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A B S T R A C T  
 

 

Industry 4.0 focuses on the deployment of artificial intelligence in various fields for automation of 
variety of industrial applications like aerospace, defence, material manufacturing, etc. Application of 

these principles to active thermography, facilitates automatic defect detection without human 

intervention and helps in automation in assessing the integrity and product quality. This paper employs 
artificial neural network (ANN) based classification post-processing modality for exploring subsurface 

anomalies with improved resolution and enhanced detectability. A modified bi-phase seven-bit barker 

coded thermal wave imaging is used to simulate the specimens. Experimentation has been carried over 
carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic (GFRP) specimens using 

artificially made flat bottom holes of various sizes and depths. A phase based theoretical model also 

developed for quantitative assessment of depth of the anomaly and experimentally cross verified with a 
maximum depth error of 3%. Additionally, subsurface anomalies are compared based on probability of 

detection (POD) and signal to noise ratio (SNR). ANN provides better visualization of defects with 

96% probability of detection even for small aspect ratio in contrast to conventional post processing 
modalities.  

doi: 10.5829/ije.2022.35.01a.08 
 

 
1. INTRODUCTION1 
 

There is a growing demand for applications in load-

bearing structures such as transportation instruments, 

aerospace equipment, wind turbines, and medical 

devices. Therefore, to minimize the essential security 

concerns and maintenance cost, a robust and consistent 

non-destructive testing (NDT) is necessary for testing of 

composite materials [1]. In general, NDT consists of 

various non-invasive inspection techniques [2-3] to 

assess the material properties and structural 

characteristics of the components, or entire processing 

units. The demand for material defect detection 

increases various challenges in NDT [4-6]. Compared to 

traditional NDT methods, infrared thermography is a 

new NDT technology that has evolved rapidly in the 

recent years. 

Active infrared thermography grabs the attention as 

 

*Corresponding Author Institutional Email: parvez@kluniversity.in 

(M. Parvez M.) 

a reason of fast, complete field, non-invasive and non-

contact defect detection characteristics. Several 

categories of active infrared thermography, based on the 

input stimulus are pulse thermography (PT), pulse 

phased thermography (PPT), lock-in thermography 

(LT), and Non-Stationary Thermal Wave Imaging 

(NSTWI). Pulse thermography uses an external heat 

stimulus of high power for a small duration to energize 

the test specimen [7]. The requirement in extreme 

power and effects associated to non-uniform are 

significant limitations for the case of pulse 

thermography. Subsequently, to surmount constraints of 

pulse thermography with a continuous sinusoidal input 

stimulus of low power, the lock-in thermography is 

introduced. In pulse phased thermography phase based 

analysis is performed to explore the subsurface details. 

The investigation is similar to pulse thermography, in 

pulse phased thermography a phase-based analysis is 

performed as like lock-in thermography [8-9]. Since the 

sinusoidal stimulus consists of mono frequency, it can 

probe into a particular depth only. However, in realistic 
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scenario anomalies may occur at different locations. To 

test the realistic scenarios, it is required to perform 

repetitive experiments with altered frequencies which is 

a major constraint for its applicability [10].  Moreover, 

the requirement of high power is the major drawback of 

pulse phased thermography [11]. 

However, to examine an object in single 

experimentation for a small duration of time, non-

stationary thermal wave imaging is used [12]. Linear 

frequency modulated thermography uses frequency 

modulated chirp stimulus of low power through lower 

frequency band towards the test of entire sample during 

a particular investigation. Since the low frequency 

probes deep into the object, it explores the subsurface 

characteristics [13]. Later, quadratic frequency 

modulated thermography uses quadratic chirp. The 

quadratic chirp signal probes more deeply into the 

object than its linear counterpart, and it gives the 

visualization, in-depth details with better contrast [14].  

In recent years, an evolving non-stationary thermal 

wave imaging system with its unique depth resolution 

and defect detection characteristics is Barker coded 

thermal wave imaging (BCTWI). The present work uses 

BCTWI followed by artificial neural network (ANN) 

based on post-processing technique to explore the 

subsurface details. Employing various signal processing 

algorithms, the processing of recorded thermal response 

is handled to obtain the qualitative and quantitative 

subsurface details. The obtained results are compared 

with the metrics via full width at half maxima (FWHM), 

probability of detection (POD), and signal to noise ratio 

(SNR).  

Barker coded thermal wave imaging system is 

implemented in this work to facilitate high depth 

resolution and sensitivity, by suppressing the limited 

resolution and by increasing the depth probing 

capabilities. It was found that detection performance 

and depth resolution can be enhanced by decrease in the 

size of side lobes than main lobe due to concentration of 

greater energy. This can be achieved through the system 

of barker coded thermal wave imaging. In brief, for 

detecting the defects and estimating its relative sizes, 

the neural network basis classification framework was 

implemented. Furthermore, by the way of backscatter 

signals from the concept of BCTWI the quantitative 

depth estimation has been carried out. ANN based 

analysis is ensured to have experimentally enhanced 

reliability, defect detection of artificially created bottom 

holes in the materials of GFRP and CFRP, quantitative 

estimation of depths using BCTWI.  

Organization of manuscript is as follows: section I 

introduces thermography with the necessity for barker 

coded thermal wave imaging and section 2 provides 

theory of barker coded thermal wave imaging technique 

followed by experimentation and processing techniques 

in section 3. Later, section 4 discusses a brief note about 

the results. 

