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A B S T R A C T  
 

 

Human activity recognition has been a popular research topic in recent years. The rapid development of 
deep learning techniques has greatly helped researchers to achieve success in this field. But the 

researchers usually over look the distribution of features in the coordinate space despite its significant 

effect on the convergence status of network and classification of activities. This paper proposes a 
combined method based on fuzzy centralized coordinate learning (FCCL) and a hybrid loss function to 

overcome the explained constraint. The FCCL induces features to be dispersedly spanned across all 

quadrants of the coordinate space. For this reason, the angle between the feature vectors of the activity 
classes increases significantly. Furthermore, a hybrid loss function is presented to increase the 

discriminative power of the proposed method. Our experiments were carried out on the opportunity and 

the PAMAP2 datasets. The proposed method has been compared with six machine learning and three 
deep learning methods for activity recognition. Experimental results showed that the proposed method 

outperformed all of the comparative methods due to identifying discriminative features. The proposed 

method successfully enhanced the average accuracy by 17.01% and 3.96% on the PAMAP2 and 
opportunity datasets, respectively, compared to the deep learning methods. 

doi: 10.5829/ije.2022.35.01a.12 
 

 

NOMENCLATURE 

𝑃𝑘 predicted posterior probability(k-th class) 𝑆𝑜(𝑥1. 𝑥2) cosine similarity of the two feature vectors 

𝜇𝑢 mean of 𝑢 𝜃𝑦𝑖.𝑖 intersection angle between 
𝑤

||𝑤||
  and  𝜗(𝑥) 

𝜎𝑢
2 variance of 𝑢 𝛽 Balance parameter 

Γ( ) gamma function τ adaptive parameter 

𝐷 degree of freedom 𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥 Soft-Max loss function 

𝛾1 , 𝛾2  fuzzy decay factors 𝐿𝑆𝐴𝐴𝑀 Simple adaptive angular margine loss function 

𝑜𝑏 mean vector produced by the current mini batch ∆𝑂 difference between the old mean vector and 𝑜𝑏 

𝜎𝑏 standard deviation vector produced by the current mini batch ∆σ 
difference between the old standard deviation vector 

and 𝜎𝑏 

 
1. INTRODUCTION1 
 
Human activity recognition (HAR) is a field of study to 

identify and analyze the activities performed by a person 

(or persons). Today, the HAR methods are widely used 

in various areas, including the healthcare [1-2], smart 

cities [3], and affordable mobile devices [4]. Machine 

learning algorithms and deep learning methods are the 

most common and popular methods widely used in HAR. 

 

* Corresponding Author Institutional Email: m_tabari@baboliau.ac.ir 

(M. Yadollahzadeh Tabari) 

HAR still faces two issues: 1) How to extract 

discriminative features from raw data, and 2) How to 

apply discriminative loss functions in feature 

classification. 

The top well-known methods in the machine learning 

algorithms include the k-Nearest Neighbor (k-NN) 

algorithm [5], Artificial Neural Networks (ANN), 

Support Vector Machine (SVM) [6], the Random Forest 

(RF) [7], Decision Tree (DT), and Naive Bayes (NB) [8]. 
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Bustoni et al. [9] compared the recognition performance 

of SVM, k-NN, and Random Forest machine learning 

algorithms on HAR. Their results showed that the highest 

accuracy and recall were achieved by the SVM method 

with Support Vector Classifier (SVC) and Radial Basis 

Function (RBF) kernels, which are 87 and 85%, 

respectively. The drawback of these methods is that they 

use hand-crafted features that rely heavily on human 

experience or knowledge. 

In contrast to machine learning algorithms with 

shallow statistical features, deep learning methods 

include high-level and meaningful features and have 

achieved good performance in HAR [10-14]. Various 

deep learning-based techniques, such as AutoEncoders 

(AEs), convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), have successfully been used in 

HAR [1, 11-12]. Panwar et al. [15] designed a CNN 

model to recognize three fundamental movements of the 

human forearm using a single wrist-worn accelerometer 

sensor. Their results showed that the CNN model 

outperformed SVM and K-means because it 

automatically extracts the high-level features. The 

limitation of the CNN model is that it ignores the 

temporal dependencies within the data [11, 16].  

In recent articles, researchers have extensively 

employed hybrid networks that benefit from the 

advantages of different networks [1]. Javier et al. [17] 

proposed a hybrid method for HAR based on 

convolutional and Long Short-Term Memory recurrent 

(LSTM) networks called Deep ConvLSTM. The Deep 

ConvLSTM method consists of convolutional, recurrent, 

and Soft-Max layers. This method achieved an F1-score 

69% performance using only signals obtained from 

accelerometers on the OPPORTUNITY dataset. This 

value was improved by 20% using signals acquired from 

accelerometers, gyroscopes, and magnetic sensors. The 

low efficiency of this method is due to the Soft-Max Loss 

which cannot obtain discriminative features for activity 

recognition [18]. In litertaure [19], a hybrid method, 

called CNN-LSTM-ELM, was proposed, which used 

ELM in the last layer for classification purposes. This 

method achieved an F1-score of 90.8% on the 

OPPORTUNITY dataset. The limitation of this method 

is the high sensitivity to hidden nodes [20]. 

Recently, the combination of the margin-based loss 

with deep learning methods has led to acquiring 

discriminative features and successful results in face 

recognition [21-22]. Zhang et al. [23] proposed a new 

learning method called centralized coordinate learning 

(CCL) to identify differential features in facial 

recognition. They conducted experiments on six datasets: 

LFW [24], CACD [25], SLLFW [26], CALFW [27], 

YouTube Face [28], and MegaFace [29]. The accuracy 

level reached 99.4%  accuracy on the LFW dataset.  

A combined method is presented in this paper to solve 

the limits mentioned in the recent HAR methods. This 

combined method is based on fuzzy centralized 

coordinate learning (FCCL) and a hybrid loss function. 

The proposed FCCL method dispersedly spans the 

features in the coordinate space to increase the angle 

between different activity classes. The hybrid loss 

function classifies the obtained discriminative features 

with high accuracy, and its contributions are as follows: 

1. we present the FCCL to learn the discriminative 

features, which increase intra-class compactness and 

inter-class diversity in activity classes. 

2. Using a new loss function called the hybrid loss for 

enhancing the separability of different activity classes. 

This article is organized as follows: in Section 2, the 

architecture of the proposed method has been expressed 

for the accurate identification of human activity. Two 

used datasets, the performance metrics, and experimental 

settings are introduced in Section 3. Finally, in Section 4, 

the experiments and results are discussed. 

