑ 𝑋𝑘,𝑙,𝑝,𝑡
𝐿
𝑙=1 ≤ 𝐶𝑎𝑝𝐾𝑘,𝑝𝑍𝑘,      ∀𝑘,𝑝, 𝑡  

(13) 𝑉 ′𝑙,𝑝,𝑡+ 𝑄𝑙,𝑝,𝑡 ≤ 𝐶𝑎𝑝𝐿𝑙 ,𝑝𝑍𝑙,      ∀𝑙, 𝑝, 𝑡  

(14) ∑ 𝑋𝑘,𝑙,𝑝,𝑡
𝑃
𝑝=1 ≤ ∑ 𝐶𝑎𝑝𝑣𝑅𝑘,𝑙,𝑣,𝑡

𝑃
𝑝=1 ,     ∀𝑘, 𝑙, 𝑡  

(15) 𝑇𝑐𝑙,𝑐,𝑣,𝑡 ≥ 𝑇𝑖𝑙,𝑐,𝑣 −𝑀.(1 − 𝑍𝑙,𝑐,𝑣,𝑡),     ∀𝑙, 𝑐, 𝑣, 𝑡  

(16) 
𝑇𝑐𝑙,𝑚,𝑣,𝑡 ≥ 𝑇𝑐𝑙,𝑐,𝑣,𝑡 +𝑇𝑖𝑐,𝑚,𝑣 − 𝑀. (2 − 𝑍𝑐,𝑚,𝑣,𝑡−

𝑌𝑙,𝑐,𝑡),     ∀𝑙, 𝑐,𝑚, 𝑣, 𝑡  

(17) 𝑇𝑐𝑙,𝑐,𝑣,𝑡 ≤ 𝐵𝐻𝑐. 𝑍𝑙,𝑐,𝑣,𝑡,     ∀𝑙, 𝑐, 𝑣, 𝑡  

(18) 𝑇𝑐𝑙,𝑐,𝑣,𝑡 ≥ 𝐴𝐻𝑐. 𝑍𝑙,𝑐,𝑣,𝑡,     ∀𝑙, 𝑐, 𝑣, 𝑡  

(19) 𝑇𝑤𝑙,𝑣,𝑡 ≥ 𝑇𝑐𝑙,𝑐,𝑣,𝑡+ 𝑇𝑖𝑐,𝑙,𝑣𝑍𝑐,𝑙,𝑣,𝑡,     ∀𝑙, 𝑐, 𝑣, 𝑡  

(20) ∑ 𝑅𝑘,𝑙,𝑣,𝑡
𝐾
𝑘=1 ≤ ∑ 𝑍𝑙,𝑐,𝑣,𝑡

𝐶
𝑐=1 ,     ∀𝑙, 𝑣, 𝑡  
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(21) 𝑋𝑘,𝑙,𝑝,𝑡, 𝑉
′
𝑙,𝑝,𝑡,𝑄𝑙,𝑝,𝑡,𝑈𝑐,𝑣,𝑡, 𝑇𝑐𝑙,𝑐,𝑣,𝑡, 𝑇𝑤𝑙,𝑣,𝑡 ≥ 0  

(22) 𝑍𝑘, 𝑍𝑙 , 𝑍𝑣 , 𝑌𝑙,𝑐,𝑡, 𝑍𝑙,𝑐,𝑣,𝑡, 𝑅𝑘,𝑙,𝑣,𝑡 ∈ {0,1}  

Equation (1) represents the first objective function value 

of the considered problem and minimize the total costs of 

location, routing, and inventory. Equation (2) minimizes  

GHG emissions between supply chain network levels. 

Equation (3) minimizes the maximum working hours of 

drivers in each time period. This relationship acts as an 

equilibrium relationship in the distribution of working  

hours between the drivers of each vehicle. Equation (4) 

shows the maximum transport capacity of the product 

available by the vehicle. Equation (5) shows the total 

flow of products (demand) in stock for transport to 

hospitals. Equation (6) ensures that each warehouse can 

only be allocated to one hospital. Equation (7) calculates 

the amount of inventory at the end of the period in the 

selected warehouse. Equation (8) is a constraint on sub-

net removal. Equation (9) ensures that the vehicle can 

enter and leave each hospital only once.  