 

 
2. PROPOSED METHOD 

 
This research has attempted to overcome the limitations 

mentioned in the previous section by presenting a 

combined method based on the FCCL and a hybrid loss 

function. Figure 1 presents a workflow of the proposed 

method. According to this figure, the first step in the 

proposed method is to receive raw data from wearable 

sensors. Many HAR methods [10-11, 30] have used 

statistical features such as symbolic representation [31], 

statistics of raw data, and transform coding [32]; 

however, they have overlooked the short-term and long-

term temporal dependencies between the features. To 

solve this problem, we use a combination of the CNN and 

LSTM networks to extract the features, shown in Figure 

2. In the second step, we presented the FCCL to learn 

discriminative features which improve intra-class 

compactness and inter-class diversity. Finally, according 

to  Figure 2, a hybrid loss function is proposed to improve 

the separability of different activity classes. In the 

following, the proposed method is described in detail. 

 
2. 1. Feature Extraction Using the Hybrid Deep 
Learning Method            An essential step in HAR is to 

extract high-level features from time-series data. Deep 

neural networks (DNNs) can be proposed to extract 

meaningful features. Most researchers use CNN to 

recognize human activities with wearable sensors [33]. 

The main layers used in deep convolution networks are 

the convolution, the max-pooling, and the fully 

connected layers. In the convolution layer, filters are used 

to represent an abstract of the input data [34]. CNNs 

automatically learn the local and short-term features of 

time series data but ignore temporal dependencies within 

data [11]. The LSTM is a type of DNNs that extracts 

temporal dependencies within data and widely combines 

with CCNs. The advantage of LSTM is the ability to 

learn 
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Figure 1. Basic block diagram of the work in this research 
 

 

 
Figure 2. The architecture of the proposed method; 𝑥 and 𝑤 are the feature and classification vectors, respectively. 𝜌( ) and 

𝜗( ) are transformation functions on parameters 𝑤 and 𝑥, respectively 

 

 

long-term dependency, which is not possible by recurrent 

neural networks [35]. The present study  uses a hybrid 

deep learning method based on CNN and LSTM 

networks to take advantage of both, in which the output 

of the last convolutional layer feeds into the LSTM layer. 

According to Figure 2, three convolutional layers and 

two LSTM layers are used for feature extraction. 

 

2. 2. Fuzzy Centrolized Coordinate Learning         

Soft-Max loss [18] is a standard multiclass classification 

loss function in DNN. Soft-Max loss projects an input 

feature into a probability distribution [39]. The Soft-Max 

loss is defined as: 

𝑃𝑘 =
exp (𝑍𝑘)

∑ exp (𝑍𝑗)𝐾
𝑗=1

  (1) 

𝑍𝑗 = 𝑤𝑗
𝑇𝑥 + 𝑏𝑗   (2) 

where 𝑃𝑘 is the predicted posterior probability for the k-

th class, 𝑥  is the extracted feature at the last layer of the 

hybrid deep learning method, 𝑤𝑗  and 𝑏𝑗  are classification 

vector, and the bias belonging to 𝑗-th class, respectively. 

According to Equation (2), the features 𝑥 and the 

classification vectors 𝑤𝑗  are parameters learned in the 

training step. Proper formulation of features 𝑥 and the 

classification vectors 𝑤 greatly affects the network 

convergence [23]. An appropriate formulation of 𝑤 

reduces the classification gap between the training and 

test steps. The efficient formulation of 𝑥 can increase the 

angle between feature vectors related to different classes. 

For that reason, two functions 𝜌( ) and 𝜗( ) on parameters 

𝑤 and 𝑥, respectively, are used during the CCL for more 

effective network training [23]. In addition, we set 𝑏𝑗 to 

0 for simplicity. With considering the two functions 𝜌( ) 

and 𝜗( ), Equation (2) is rewritten as follows: 

 

𝑍 = 𝜌(𝑤)𝑇𝜗(𝑥) (3) 

Based on the previous research [23], 𝜌(𝑤)  is set to 
𝑤

||𝑤||
. 

According to Equations (1) and (2), 𝜗(𝑥) will 

significantly affect the predicted posterior probability of 

a class (𝑃𝑘) and the final output of the deep network. If 

|| 𝜗(𝑥)|| is small, the predicted posterior probability of all 

samples will be similar so that the loss function will be 

less discriminative between activities of different classes. 

Once || 𝜗(𝑥)|| is large, the probabilities may vary much 

and cause instability in the learning of the deep network. 

Hence, this function should be formulated to separate the 

feature vectors of different classes by large angles. 

Therefore, in this article, the extracted features are 

spanned across all quadrants of the coordinate space 

using the FCCL method. For each dimension 𝑖 of the 

feature vector 𝑥, 𝜗(𝑥𝑖) is defined as follows [23]: 

Sensor data Feature extraction 
Determination of 

discriminative features Classification 

•Using the hybrid loss 
function 

•Using the CNN and 
LSTM networks 

•Raw data received 
from wearable sensors 

•Separation of features 
related to different activities 
using the FCCL method 
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𝜗(𝑥𝑖) =
𝑥(𝑖)−𝑜(𝑖)

𝜎(𝑖)
  (4) 

where 𝑜 = 𝐸[𝑥]   is the mean vector of 𝑥, and 𝜎(𝑖)   is the 

standard deviation of  𝑥(𝑖). To simplify the analysis, we 

use the 𝐿2 norm of  𝜗(𝑥𝑖), i.e., ||𝜗(𝑥)||. 

𝑢 = ||𝜗(𝑥)|| = √∑ (𝜗(𝑥(𝑗)))
2

𝐷
𝑗=1   (5) 

The mean and variance of 𝑢 are formulated as follows: 

𝜇𝑢 = 𝐸[𝑢] = √2 
Γ(

𝐷+1

2
)

Γ(
𝐷

2
)

  (6) 

𝜎𝑢
2 = 𝐷 − 𝜇𝑢

2  (7) 

The  Γ( ) is a Gamma function and the values of  𝜇𝑢  and 

 𝜎𝑢
2 are determined according to the degree of freedom 𝐷. 

According to the experiments performed by Zhang et al., 

the best rational choice for 𝐷 is 374 [23]. The origin 

vector (𝑜) and the standard deviation (σ), which are two 

key factors in the function 𝜗(x), are learned during deep 

neural network training. In the following, an example is 

given to illustrate how 𝑜 affects the function  𝜗(𝑥). The 

cosine similarity of the two feature vectors 𝑥1 and 𝑥2 is 

formulated in Equation (8), by taking 𝑜 as the coordinate 

origin. 

𝑆𝑜(𝑥1. 𝑥2) =
(𝑥1−𝑜)𝑇 (𝑥2−𝑜)

||𝑥1−𝑜|| ||𝑥2−𝑜||
  (8) 

According to Equation (8), 𝑜 affects the similarity 

between 𝑥1 and 𝑥2. For example, if 𝑥1= [0.1, 0.1, 0.1], 

𝑥2= [0.1, 0.2, 0.1], and 𝑜 = [0, 0, 0], the intersection angle 

between 𝑥1 and 𝑥2 is 19.6o and 𝑆𝑜(𝑥1, 𝑥2) = 0.942. If the 

origin vector shifts to [-0.03, -0.03, -0.03], then the 

intersection angle is 16.26 o and 𝑆𝑜(𝑥1. 𝑥2) = 0.96. 

According to the example above, if the origin vector 𝑜 

moves a little, the angle and similarity between the 

feature vectors are greatly affected. Therefore, the values 

of 𝑜 and σ in each update should not change much during 

DNN training. For that reason, in this article, the fuzzy 

decay factors of 𝛾1 and  𝛾2  are proposed to determine the 

appropriate balance between the new and old values of 𝑜 

and σ, respectively.  The parameters σ 𝑎𝑛𝑑  𝑜 are updated 

with decay factors as follows: 

𝑜𝑛𝑒𝑤 = 𝛾1 𝑜𝑜𝑙𝑑 + (1 − 𝛾1 )𝑜𝑏   (9) 

𝜎𝑛𝑒𝑤 = 𝛾2 𝜎𝑜𝑙𝑑 + (1 − 𝛾2 )𝜎𝑏  (10) 

where 𝑜𝑏  and 𝜎𝑏 are the mean and standard deviation 

vectors produced by the current mini batch. In  the 

previously conducted research [23], 𝛾1 and  𝛾2   were set 

to 0.99, but in the present article, the exact value of these 

variables is determined in a fuzzy way. For this purpose, 

we used the variables ∆𝑂 and  ∆σ  . Equations (11) and 

(12) show the values of ∆𝑂 and  ∆σ. 

∆𝑂 = ||𝑜𝑜𝑙𝑑 − 𝑜𝑏||  (11) 

∆σ = ||𝜎𝑜𝑙𝑑 − 𝜎𝑏|| (12) 

In the following, a fuzzy system is presented to determine 

the fuzzy value of 𝛾1  based on the variable ∆𝑂. In a 

similar way, the value of 𝛾2  in Equation (10) is 

determined by a fuzzy system based on variable △σ. 

Figure 3 shows the structure of the fuzzy system to find 

the appropriate value of 𝛾1 . As can be seen in this figure, 

the input of this system is the fuzzy values corresponding 

to the variable ∆𝑂. The fuzzy sets of input variable ∆𝑂 

are illustrated in Figure 4. These fuzzy sets are based on 

the Gaussian membership function.  

The fuzzy sets of input and the competitive fuzzy 

rules in Table 1 are obtained by performing different 

experiments on the PAMAP2 and OPPORTUNITY 

datasets. As shown in Figure 4, we use five fuzzy sets for 

the variable ∆𝑂. The value of 𝛾1 is set based on the 

membership value of ∆𝑂 to each of the fuzzy sets. When 

maximum membership value of ∆𝑂 is related to very low 

or low fuzzy sets, we can increase the effectiveness of 𝑜𝑏  

more reliably for updating parameter 𝑜𝑛𝑒𝑤. For this 

reason, 𝛾1 is set by a small value. The range of  𝛾1  is 

[0,0.55] or(0.55,0.67) according to 𝜇𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(∆𝑂) in 

rule1 or  𝜇𝑙𝑜𝑤(∆𝑂) in rules 2 and 3, respectively. 

Similarly, when maximum membership value of ∆𝑂 is 

related to very high or high fuzzy sets, the fuzzy value of 

𝛾1  is increased to prevent creating an unstable state in the 

network and increase the effect of the parameter𝑜𝑜𝑙𝑑 . 

Therefore, the range of 𝛾1  is [0.82,0.96) or 0.99 

according to 𝜇ℎ𝑖𝑔ℎ(∆𝑂)  in rules 6 and 7 or 

𝜇𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ(∆𝑂) in rule 8, respectively. The value of 𝛾2  in 

Equation (10) is determined similarly based on the fuzzy 
 

 

 
Figure 3. The structure of the fuzzy system to find the appropriate value of 𝛾1  
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Figure 4. The fuzzy sets of input variable ∆𝑂 

 

 
TABLE 1. Competitive fuzzy rules 

1- If  (0.45 ≤ 𝜇𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(∆𝑂) ≤ 1) then (𝛾1 = 1 − 𝜇𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(∆𝑂))  

2- If  (0.45 < 𝜇 𝑙𝑜𝑤(∆𝑂) ≤ 1) and (𝜇𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(∆𝑂) < 0.45) then (𝛾1 = 0.51 +
𝜇 𝑙𝑜𝑤(∆𝑂)

10
) 

3- If  (0.45 < 𝜇 𝑙𝑜𝑤(∆𝑂) < 1) and (𝜇𝑚𝑒𝑑𝑖𝑢𝑚(∆𝑂) < 0.45) then (𝛾1 = 0.61 +
1−𝜇 𝑙𝑜𝑤(∆𝑂)

10
) 

4- If  (0.45 ≤ 𝜇 𝑚𝑒𝑑𝑖𝑢𝑚(∆𝑂) ≤ 1) and (𝜇 𝑙𝑜𝑤(∆𝑂) < 0.45)then (𝛾1 = 0.6 +
𝜇 𝑚𝑒𝑑𝑖𝑢𝑚(∆𝑂)

7
)  

5- If  (0.45 < 𝜇 𝑚𝑒𝑑𝑖𝑢𝑚(∆𝑂) < 1) and (𝜇 ℎ𝑖𝑔ℎ(∆𝑂) < 0.45)then (𝛾1 = 0.74 +
1−𝜇 𝑚𝑒𝑑𝑖𝑢𝑚(∆𝑂)

7
)  

6- If  (0.45 ≤ 𝜇 ℎ𝑖𝑔ℎ(∆𝑂) < 1) and (𝜇 𝑚𝑒𝑑𝑖𝑢𝑚(∆𝑂) < 0.45)then (𝛾1 = 0.73 +
𝜇 ℎ𝑖𝑔ℎ(∆𝑂)

5
) 

7- If  (0.8 < 𝜇 ℎ𝑖𝑔ℎ(∆𝑂) ≤ 1) and (𝜇 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ(∆𝑂) < 0.2)then (𝛾1 = 0.91 +
1−𝜇 ℎ𝑖𝑔ℎ(∆𝑂)

5
) 

8- If  (0.2 ≤ 𝜇 𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ(∆𝑂)) then (𝛾1 = 0.99) 

 

 

sets of input variable △σ.  Therefore, these fuzzy values 

(𝛾1 and 𝛾2 ) effectively determine variables 𝑜𝑛𝑒𝑤  and 

𝜎𝑛𝑒𝑤  at each step. 