Equations (10) and (11) ensure that the starting and 

ending points of the vehicle routing in the delivery of 

medical supplies to hospitals are the selected warehouse. 

Equations (12) and (13) show, respectively, the location 

of production and warehousing centers and ensure that 

their capacity for the production/distribution and storage 

of medical goods cannot be used until such centers are 

selected. Equation (14) shows the vehicle used to 

transport medical goods between production centers and 

warehouses. Equation (15) shows the time of arrival of 

the vehicle to the first hospital. Equation (16) shows the 

vehicle's arrival time to other hospitals based on the 

loading and unloading time and the traffic between 

nodes. Equations (17) and (18) ensure that the vehicle's 

arrival time to each hospital must be within a strict time 

frame. Equation (19) calculates the maximum working  

hours of the vehicle driver. Equation (20) shows the 

planned transport and ensures that the vehicle, upon 

entering the warehouse, is also responsible for 

distributing medical supplies to the hospitals. Equations 

(21) and (22) show the type of decision variables. 

 
3. 5. Controlling the Uncertain Parameters with a 
Robust Fuzzy Method           Because of the dynamic 

and volatile nature of some important parameters 

(including transportation, operating, and demand costs) 

that are beyond planning, as well as the unavailability and 

even unavailability of historical data required at the 

design stage, these parameters are mainly based on expert 

opinions and experiences are estimated; Therefore, the 

above ambiguous parameters are formulated as 

indeterminate data in the form of triangular fuzzy  

numbers [47]. It is worth noting that it is difficult or 

sometimes impossible to assess the cost of transportation, 

operations, and definite demand for long-term decisions. 

Even if one can estimate a distribution function for these 

parameters, they may not behave similarly to previous 

data. Therefore, these parameters, which change in a 

long-term planning horizon, are considered as uncertain 

data. With this in mind, the robust fuzzy method is used 

to control the uncertain parameters of the considered 

problem. 

(24) 

Min  𝜔1 = 𝐸[𝜔1]+ 𝜉(𝐸[𝜔1]− 𝜔1(min))+ 𝜂 

∑ ∑ ∑ ∑ (
𝐷𝑒𝑚𝑐 ,𝑝,𝑡

3 −𝐷𝑒𝑚𝑐 ,𝑝,𝑡
2 −

𝛼(𝐷𝑒𝑚𝑐 ,𝑝,𝑡
3 − 𝐷𝑒𝑚𝑐 ,𝑝,𝑡

2 )
)𝑍𝑙,𝑐,𝑣,𝑡

𝐿∪𝐶
𝑙=1

𝑇
𝑡=1

𝑃
𝑝=1

𝐶
𝑐=1   

(25) 

𝐸[𝜔1] = ∑ 𝐻𝑘𝑍𝑘
𝐾
𝑘=1 + ∑ 𝑈𝑙𝑍𝐿

𝐿
𝑙=1 + ∑ 𝐹𝑣

𝑉
𝑣=1 𝑍𝑣 +

∑ ∑ ∑ ∑ (
𝑇𝑙,𝑐,𝑣
1 +2𝑇𝑙,𝑐,𝑣

2 +𝑇𝑙,𝑐,𝑣
3

4
)𝑇

𝑡=1 𝑍𝑙,𝑐,𝑣,𝑡
𝑉
𝑣=1

𝐿∪𝐶
𝑐=1

𝐿∪𝐶
𝑙=1 +

∑ ∑ ∑ ∑ (
𝑇𝑘,𝑙,𝑣
1 +2𝑇𝑘,𝑙,𝑣

2 +𝑇𝑘,𝑙,𝑣
3

4
)𝑇

𝑡=1 𝑅𝑘,𝑙,𝑣,𝑡
𝑉
𝑣=1

𝐿
𝑙=1

𝐾
𝑘=1 +

∑ ∑ ∑ 𝐻𝑙 ,𝑝
𝑇
𝑡=1 𝑄𝑙,𝑝,𝑡

𝑃
𝑝=1

𝐿
𝑙=1 +

∑ ∑ ∑ (
𝐶𝑙,𝑝
1 +2𝐶𝑙,𝑝

2 +𝐶𝑙,𝑝
3

4
)𝑇

𝑡=1 𝑉 ′𝑙,𝑝,𝑡
𝑃
𝑝=1

𝐿
𝑙=1   

(26) 