 

2. 3. Hybrid Loss        Various classification functions 

are used to determine the final output in the last layer of 

deep neural networks. In literature, different 

classification functions have been proposed, but all of 

them have some drawbacks. To provide a more compact 

classification boundary for accurate user activities 

identification for HAR, we presented a combination of 

Soft-Max loss and Simple Adaptive Angular Margin 

(SAAM) loss, called hybrid loss. According to the 

definition of cosine similarity, the Soft-Max and SAAM 

loss functions are formulated as Equations (13) and (14), 

respectively, as follows: 
 

 

𝐿𝑆𝑜𝑓𝑡−𝑚𝑎𝑥 = ∑ −log (
exp(||𝜗(𝑥𝑖)|| cos(𝜃𝑦𝑖.𝑖))

∑ exp (||𝜗(𝑥𝑖)|| cos(𝜃𝑘.𝑖)
𝐾

𝑘=1
)

𝑁
𝑖   (13) 

𝐿𝑆𝐴𝐴𝑀 = ∑ −log (
exp (||𝜗(𝑥𝑖)|| cos(𝜏𝜃𝑦𝑖.𝑖))

exp (||𝜗(𝑥𝑖)|| cos(𝜏𝜃𝑦𝑖.𝑖)+∑ exp (||𝜗(𝑥𝑖)|| cos(𝜃𝑘.𝑖))𝑘≠𝑦𝑖

𝑁
𝑖   (14) 

 
 

   
(a) original data distribution (b) Soft-Max loss (c) Hybrid loss 

Figure 5. Illustration of the effects of various loss functions. The "orange rhombuses", "blue dots", "black stars" and "green 

triangles" represent the samples of four activities classes. (a) Original data distribution. (b) Converged features by using the Soft-

Max loss. (c) Converged features by using the hybrid loss 
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where 𝜃𝑦𝑖.𝑖  is the intersection angle between 
𝑤

||𝑤||
  and  

𝜗(𝑥) and range of  𝜃𝑦𝑖.𝑖 is [0. 𝜋]. The adaptive parameter 

τ is set based on the range of 𝜃𝑦𝑖.𝑖 [23].   

According to Equations (13) and (14), ||𝜗(𝑥𝑖)|| and 

cos(𝜃𝑦𝑖.𝑖) will affect the loss functions and, both depend 

on the form of 𝜗(𝑥𝑖). In Sub-section 2.2, we formulated 

𝜗(𝑥) well. The hybrid loss function is shown in 

Equation (15) based on 𝐿𝑆𝑜𝑓𝑡−𝑚𝑎𝑥  and 𝐿𝑆𝐴𝐴𝑀 . 

𝐿ℎ𝑦𝑏𝑟𝑖𝑑 𝑙𝑜𝑠𝑠 =
𝛽 𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥 + 𝐿𝑆𝐴𝐴𝑀

𝛽 + 1
 (15) 

Parameter 𝛽 is a value to balance between the Soft-Max 

loss and the SAAM loss. The value of  𝛽 is determined 

based on the value of  𝜃𝑦𝑖.𝑖   as follows: 

𝛽 = {

3.         
𝜋

3
< 𝜃𝑦𝑖.𝑖 ≤ 𝜋;

2.         
𝜋

30
< 𝜃𝑦𝑖.𝑖 ≤

𝜋

3
;

2 × cos (𝜃𝑦𝑖.𝑖).            𝜃𝑦𝑖.𝑖 ≤ 𝜋/30 

  (16) 

According to Equation (16), the range of 𝜃𝑦𝑖.𝑖 is partition 

into three distances, based on which 𝛽 is set. When 
𝜋

3
<

𝜃𝑦𝑖.𝑖  ≤ 𝜋, the angle is big enough to supply enough 

gradient information for training. thus, the Soft-Max 

loss function can classify the activities accurately, and 

we fix the parameter 𝛽 =3. When 
𝜋

30
< 𝜃𝑦𝑖.𝑖 ≤

𝜋

3
, the 

ability of Soft-Max loss to extract discriminative 

features decreases, so we try to reduce its effect on the 

proposed hybrid loss, and 𝛽 is set to 2. As the angle 

decreases, the SAAM loss function can enhance the 

separability of neighboring classes by using parameter 

τ. Thus, when  𝜃𝑦𝑖.𝑖 ≤ 𝜋/30, the effect of Soft-Max loss 

decreases slowly based on 𝜃𝑦𝑖.𝑖, and we set 𝛽 

=2 × cos (𝜃𝑦𝑖.𝑖). In Figure 5, we show the differences of 

the two loss functions on the classification of features, 

including the Soft-Max loss in Equation (13) and the 

hybrid loss in Equation (15). According to Figure 5(b), 

the centers of activity classes are placed in a unit 

hypersphere and are very close to each other. Therefore, 

the angle 𝜃 between the features of two different classes 

is small. The hybrid loss causes the extracted features to 

span across all quadrants of the coordinate space. As 

shown in Figure 5(c), the dispersed distribution of 

features increases the angle between neighboring classes 

and improves the separability. 
 

 

3. EXPERIMENTAL EVALUATION 
 
Several experiments were performed to determine the 

effectiveness of the proposed method. To this end, two 

benchmark datasets were used, which contain the human 

activity of daily living. These data were recorded using 

a combination of environmental sensors and body-

 
2 http://archive.ics.uci.edu/ml 

connected sensors in the environment. The experiments 

were performed using the Keras framework in Python 3 

on a system with Windows 10. The system uses a quad-

core processor with 2.30 GHz speed and a GeForce 

GTX 950M graphics card. Section 3.1 provides a brief 

overview of the datasets used for the evaluation, and 

Section 3.2 describes the evaluation method. Finally, the 

settings of the deep learning methods are presented in 

Section 3.3. 
 

3. 1. Datasets           The proposed method was 

evaluated on two benchmark datasets widely used in 

literature. These datasets include data streams received 

from the sensors embedded in different positions of the 

participants’ bodies. The activity recognition datasets 

usually include various activities such as walking, 

cycling, and goal-oriented activities. In the experiments 

performed in this article, the OPPORTUNITY [36] and 

PAMAP2 [37] datasets were used. The 

OPPORTUNITY dataset has an unbalanced class 

distribution such that most of the samples belong to the 

NULL class. In contrast, the PAMAP2 dataset contains 

a balanced distribution of human activities. These 

datasets are available at the  

UCI Machine learning repository
 2

. 

• OPPORTUNITY 
The OPPORTUNITY dataset [36] includes annotated 

recordings from four subjects performing 17 different 

daily activities in a kitchen scenario. A NULL class also 

exists that is not associated with any of the daily 

activities. The data were collected using body-worn 

sensors. These sensors contain five commercial RS485-

networked XSense inertial measurement units, 12 

Bluetooth acceleration sensors, and commercial 

InertiaCube3 inertial sensors. They were placed on a 

custom-made motion jacket, the limbs, and each foot, 

respectively. These sensors perform sampling with a 

frequency of 30 Hz. During the recordings, for each 

subject, six different runs were recorded. Five runs were 

termed Activity of Daily Life (ADL), and one run was 

termed drill run (Drill). In ADL1 to ADL5, the subjects 

performed all of the different scripted activities, and in 

the Drill, they replicated each activity 20 times. To deal 

with the problem of missing data, 38 sensor channels 

(including accelerometer recordings) were removed and 

the remaining 107-dimensional data were used for our 

experiments. We selected the ADL1-3 and Drill runs as 

the training set and the ADL4-5 runs as the testing set. 

For the segmentation phase, a fixed-length sliding 

window was applied to slicing the data. Based on the 

previous research, a sliding window of 2 s and a sliding 

stride of 3 were used in this article [1]. 

• PAMAP2 
The PAMAP2 Physical Activity Monitoring dataset 

consists of 12 daily living activities, i.e., lie, sit, stand, 
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walk, run, cycle, Nordic walk, iron, vacuum, jump rope, 

ascend, and descend stairs, which are performed by nine 

subjects. The data were recorded by three inertial 

measurement units (accelerometer, gyroscope, and 

magnetometer) and a heart rate monitor attached to the 

participant's hands, chest, and ankles [37]. These sensors 

performed sampling with a frequency of 33 Hz. Data 

were collected in more than 10 hours, and the obtained 

dataset had 52 dimensions. For the segmentation phase, 

sliding windows of 5.12 s were used with 1 s stepping 

between adjacent windows (78% overlap). Runs 1 and 2 

for subject5 were used in the validation set and runs 1 

and 2 for subject6 in the test set. The remaining data 

were used in the train set. 

 

3. 2. Model Evaluation            It is now necessary to 

examine the effectiveness of the proposed method in 

human activity recognition. Since the recognition rate of 

the majority class greatly affects the performance 

statistics in the minority classes and the 

OPPORTUNITY dataset is highly unbalanced (the 

NULL class includes more than 75% of the total data). 

Thus, in addition to the accuracy criterion, the weighted 

F1-score and the average F1-score were used, which 

were independent of the class distribution. The weighted 

F1-score is formulated by Equation (17) as follows: 

weighted F1 − score ( F1W) = ∑ 2 ×𝑖

𝑤𝑖
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑟𝑒𝑐𝑎𝑙𝑙𝑖
 

(17)  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (18) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (19) 

𝑤𝑖 =
𝑚𝑖

𝑀⁄    (20) 

where TP refers to the number of samples correctly 

recognized in the positive class, FP refers to the number 

of samples incorrectly identified in the negative class. 

TN refers to the number of samples correctly recognized 

in the negative class, and FN refers to the number of 

samples incorrectly identified in the positive class. In 

Equation (20), parameter 𝑖 is the class index, 𝑤𝑖  is the 

ratio of data in class 𝑖, 𝑚𝑖  is the number of samples in 

class 𝑖, and 𝑀 is the total number of samples considered.  

The average F1-score is not dependent on the class 

distribution and is formulated by Equation (21) as 

follows: 

average F1 − score (F1A) =
2

𝑚𝑖

∑
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖× 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑟𝑒𝑐𝑎𝑙𝑙𝑖
𝑖   

(21) 

 

 

 
TABLE 2. Settings of hyperparameters related to the deep learning methods 

Model Layer Parameter Value Classifier 

CNN-LSTM-ELM [19] 
2-5 

Convolutional(Kernel Size) (5,1) 

ELM 
Convolutional (sliding stride) (1,1) 

Convolutional(Kernels) 502,403,304,405 

6-7 LSTM (number of neurons) 128 

Hybrid [1] 

2 

Convolutional(Kernel Size) (11,1) 

Soft-Max 

Convolutional (sliding stride) (1,1) 

Convolutional(Kernels) 50 

Convolutional (Pooling Size) (2,1) 

3-4 
LSTM(cells) 27 

Output of LSTM cells 600 

5 Fully connected 512 

Deep ConvLSTM [17] 

2-5 

Convolutional(Kernel Size) (5,1) 

Soft-Max 

Convolutional (sliding stride) (1,1) 

Convolutional(Kernels) 64 

6 LSTM (number of neurons) 128 

7 Fully connected 𝑛𝑐 

Proposed method 

2-4 

Convolutional(Kernel Size) (11,1) 

Hybrid Loss 

Convolutional (sliding stride) (1,1) 

Convolutional(Kernels) 60 

5-6 
LSTM(cells) 27 

Output of LSTM cells 600 
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3. 3. Model Setting               Table 2 shows the settings 

of the hyperparameters related to the four deep learning 

methods used in this article. The network parameters are 

optimized by minimizing the cross-entropy loss function. 

This optimization is done using mini-batch gradient 

descent with the RMSProp update rule. In Table 2, the 

fully connected layers were followed by a Rectified 

Linear Unit (ReLU) activation layer to prepare the non-

linear presentation. Each of the convolution blocks in 

Table 2 includes convolution  layers and ReLU, and in 

the hybrid method, in addition to them, it consists of the 

max-pooling layer. The size of the sliding window 

defined the number of cells in the LSTM layers. In the 

LSTM cells, sigmoid and hyperbolic functions are used 

for gate and other activations, respectively.  After the last 

fully connected layer is used, a classifier layer is 

employed to provide predictions for each class. All 

parameters of the deep learning methods were randomly 

initialized and trained using the ADADELTA optimizer 

[38] with default parameters (initial learning rate of 1) for 

50 epochs. The batch size is set to 100. In this article, the 

sliding time window size (𝑇) and the number of sensor 

channels (𝑛) were fixed at 64 and 107, respectively. 
 

 

4. EXPERIMENTAL RESULTS 
 
In this section, the performance of the proposed method 

is evaluated and analyzed on two benchmark datasets. 

This section is organized as follows: the analysis of the 

results obtained from the proposed method and its 

comparison with other known methods are presented in 

Sub-section 4.1; a comparison between the proposed 

method and three machine learning algorithms is 

provided in Sub-section 4.2. Finally, the performance of 

the Soft-Max and hybrid loss functions are examined in 

Sub-section 4.3. 

 

4. 1. Performance Comparison           A comparison 

between the deep learning methods and the proposed 

method based on the performance parameters is shown in 

Table 3. The performance parameters include the 

accuracy (ACC), weighted F1-score (F1W), and average 

F1-score (F1A). According to Table 3, the proposed 

method has the highest score in terms of overall 

performance on the two defined datasets. 

Specifically, the accuracy, weighted F1-score, and 

average F1-score of the proposed method increased to 

93.13% and 93.28% and 78.12%, respectively, on the 

OPPORTUNITY dataset. The OPPORTUNITY data set 

is imbalanced [36]; this leads to insufficient training in 

all tested methods. Thus, the average F1- score has 

improved less compared to the other performance 

parameters. There is a significant difference between the 

average F1-score in CNN-LSTM-ELM [19] and hybrid 

method [1] with the Deep ConvLSTM method [17], 

which is due to the use of a suitable classifier in the last 

layer and the appropriate number of LSTM layers. One 

of the drawbacks of the CNN-LSTM-ELM method, 

which has led to its low efficiency compared to the 

proposed method, is its strong dependence on the number 

of hidden nodes. According to Table 3, the proposed 

method has increased the average accuracy by 6.75% 

compared to the hybrid method on the two datasets. This 

improvement is due to the extracted discriminative 

features, which significantly enhance intra-class 

compression and inter-class diversity. For a more 

detailed analysis, the results of different deep learning 

methods were compared on each class of the PAMAP2 

dataset. Figure 6(a) illustrates the F1-score of each class 

for our proposed method and the deep learning methods. 