𝜔1(min) = ∑ 𝐻𝑘𝑍𝑘
𝐾
𝑘=1 +∑ 𝑈𝑙𝑍𝐿

𝐿
𝑙=1 +∑ 𝐹𝑣

𝑉
𝑣=1 𝑍𝑣 +

∑ ∑ ∑ ∑ 𝑇𝑙,𝑐,𝑣
1𝑇

𝑡=1 𝑍𝑙,𝑐,𝑣,𝑡
𝑉
𝑣=1

𝐿∪𝐶
𝑐=1

𝐿∪𝐶
𝑙=1 +

∑ ∑ ∑ ∑ 𝑇𝑘,𝑙,𝑣
1𝑇

𝑡=1 𝑅𝑘,𝑙,𝑣,𝑡
𝑉
𝑣=1

𝐿
𝑙=1

𝐾
𝑘=1 +

∑ ∑ ∑ 𝐻𝑙 ,𝑝
𝑇
𝑡=1 𝑄𝑙,𝑝,𝑡

𝑃
𝑝=1

𝐿
𝑙=1 +

∑ ∑ ∑ 𝐶𝑙,𝑝
1𝑇

𝑡=1 𝑉 ′𝑙,𝑝,𝑡
𝑃
𝑝=1

𝐿
𝑙=1   

(27) 
∑ ∑ ∑ (𝛼𝐷𝑒𝑚𝑐,𝑝,𝑡

3 + (1−𝑃
𝑝=1

𝐶∪𝐿
𝑙=1

𝐶
𝑐=1

𝛼)𝐷𝑒𝑚𝑐,𝑝,𝑡
2 )𝑍𝑙,𝑐,𝑣,𝑡 ≤ 𝐶𝑎𝑝𝑣𝑍𝑣,     ∀𝑣, 𝑡  

(28) 

𝑉 ′𝑙,𝑝,𝑡 =

∑ ∑ (
𝛼𝐷𝑒𝑚𝑐,𝑝,𝑡

3 +

(1 −𝛼)𝐷𝑒𝑚𝑐,𝑝,𝑡
2 )𝑍𝑙,𝑐,v,𝑡

𝑉
𝑣=1

𝐶
𝑐=1 ,     ∀𝑙, 𝑝, 𝑡  

(29) Equations (2), (3), (6) – (23) 

In Equation (24), the first term refers to the expected 

value of the first objective function using the mean values 

of the uncertain parameters of the model. The second 

term refers to the cost of the penalty for deviating from 

the expected value of the first objective function 

(optimality stability). The third term also shows the total 

cost of the demand deviation penalty (uncertain 

parameter). Therefore, parameter 𝜉 is the weight 

coefficient of the objective function, and 𝜂 is the penalty 

for not estimating the demand. The parameter 𝛼, as the 

rate of uncertainty, indicates the value of the levels of 

fuzzy numbers, which must be a number between 0.1 and 

0.9. 
 

 

4. NEUTROSOPHIC FUZZY PROGRAMMING 
METHOD 
 

Since the model is considered a multi-objective problem, 

the neutrosophic fuzzy method is thus proposed to solve 
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the problem in this paper. Multi-objective decision 

models are the most common type of mathematical 

model that have conflicting goals. In such cases, the aim 

is to achieve the optimal value of all conflicting objective 

functions simultaneously. In such problems, the decision-

maker expresses the importance of his /her preferences by 

providing an optimal weight 𝛽 ∈  [0,1] to each objective 

function. With a high value of β weight in an objective 

function value, the decision-maker’s preference in that 

function is higher. Zimmermann [48] maximized  

decision-making preferences in simultaneously 

achieving objective function values by introducing a 

multi-objective fuzzy programming method. Developing 

a multi-objective fuzzy programming method called 

intuitive fuzzy programming could solve various 

mathematical problems in the following years. In these 

programming methods, flexibility in element  

membership functions was also possible.  