According to Figure 6(a), the lowest efficiency is 

attributed to the "standing" activity. The values of F1-

score in "standing" activity with the Deep ConvLSTM, 

CNN-LSTM-ELM, hybrid, and proposed methods are 

38%, 48%, 54%, and 86%, respectively. Thus, the value 

of the F1-score achieves an increase of 48% by the 

proposed method, compared with the Deep ConvLSTM. 

The highest difference of F1-score between the hybrid 

and proposed methods is related to the "standing" and 

"vacuum cleaning" activities. This significant increase in 

F1-score (related to the "standing" and "vacuum 

cleaning" activities) indicates the high ability of the 

proposed method to determine discriminative features 

because it is a key parameter in identifying activities. The 

proposed method reached an F1-score of 84% in "rope 

jumping"; thus, the F1-score increased by 9% compared 

with the hybrid method. Figure 6(b) illustrates the 

confusion matrixes of all deep learning methods on the 

PAMAP2 dataset. Confusion matrixes contain detailed 

information about the actual and predicted classifications 

conducted by the system; therefore, it determines the 

nature of the classification error. According to Figure 

6(b), the number of classes correctly predicted by the 

proposed method was more than other deep methods. The 

Deep ConvLSTM method only recognized the activities 

of 3 classes correctly, and the most errors in the CNN-

LSTM-ELM and hybrid methods were related to classes 

4, 11, and 1. 

 

 
4. 2. Comparison with Machine Learning 
Algorithms            In order to show the effectiveness of 

the proposed method, a comparison has been made 

between it and machine learning algorithms on the 

OPPORTUNITY dataset. Table 4 shows the results of 

this comparison. A total of 18 hand-crafted features were 

used, including 15 simple statistical values and three 

frequency values, which were calculated on each sensor 

channel independently [1]. In addition, we trained 

machine learning algorithms with extracted features from 

the first layer fully connected to the LSTM network. 
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TABLE 3. Classification performance results (in percent) of the various deep learning methods on the OPPORTUNITY and the 

PAMAP2 datasets 

 OPPORTUNITY PAMAP2 

Method ACC F1W F1A ACC F1W F1A 

Deep ConvLSTM [17] 87.47 87.23 55.49 67.54 66.12 58.76 

CNN-LSTM-ELM [19] 91.34 90.85 70.38 85 83.12 76 

Hybrid [1] 91.76 91.56 70.86 85.12 83.73 76.10 

Proposed method 94.15 94.05 79.12 96.23 96.11 95.78 

 

 

 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 
(b) 

Figure 6. (a) The F1-score of each class of various deep learning methods on the PAMAP2 dataset. (b) Confusion matrix of the deep 

learning methods on the PAMAP2 dataset: 1: rope jumping; 2: lying; 3: sitting; 4: standing; 5: walking; 6: running; 7: cycling; 8: 

Nordic walking; 9: ascending stairs; 10: descending stairs; 11: vacuum cleaning and 12: ironing. 

 

 

 
TABLE 4. Classification performance results (in percent) of proposed method and three machine learning classifiers on the 

OPPORTUNITY dataset 

Method ACC F1W F1A 

SVM 89.96 89.53 63.76 

Random Forest 89.21 87.08 52.45 

Naive Bayes 44.79 52.61 32.81 

LSTM-SVM 91.81 91.62 70.24 

LSTM- Random Forest 91.84 91.63 70.24 

LSTM- Naive Bayes 91.15 91.29 69.03 

Proposed method 94.13 94.28 79.12 
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Figure 7. Heatmaps of cosine similarity of all classes using different loss functions on the PAMAP2 testing dataset: (a) Soft-Max loss; 

(b) hybrid loss 
 

 

There was a significant efficiency improvement for the 

three machine learning algorithms, especially Naive 

Bayes. The highest efficiency was related to the proposed 

method; its average F1-score reached up to 79.12%. This 

high efficiency indicates the ability of the proposed 

method to improve the discrimination capability of 

extracted features.  

 

4. 3. Comparison Between Soft-max and Hybrid 
Losses                The effectiveness of the hybrid loss was 

assessed by comparing its performance with the Soft-

Max loss function. This evaluation was done by 

calculating the cosine similarity (i.e., intra-class and 

inter-class). The heatmap of these similarities on the 

PAMAP2 dataset is presented in Figure 7. The proposed 

method, which has the highest performance on the 

PAMAP2 dataset, is used in this experiment. Features are 

extracted by the hybrid deep learning method for these 

two loss functions. Figure 7(a) and 7(b) show the 

heatmaps of cosine similarity related to the proposed 

method with Soft-Max and hybrid loss functions, 

respectively. As shown in Figure 7(a) the Soft-Max 

function resulted in the least intra-class similarity. Based 

on the results obtained, the hybrid loss can capture 

more discriminative features than the Soft-Max loss 

function. The hybrid loss effectively improved intra-class 

compactness and inter-class variety.  

 

 

5. CONCLUSIONS 
 
This research work applied the combined method based 

on the fuzzy centralized coordinate learning (FCCL) and 

hybrid loss function to deal with two well-known issues 

in sensor-based HAR. The first one is to extract 

discriminative features. For this reason, the extracted 

features are dispersed in the coordinate space by using 

the FCCL.  In this case, intra-class diversity and inter-

class similarity are significantly decreased. The second 

problem is the separability of different user activities by 

using the appropriate classifier. We have used the hybrid 

loss function as the classifier. Two benchmark datasets, 

OPPORTUNITY, and PAMAP2 were used to evaluate 

the performance and compare the proposed method with 

three deep learning methods, i.e., CNN-LSTM-ELM, 

Deep ConvLstm, and hybrid methods.  The results 

showed that the proposed method outperformed all the 

three deep learning methods. In addition, a comparison 

was made between the proposed method and the three 

machine learning algorithms on the OPPORTUNITY 

dataset. The proposed method can improve the 

classification performance compared to the machine 

learning algorithms. Performance was significantly 

improved when the LSTM network was used in the 

machine learning algorithms for feature extraction. 

However, the proposed method could increase the 

discrimination capability of extracted features compared 

with machine learning algorithms. For future research, 

we aim to study the effectiveness of the proposed method 

on the open-set human activity recognition and the use of 

methods to enhance the sequential learning adaptive 

capability. A potential working direction could be using 

of a transfer learning approach (which reuses learned 

previous knowledge) to identify the activities carried out 

by various types of users in different environmental 

situations.  
 

 

6. REFERENCES 
 

1. Li, Frédéric, Kimiaki Shirahama, Muhammad Adeel Nisar, Lukas 
Köping, and Marcin Grzegorzek. "Comparison of feature learning 

methods for human activity recognition using wearable sensors." 

Sensors 18, No. 2, (2018), 679, DOI: 10.3390/s18020679 . 

2. Ogbuabor, Godwin, and Robert La. "Human activity 

recognition for healthcare using smartphones." Proceedings 

of the 2018 10th International Conference on Machine 
Learning and Computing. (2018), 

https://doi.org/10.1145/3195106.3195157. 

3. Khan, Adil Mehmood, Y-K. Lee, Seok-Yong Lee, and T-S. Kim. 
"Human activity recognition via an accelerometer-enabled-

smartphone using kernel discriminant analysis." In 2010 5th 

international conference on future information technology, IEEE, 

(2010), 1-6. DOI: 10.1109/FUTURETECH.2010.5482729. 

https://doi.org/10.3390/s18020679
https://doi.org/10.1145/3195106.3195157
https://doi.org/10.1109/FUTURETECH.2010.5482729


140                                   M. Bourjandi et al. / IJE TRANSACTIONS A: Basics  Vol. 35, No. 01, (January 2022)   130-141                                             

 
4. Shoaib, Muhammad, Stephan Bosch, Ozlem Durmaz Incel, Hans 

Scholten, and Paul JM Havinga. "A survey of online activity 

recognition using mobile phones." Sensors 15, No. 1, (2015), 

2059-2085, https://doi.org/10.3390/s150102059. 

5. Mobark, Mohammed, Suriayati Chuprat, and Teddy Mantoro. 

"Improving the accuracy of complex activities recognition using 
accelerometer-embedded mobile phone classifiers." In 2017 

Second International Conference on Informatics and Computing 

(ICIC), IEEE, (2017), 1-5. DOI: 10.1109/IAC.2017.8280606. 

6. Chen, Zhenghua, Qingchang Zhu, Yeng Chai Soh, and Le Zhang. 

"Robust human activity recognition using smartphone sensors via 

CT-PCA and online SVM." IEEE Transactions on Industrial 
Informatics 13, No. 6, (2017), 3070-3080, DOI: 

10.1109/TII.2017.2712746. 

7. Uddin, Md Taufeeq, Md Muttlaleb Billah, and Md Faisal Hossain. 

"Random forests based recognition of human activities and 

postural transitions on smartphone." In 2016 5th International 

Conference on Informatics, Electronics and Vision (ICIEV), pp. 

250-255. IEEE, (2016), DOI: 10.1109/ICIEV.2016.7760005. 

8. Fan, Liwei, Kim-Leng Poh, and Peng Zhou. "A sequential feature 

extraction approach for naïve bayes classification of microarray 
data." Expert Systems with Applications 36, No. 6, (2009), 9919-

9923. 

9. Bustoni, I. A., I. Hidayatulloh, A. M. Ningtyas, A. Purwaningsih, 
and S. N. Azhari. "Classification methods performance on human 

activity recognition." In Journal of Physics: Conference Series, 

vol. 1456, No.  1, p. 012027. IOP Publishing, (2020). 

10. Georgiou, Theodoros, Yu Liu, Wei Chen, and Michael Lew. "A 

survey of traditional and deep learning-based feature descriptors 

for high dimensional data in computer vision." International 

Journal of Multimedia Information Retrieval 9, No. 3, (2020), 

135-170. 

11. Dargan, Shaveta, Munish Kumar, Maruthi Rohit Ayyagari, and 
Gulshan Kumar. "A survey of deep learning and its applications: 

a new paradigm to machine learning." Archives of 

Computational Methods in Engineering 27, No. 4, (2020), 1071-

1092. 

12. Feizi, A. "Convolutional gating network for object tracking." 

International Journal of Engineering, Transactions A: Basics 

32, No. 7, (2019), 931-939, DOI: 10.5829/ije.2019.32.07a.05. 

13. Hassanpour, M., and H. Malek. "Learning Document Image 

Features With SqueezeNet Convolutional Neural Network." 
International Journal of Engineering 33, No. 7, (2020), 1201-

1207, DOI: 10.5829/ije.2020.33.07a.05. 

14. Chikhaoui, Belkacem, and Frank Gouineau. "Towards automatic 
feature extraction for activity recognition from wearable sensors: 

a deep learning approach." In 2017 IEEE International 

Conference on Data Mining Workshops (ICDMW), 693-702. 

IEEE, (2017), DOI: 10.1109/ICDMW.2017.97. 

15. Panwar, Madhuri, S. Ram Dyuthi, K. Chandra Prakash, 
Dwaipayan Biswas, Amit Acharyya, Koushik Maharatna, Arvind 

Gautam, and Ganesh R. Naik. "CNN based approach for activity 

recognition using a wrist-worn accelerometer." In 2017 39th 
Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), 2438-2441. IEEE, 

(2017), DOI: 10.1109/EMBC.2017.8037349. 

16. Cruciani, Federico, Anastasios Vafeiadis, Chris Nugent, Ian 

Cleland, Paul McCullagh, Konstantinos Votis, Dimitrios 

Giakoumis, Dimitrios Tzovaras, Liming Chen, and Raouf 
Hamzaoui. "Feature learning for human activity recognition using 

convolutional neural networks." CCF Transactions on Pervasive 

Computing and Interaction 2, No. 1, (2020), 18-32. 

17. Ordóñez, Francisco Javier, and Daniel Roggen. "Deep 

convolutional and lstm recurrent neural networks for multimodal 

wearable activity recognition." Sensors 16, No. 1, (2016), 115, 

https://doi.org/10.3390/s16010115. 

18. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Softmax 

units for multinoulli output distributions. Deep Learning." (2018), 

180-184. 

19. Sun, Jian, Yongling Fu, Shengguang Li, Jie He, Cheng Xu, and 

Lin Tan. "Sequential human activity recognition based on deep 

convolutional network and extreme learning machine using 
wearable sensors." Journal of Sensors, (2018), 

https://doi.org/10.1155/2018/8580959. 

20. Huang, Guang-Bin, Hongming Zhou, Xiaojian Ding, and Rui 
Zhang. "Extreme learning machine for regression and multiclass 

classification." IEEE Transactions on Systems, Man, and 

Cybernetics, Part B (Cybernetics) 42, No. 2, (2011), 513-529, 

DOI: 10.1109/TSMCB.2011.2168604. 

21. Liu, Weiyang, Yandong Wen, Zhiding Yu, and Meng Yang. 

"Large-margin softmax loss for convolutional neural networks." 

In International Conference on Machine Learning, vol. 2, No.  3, 

p. 7. (2016). 

22. Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, 
and Le Song. "Sphereface: Deep hypersphere embedding for face 

recognition." In Proceedings of the IEEE conference on computer 

vision and pattern recognition, pp. 212-220. (2017). 

23. Qi, Xianbiao, and Lei Zhang. "Face recognition via centralized 

coordinate learning." arXiv preprint arXiv:1801.05678 (2018). 

24. Huang, Gary B., Marwan Mattar, Tamara Berg, and Eric Learned-
Miller. "Labeled faces in the wild: A database forstudying face 

recognition in unconstrained environments." In Workshop on 

faces in'Real-Life'Images: detection, alignment, and recognition. 