This method has been studied in various real-life 

issues and problems extensively. In recent years, it has 

been observed that living conditions may have neutral 

thoughts about an element in the set. Neutral or uncertain 

ideas about the elements fall between a degree of 

falsehood and truth. Thus, by developing the intuitive 

fuzzy programming method, Smarandache [49] 

examined the neutrosophic fuzzy programming method, 

which has three sets of memberships: truth (i.e., degree 

of belonging), uncertainty (i.e., degree of belonging to 

some extent), and falsehood (i.e., degree of non-

belonging). According to the neutrosophic fuzzy  

programming method developed in this paper, the 

sustainable biomass supply chain network model with 

four conflicting objective functions is solved. Hence, 

each objective function has three terms: truth 

membership, non-determination, and falsehood. 

Therefore, the neutrosophic fuzzy programming method 

is important in optimizing multi-objective problems by 

considering neutral thoughts. 

Consider a multi-objective model, where D represents 

a set of fuzzy decisions, G  is a set of fuzzy objective 

functions, and C represents fuzzy constraints. Therefore, 

the set of fuzzy decisions is represented as 𝐷 =  𝐺 ∩ 𝐶 . 

The set of fuzzy neutrosophic decisions (𝐷𝑛) along with 

the set of neutrosophic fuzzy target functions (𝐺𝑜 ) and the 

set of neutrosophic fuzzy constraints (𝐶𝑚) are expressed 

as follows: 

(30) 
𝐷𝑛 = (⋂ 𝐺𝑜

𝑂
𝑜=1 )(⋂ 𝐶𝑚

𝑀
𝑚=1 ) =

(𝑤,𝑃𝐷 (𝑤), 𝑄𝐷(𝑤),𝑅𝐷(𝑤))  

 s. t.  

 𝑃𝐷 (𝑤) = {
𝑚𝑖𝑛 𝑃𝐺𝑜(𝑤),   ∀𝑜 ∈ 𝑂
𝑠. 𝑡.                                  
𝑃𝐶𝑚(𝑤),   ∀𝑚∈ 𝑀       

}  

 𝑄𝐷(𝑤) = {
𝑚𝑎𝑥 𝑄𝐺𝑜(𝑤),   ∀𝑜 ∈ 𝑂
𝑠. 𝑡.                                  
𝑄𝐶𝑚(𝑤),   ∀𝑚 ∈𝑀       

}  

 𝑅𝐷(𝑤) = {
𝑚𝑎𝑥 𝑅𝐺𝑜(𝑤),   ∀𝑜 ∈ 𝑂
𝑠. 𝑡.                                  
𝑅𝐶𝑚(𝑤),   ∀𝑚 ∈ 𝑀       

}  

where 𝑃𝐷(𝑤)  is a truth membership function, 𝑅𝐷(𝑤) is a 

non-deterministic membership function, and 𝑅𝐷(𝑤) is a 

false membership function under neutrosophic fuzzy  

decisions 𝐷𝑛 . Each of the above membership functions 

has a top and bottom boundary, which is obtained as the 

following relation for all membership functions: 

(31) 
𝑈𝑜 = 𝑚𝑎𝑥(𝑍𝑜(𝑋))  

𝐿𝑜 = 𝑚𝑖𝑛(𝑍𝑜(𝑋))  

Therefore, the upper and lower bounds of the 

neutrosophic fuzzy membership function can be 

calculated for truth, non-determination, and falsehood, 

respectively, as follows. 

(32) 

𝑈𝑜
𝑃 = 𝑈𝑜,    𝐿𝑜

𝑃 = 𝐿𝑜  

𝑈𝑜
𝑄 = 𝐿𝑜

𝑃 + 𝑎𝑜,    𝐿𝑜
𝑄 = 𝐿𝑜  

𝑈𝑜
𝑅 = 𝑈𝑜

𝑃,    𝐿𝑜
𝑅= 𝐿𝑜

𝑃+ 𝑏𝑜  

In the above relation 𝑎𝑜   and 𝑏𝑜 is a predefined value 

between 0 and 1. Given the above, the linear membership  

function for a neutrosophic fuzzy framework is as 

follows. 

(33) 
𝐷𝑛 = (⋂ 𝐺𝑜

𝑂
𝑜=1 )(⋂ 𝐶𝑚

𝑀
𝑚=1 ) =

(𝑤,𝑃𝐷 (𝑤), 𝑄𝐷(𝑤),𝑅𝐷(𝑤))  

 𝑠. 𝑡.:  

 𝑃𝑜(𝑍𝑜(𝑋)) = {

1         𝑖𝑓 𝑍𝑜(𝑋) < 𝐿𝑜
𝑃

𝑈𝑜
𝑃−𝑍𝑜(𝑋)

𝑈𝑜
𝑃−𝐿𝑜

𝑃 𝑖𝑓 𝐿𝑜
𝑃 ≤ 𝑍𝑜(𝑋) ≤ 𝑈𝑜

𝑃

0          𝑖𝑓 𝑍𝑜(𝑋) > 𝑈𝑜
𝑃

}  

 𝑄𝑜(𝑍𝑜(𝑋)) =

{
 
 

 
 1         𝑖𝑓 𝑍𝑜(𝑋) < 𝐿𝑜

𝑄

𝑈𝑜
𝑄−𝑍𝑜(𝑋)

𝑈𝑜
𝑄−𝐿𝑜

𝑄 𝑖𝑓 𝐿𝑜
𝑄 ≤ 𝑍𝑜(𝑋) ≤ 𝑈𝑜

𝑄

0          𝑖𝑓 𝑍𝑜(𝑋) > 𝑈𝑜
𝑄

}
 
 

 
 

  

 𝑅𝑜(𝑍𝑜(𝑋)) = {

1         𝑖𝑓 𝑍𝑜(𝑋) > 𝑈𝑜
𝑅

𝑍𝑜(𝑋)−𝐿𝑜
𝑅

𝑈𝑜
𝑅−𝐿𝑜

𝑅 𝑖𝑓 𝐿𝑜
𝑅 ≤ 𝑍𝑜(𝑋) ≤ 𝑈𝑜

𝑅

0          𝑖𝑓 𝑍𝑜(𝑋) < 𝐿𝑜
𝑅

}  

Therefore, the controlled model of the multi-depot VRP 

under COVID-19 pandemic conditions by a neutrosophic 

fuzzy programming method based on the above 

equations is as follows: 
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(34) 

max ∑ (𝜇𝑜 + 𝜗𝑜 −𝛿𝑜)𝑜=1   

s.t. 

𝑃𝑜(𝑍𝑜(𝑋)) ≥ 𝜇𝑜,     ∀𝑜  

𝑄𝑜(𝑍𝑜(𝑋)) ≥ 𝜗𝑜,     ∀𝑜  

𝑅𝑜(𝑍𝑜(𝑋)) ≤ 𝛿𝑜,     ∀𝑜  

𝜇𝑜 ≥ 𝜗𝑜,     ∀𝑜  

𝜇𝑜 ≥ 𝛿𝑜,     ∀𝑜  

0 ≤ 𝛿𝑜 +𝜇𝑜 +𝜗𝑜 ≤ 3,     ∀𝑜  

𝛿𝑜, 𝜇𝑜, 𝜗𝑜 ∈ (0,1)  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (24 −29)  

 

 

5. PROBLEM ANALYSIS 
 

5. 1. Solving the Small-sized Problem        In this 

section, considering the three objective functions of the 

mathematical model, a numerical example is designed to 

analyze and solve the small-sized problem by a 

neutrosophic fuzzy programming method. This test 

problem consists of 3 production centers, 3 warehouses, 

4 hospitals, 2 types of medical goods, 5 types of vehicles , 

2 periods, and random data based on uniform distribution 

function as described in Table 1. Using random data 

based on the uniform distribution function is the lack of 

access to real-world data. 