(2008). 

25. Chen, Bor-Chun, Chu-Song Chen, and Winston H. Hsu. "Cross-

age reference coding for age-invariant face recognition and 
retrieval." In European conference on computer vision, pp. 768-

783. Springer, Cham, (2014). 

26. Deng, Weihong, Jiani Hu, Nanhai Zhang, Binghui Chen, and Jun 
Guo. "Fine-grained face verification: FGLFW database, 

baselines, and human-DCMN partnership." Pattern Recognition 

66 (2017), 63-73, https://doi.org/10.1016/j.patcog.2016.11.023. 

27. Zheng, Tianyue, Weihong Deng, and Jiani Hu. "Cross-age lfw: A 

database for studying cross-age face recognition in unconstrained 

environments." arXiv preprint arXiv:1708.08197 (2017). 

28. Wolf, Lior, Tal Hassner, and Itay Maoz. "Face recognition in 

unconstrained videos with matched background similarity." In in 

Computer Vision and Pattern Recognition (CVPR) 2011, pp. 529-

534. IEEE, (2011), DOI: 10.1109/CVPR.2011.5995566 

29. Kemelmacher-Shlizerman, Ira, Steven M. Seitz, Daniel Miller, 

and Evan Brossard. "The megaface benchmark: 1 million faces 
for recognition at scale." In Proceedings of the IEEE conference 

on computer vision and pattern recognition, pp. 4873-4882. 

(2016). 

30. Lara, Oscar D., and Miguel A. Labrador. "A survey on human 

activity recognition using wearable sensors." IEEE 

Communications Surveys & Tutorials 15, No. 3, (2012), 1192-

1209, DOI: 10.1109/SURV.2012.110112.00192. 

31. Lin J, Keogh E, Lonardi S, Chiu B. "A symbolic representation 
of time series, with implications for streaming algorithms". 

InProceedings of the 8th ACM SIGMOD workshop on Research 

issues in data mining and knowledge discovery 2003; 2-11, 

https://doi.org/10.1145/882082.882086. 

32. Cook, Diane J., and Narayanan C. Krishnan. "Activity learning: 

discovering, recognizing, and predicting human behavior from 

sensor data". John Wiley & Sons, (2015). 

33. Lawal, Isah A., and Sophia Bano. "Deep human activity 

recognition with localisation of wearable sensors." IEEE Access 
8, (2020), 155060-155070, DOI: 

10.1109ACCESS.2020.3017681. 

34. Zohrevand, A., Imani, Z. and Ezoji, M.. "Deep Convolutional 
Neural Network for Finger-knuckle-print Recognition". 

International Journal of Engineering, Transactions A: Basics, 

https://doi.org/10.3390/s150102059
https://doi.org/10.1109/IAC.2017.8280606
https://dx.doi.org/10.5829/ije.2019.32.07a.05
https://dx.doi.org/10.5829/ije.2020.33.07a.05
https://doi.org/10.1109/ICDMW.2017.97
https://doi.org/10.1109/EMBC.2017.8037349
https://doi.org/10.3390/s16010115
https://doi.org/10.1155/2018/8580959
https://doi.org/10.1016/j.patcog.2016.11.023
https://doi.org/10.1109/CVPR.2011.5995566
https://doi.org/10.1109/SURV.2012.110112.00192
https://doi.org/10.1145/882082.882086
https://doi.org/10.1109/ACCESS.2020.3017681


M. Bourjandi et al. / IJE TRANSACTIONS A: Basics  Vol. 35, No. 01, (January 2022)   130-141                                            141 

 
2021, Vol. 34, No. 7, 1684-1693, DOI: 

10.5829/ije.2021.34.07a.12. 

35. Gers, Felix A., Nicol N. Schraudolph, and Jürgen Schmidhuber. 
"Learning precise timing with LSTM recurrent networks." 

Journal of Machine Learning Research 3, (2002), 115-143. 

36. Chavarriaga, Ricardo, Hesam Sagha, Alberto Calatroni, Sundara 
Tejaswi Digumarti, Gerhard Tröster, José del R. Millán, and 

Daniel Roggen. "The Opportunity challenge: A benchmark 

database for on-body sensor-based activity recognition." Pattern 

Recognition Letters 34, No. 15, (2013), 2033-2042, 

https://doi.org/10.1016/j.patrec.2012.12.014. 

37. Reiss, Attila, and Didier Stricker. "Introducing a new 

benchmarked dataset for activity monitoring." In 2012 16th 

international symposium on wearable computers, IEEE, (2012), 

108-109. DOI: 10.1109/ISWC.2012.13. 

38. Zeiler, Matthew D. "Adadelta: an adaptive learning rate method." 

arXiv preprint arXiv:1212.5701 (2012). 

39. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 

"Imagenet classification with deep convolutional neural 

networks." Advances in neural information processing systems 25 

(2012), 1097-1105. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Persian Abstract 

 چکیده 
توسعه سریع تکنیک های یادگیری عمیق به محققان در دستیابی موفقیت در این زمینه   .فعالیتهای انسان، یکی از موضوعات تحقیقاتی رایج در سالهای اخیر بوده استتشخیص  

گرایی شبکه و طبقه بندی فعالیت ها چشم اما محققان معمولاً از توزیع ویژگی ها در فضای مختصات با وجود تأثیر قابل توجه آن بر وضعیت هم  .بسیار کمک کرده است

یادگیری   .برای غلبه بر محدودیت توضیح داده شده پیشنهاد می کند  تابع هزینه ترکیبی،  بر یادگیری مختصات متمرکز فازی واین مقاله یک روش ترکیبی مبتنی    .پوشی می کنند

پراکنده در تم بام چهاربخش  مختصات متمرکز فازی باعث می شود که ویژگی ها به صورت  بردارهای ویژگی    ه همین دلیل، از فضای مختصات پخش شوند.  بین  زاویه 

آزمایشات   .روش پیشنهادی، ارائه شده استدر  شخیص  قدرت تافزایش  برای    تابع هزینه ترکیبییک  علاوه بر این ،    .یابدمی    کلاسهای فعالیت به میزان قابل توجهی افزایش

پیشنهادی با شش روش یادگیری ماشین و سه روش یادگیری عمیق برای   روش انجام شده است.  PAMAP2 و OPPORTUNITY ما بر روی مجموعه داده های 

عمل می    روش های مقایسه ای    از تمامیهتربمیز  نتایج تجربی نشان داده است که روش پیشنهادی به دلیل شناسایی ویژگی های تبعیض آ  .تشخیص فعالیت مقایسه شده است

و   PAMAP2درصد درمقایسه با روشهای یادگیری عمیق، به ترتیب بر روی مجموعه داده های    3.96درصد  و    17.01روش پیشنهادی با موفقیت میانگین دقت را تا    .کند

OPPORTUNITY   .بهبود بخشیده است 
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