Table 2 shows the membership functions for the 

neutrosophic fuzzy method for truth, non-determination, 

and falsehood, respectively. Using Equation (34), the 

efficient solution obtained using the membership  

functions obtained is also shown in this table. 

According to the obtained efficient solution, it is 

observed that the total cost, the amount of GHG emission, 

and  the  maximum  working  hours  of  drivers  are 45305,  

 

 
TABLE 1. Values of the problem parameters based on the 

uniform distribution function 

Parameter 
Approximate 

interval  
Parameter 

Approximate 
interval  

𝐻𝑘 , 𝑈𝑙  ~𝑈[10000,12000]  𝐶𝑎𝑝𝐾𝑘,𝑝  ~𝑈[25,60]  

𝐹𝑣  ~𝑈[1000,2000]  𝐶𝑎𝑝𝐿𝑙,𝑝  ~𝑈[25,60]  

𝐶𝑜2𝑘,𝑙,𝑣   ~𝑈[30,40]  𝐶𝑎𝑝𝑣  ~𝑈[150,160]  

𝑇𝑖𝑙,𝑐,𝑣  ~𝑈[10,30]  𝐴𝐻𝑐  ~𝑈[5,10]  

𝐻𝑙,𝑝   ~𝑈[3,5]  𝐵𝐻𝑐   ~𝑈[150,300]  

Parameter O ptimistic Possible  Pessimistic 

𝐷𝑒𝑚𝑐,𝑝,𝑡   ~𝑈[20,25]  ~𝑈[25,30]  ~𝑈[30,35]  

𝑇𝑘,𝑙,𝑣, 𝑇𝑙,c,v   ~𝑈[10,15]  ~𝑈[15,20]  ~𝑈[20,25]  

𝐶𝑙,𝑝  ~𝑈[1,2]  ~𝑈[2,3]  ~𝑈[3,4]  

TABLE 2. Membership functions obtained from the 

neutrosophic fuzzy method 

𝝎𝟑 𝝎𝟐 𝝎𝟏  

48 281 75148 Upper bound 

36 234 34703 Lower bound 

48 281 75148 𝑈𝑜
𝑃  

50 293 75182 𝑈𝑜
𝑄
  

48 281 75148 𝑈𝑜
𝑅  

36 234 34703 𝐿𝑜
𝑃   

36 234 34703 𝐿𝑜
𝑄

  

38 240 34810 𝐿𝑜
𝑅   

46 252 45305 Solution 

 

 

252, and 46, respectively. Therefore, Figure 2 shows the 

output variables of the problem based on the solution 

obtained from the neutrosophic fuzzy programming  

method. Based on the results of this figure, it can be 

stated that when the three objective functions are 

optimized simultaneously, the number of warehouses 

constructed and the type and routing of vehicles will 

change. Therefore, it can be seen that two warehouses  are 

used to distribute medical goods to hospitals. On the 

other hand, it can be said that the vehicle is routed with 

minimal driver density, and this leads to a possible 

reduction in the prevalence of the COVID-19 virus. 

 
 

 
Figure 2. Routing of a multi-warehouse vehicle based on the 

neutrosophic fuzzy method 
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5. 2. Sensitivity Analysis           In this section, the 

effect of the behavior of output variables due to changes 

in the main parameters of the model is investigated. 

Therefore, first, the effect of the behavior of the values of 

the objective functions in exchange for changes in the 

uncertainty rate is investigated. Considering the efficient  

solution of the problem with the neutrosophic fuzzy  

method at an uncertainty rate of 0.5, Table 3 shows the 

values of the objective functions of the problem at 

different rates of uncertainty. 

According to the results of Table 3, it can be stated 

that by increasing the uncertainty rate, due to the increase 

in production and distribution volume and limited  

capacity of vehicles, more equipment should be used to 

distribute and transfer medical goods from the production 

center to the warehouse. Accordingly, the costs of the 

entire network increase. While increasing the number of 

vehicles and the proper distribution of goods between 

vehicles, the drivers’ maximum working hours decrease, 

and the amount of GHG emissions increases. Also, by 

examining the effect of the uncertainty rate, it can be 

concluded that by increasing the uncertainty rate, due to 

an increase in the number of vehicles and the number of 

people involved in the distribution of medical goods, the 

probability of increasing the prevalence of COVID-19 

increases. Figure 4 shows the trend of changes in the 

objective function values of the problem in exchange for 

changes in the rate of uncertainty. 

In the following and another analysis, changes in the 

objective function values in exchange for changes in the 

time window of delivery of medical goods to the hospital 

are examined. Since the intended time window is of the 

hard type, vehicles must meet the hospital’s request 

within the stipulated time and have no right to exceed that 

time. Table 4 shows the changes in the objective function 

values of the problem in exchange for changes in the 

upper bound of the time window. According to the results 

of this table, it is observed that by reducing the upper 

limit of the time window, due to the limited delivery time  

 

 
TABLE 3. Trend of changing the objective function values of 

the problem in exchange for changes in the uncertainty rate 

𝛂  𝝎𝟏  𝝎𝟐  𝝎𝟑  

0.1 42523 229 52 

0.2 43125 236 50 

0.3 44268 240 50 

0.4 44923 248 48 

0.5 45305 252 46 

0.6 45823 258 46 

0.7 45936 263 45 

0.8 46290 271 42 

0.9 46730 283 42 
 

 
Figure 4. Trend of changing the objective function values of 

the problem in exchange for changes in the amount of the 
uncertainty rate 

 

 

of hospital demand, vehicles have to travel shorter routes. 

Therefore, the need to use more vehicles is evident. 

Therefore, by reducing the upper limit of the time 

window, the total costs and the amount of greenhouse gas 

emissions increase, and the maximum working hours of 

drivers decrease. 

Figure 5 shows the changes in the objective function 

values of the considered problem in exchange for 

changes in the upper bound of the time window. Based 

 

 
TABLE 4. Process of changing the objective function values of 
the problem in exchange for changes in demand  

𝑩𝑯𝒄  𝝎𝟏 𝝎𝟐 𝝎𝟑 

-30% 47110 263 42 

-20% 46250 260 42 

-10% 45930 258 44 

0 45305 252 46 

+10% 44830 243 47 

+20% 44730 240 49 

+30% 43250 237 50 

 

 

 
Figure 5. Process of changing the first and second objective 
function values in exchange for changes in the upper limit of 

the time window 
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on the results of this figure, it can be stated that with the 

shortening of the time window, the timing of the 

distribution of medical goods to the hospital has become 

more complex. As a result, more vehicles should be used 

to distribute medical goods. This is a waste of more 

drivers. As a result, the prevalence of the COVID-19 

virus is likely to increase. 

Table 5 shows the changes in the values of the 

objective functions in exchange for changes in vehicle 

capacity. 

In the most important sensitivity analysis of the 

problem on the capacity of the vehicle, it was determined 

that by increasing the capacity of the vehicle, fewer 

vehicles are used, and as a result, the cost and amount of 

greenhouse gas emissions are reduced. On the other hand, 

this has led to a decrease in the prevalence of the COVID-

19 virus. Figure 6 shows the changes in the objective 

function values of the considered problem in exchange 

for changes in the vehicle capacity. 

 

 
TABLE 5. Process of changing the objective function values of 

the problem in exchange for changes in vehicle capacity  

𝑪𝒂𝒑𝒗  𝝎𝟏  𝝎𝟐  𝝎𝟑  

-30% 46123 269 43 

-20% 45973 262 44 

-10% 45845 257 46 

0 45305 252 46 

+10% 45126 249 47 

+20% 44975 245 47 

+30% 44235 240 49 

 

 

 
Figure 6. Trend of changing the objective function values of 

the problem in exchange for changes in the vehicle capacity 

 

 

6. CONCLUSION 
 

Due to the importance of vehicle routing and inventory 

management in this research, a multi-warehouse vehicle 

routing model under the COVID-19 pandemic conditions 

has been presented. The importance of locating 

warehouses and distribution centers in logistics systems 

was not less than vehicle routing and covered most 

system costs. In the model presented in this paper, three 

levels (i.e., production centers, warehouses , and hospitals 

as the first, second, and final levels, respectively) were 

considered. Therefore, the location of facilities in 

production centers, warehouses, and routing-inventory 

was at the level between warehouses and the customer. 

The prevalence of the COVID-19 virus and the need for 

careful planning for the transfer of hospital equipment led 

to the design of an uncertain model of vehicle navigation 

in this paper. They then controlled the model using a 

robust fuzzy method.  

To optimize the multi-objective model (i.e., 

minimizing the total cost, minimizing the amount of 

GHG emissions, and minimizing the maximum working  

hours of drivers) led to the use of the neutrophilic fuzzy  

programming method. The model implementation results 

showed that reducing the number of vehicles decreased 

the amount of GHG emissions and the prevalence of the 

COVID-19 virus. In contrast, the drivers' working hours 

increased and were unbalanced. Also, by examining the 

amount of the uncertainty rate, it was observed that by 

increasing this parameter due to the increase in 

production, distribution volume, and limited capacity of 

vehicles, more equipment should be used for distribution 

and transfer of medical goods from the production center 

to the warehouse. Accordingly, the costs of the entire 

network increased. While increasing the number of 

vehicles and the proper distribution of the volume of 

goods between vehicles, the maximum working hours of 

drivers decreased, and the amount of GHG emissions 

increased. In the most important sensitivity analysis of 

the problem on the capacity of the vehicle, it was 

determined that by increasing the capacity of the vehicle, 

fewer vehicles are used. As a result, the cost and amount 

of greenhouse gas emissions are reduced. On the other 

hand, this has led to a decrease in the prevalence of the 

COVID-19 virus. At the end, according to the analysis, 

the greatest impact on the spread of the COVID-19 virus 

is related to the uncertainty rate. Therefore, with the 

increase of uncertainty rate, due to the increase in 

demand and increase in vehicle traffic, the probability of 

spreading the COVID-19 virus increases. According to 

the presented mathematical model in this paper, it is 

suggested that this model be solved using meta-heuristic 

algorithms and implemented in a real-case study to 

develop and apply it. It is also recommended that, due to 

the market's competitive nature, competition between 

two similar supply chain networks be considered. 
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Persian Abstract 

چکیده  

ه سازی مسئله مسیریابی وسیلن شده است تا در این مقاله به مدلآبه  در توزیع تجهیزات پزشکی، منجردر سراسر جهان و ایجاد مشکلات جدی  COVID-19شیوع ویروس 

تولید و مسیریابی وسایل نقلیه جهت یابی انبارها و مراکز شده مکانپرداخته شود. هدف اصلی مدل ارائه COVID-19نقلیه چند انباره تحت عدم قطعیت در شرایط پاندمی 

تایج نهای انتقال و توزیع از روش استوار فازی استفاده شده است. قطعی مسئله نظیر تقاضا، هزینهباشد. برای کنترل پارامترهای غیرها میتوزیع کالاهای پزشکی به بیمارستان

ه دهد، با افزایش مقدار تقاضا، حجم تبادلات کالاهای پزشکی افزایش یافته و تعداد وسایل نقلیشان میریزی فازی نوتروسوفیک نگیری روش برنامهتاثیر عدم قطعیت با به کار

ای شده است. همچنین بررسی نتایج نشان های کل مسئله و میزان انتشار گازهای گلخانهمورد استفاده جهت توزیع کالاها نیز افزایش یافته است. این امر منجربه افزایش هزینه

و  هیتجز نیدر مهمتر شود.می COVID-19هد استفاده از وسایل نقلیه بیشتر منجربه کاهش خستگی کارکنان به جهت توزیع کالاهای پزشکی و کاهش شیوع ویروس دمی

انتشار  زانیو م نهیهز جهیدر نتشود و یاستفاده م یکمتر هینقل لیخودرو، از وسا تیظرف شی، مشخص شد که با افزاهینقل لهیوس تیظرف یمشکل بر رو تیحساس لیتحل

 شده است. COVID-19 روسیو وعیامر منجر به کاهش ش نی، اگرید ی. از سوابدییکاهش م یاگلخانه یگازها
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