 

 

2. CONCEPT OF THERMAL BARKER CODED 
THERMAL WAVES 
 
A model associated with thermal wave propagation 

based on heat equations involves the backscatter of the 

waves for evaluating the subsurface anomalies and 

validation as well. In BCTWI a code-based stimulus is 

emitted near to test object surface that relatively 

provokes thermal waves close to the surface 

propagating into the interiors of the object [15, 16]. 

Resulting thermal waves that are propagated signifies 

towards the back as of the boundary leading to 

temperature rise above object surface. Also, the 

response of temperature is quantified in resolving a 1D 

heat equation assuming coordinate system to be 

rectangular and is shown in Equation (1).  

 (1) 

Here diffusion coefficient is symbolized as ‘α’, T (x, t) 

denotes instant temperature at a given time instance ‘t’ 

with equivalent value of depth as ‘x’, coded flux having 

peak power is signified as Q0. With the consideration of 

delayed step responses in combination, the excited 

stimulation is given as in Equation (2).  

 
(2) 

where ni=0,1,2,3 and ai =0,3,5,6                                        

Under the adiabatic boundary condition, the equation 

for heat diffusion is solved, i.e., exchange of heat flux 

by backward portion stands at insignificant rate, as 

followed in Equation (3). 

 (3) 

The test object surface is stimulated using BCTWI. 

Over the surface sample, the obtained incident energy 

will be attenuated in a thin layer, further a related heat 

flux is produced on the sample upper surface as in 

Equation (4). 

 (4) 

where ‘k’ indicates thermal conductivity of material, 

presumed not a dependable quantity of temperature and 

finite thickness of the sample is denoted with ‘L’. By 
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solving Equation (1) with the above conditions, the 

specimen’s thermal response is obtained in the 

Laplacian domain is shown by Equation (5). 

 (5) 

The corresponding radiation of the received thermal 

response with the help of an IR sensor with a sampling 

rate of ‘fs’ is captured.  Further, it can be determined by 

using the following equations. 

 

 
where ‘µr’ is infrared absorption coefficient and 

 

 

(6) 

Put  and extract the phase component in 

Equation (6), 

 
(7) 

 

From Equation (7), the extracted phase proportionally 

changes with respect to depth associated with defect, 

which is further applied to estimate the depth of defects. 

 

 

3. EXPERIMENTATION AND PROCESSING 
 

The active thermal wave imaging scheme illustration is 

depicted through Figure 1. In present experimental 

setup, the sample is kept opposite to a pair of halogen 

lights, which are of 1KW power each. The sample is 

stimulated by an optical stimulus with a sweep 

frequency rate of 0.01-0.1Hz for duration of 100 s with 

25Hz frame rate. However, Infrared (IR) camera is 

positioned at one meter opposite to test sample, to 

record the reflected thermal response. The halogen 

lamps were placed to facilitate a uniform illumination. 

The 7-bit barker-coded optical stimulus is enacted 

uniformly on the surface of test sample, then its 

corresponding temperature contrast over the test sample 

will be captured by IR camera [15]. Initially, the 

captured thermal response is processed by using a 

suitable linear fitting procedure to remove the static 

response and to retain the dynamic part of the response. 

The dynamic part of captured thermal response will 

undergo further post processing using suitable signal 

processing techniques and ANN based algorithm to 

analyze the subsurface features.  

 

3. 1. Pre-processing       To minimize the non-

uniformity in the emission, the radiation issues and to 

visualize the subsurface anomalies accurately, signal 

processing algorithms are employed over the dynamic 

part of the recorded response. With the help of 

appropriate linear fitting technique on the recorded 

infrared data, the dynamic part is retained by eradicating 

of static part from the response. 
 

3. 2. Post-processing 

3. 2. 1. FFT Phase         For separation of frequency, the 

FFT phase employs a fast Fourier transform (FFT). In 

the current investigation, over the thermal profile at 

each pixel value the FFT is employed [17]. At each 

frequency component the phase values are determined, 

thereby assigning corresponding phase values of 

frequency components to the respective pixel positions 

in a systematic manner for developing the phase grams. 

Moreover, the phase image constructed exhibits contrast 

phase because of the phase delay associated from 

anomalies of thermal waves at various depths [18]. 

Accordingly, the frequency consistent to the phase 

image demonstrating the determination of defects as 

stated in Equation (8). 

 (8) 

where Fs is rate of capture or sampling frequency, n is 

 

 

 
Figure 1. Pictorial Representation of the active thermal 

wave imaging scheme 

( )
( )

,

xQ s e
T x s

k





−

=

( ) ( )
0

, ,

d

x

rR x w T x w e dx −= 

( ) 3 5 61
1 jw jw jwQ jw e e e

jw

− − − = − − − 

( )
3 5 61 1

,

jw
d

jw jw jwe e e e
R d w

kjw jw jw


 




 
− +  − − −
 

 
 

 − − − −  =   
 +  
  

( )log jre
jw

t



=

1

1

2
tan

14 2 2

2

CZT

a

t
d

t t

t



    
 



−

 
 

= − − − + − 
 + 
 

1

1

7 3
sin sin sin sin

2 2 2 2
tan

7 3
cos cos cos cos

2 2 2 2

t t t t

t t t t

   


   

−

        
+        

        =
        +        
        

SF n
f

N
=



M. Parvez M. et al. / IJE TRANSACTIONS A: Basics  Vol. 35, No. 01, (January 2022)   93-101                                                       96 

quantity of the phase image, and N is quantity of the 

samples in thermal profile. 

 

3. 2. 2. Hilbert Phase           In this method a time 

domain phase is used to discriminate the defective 

locations from its counter parts. In the first stage, 

Hilbert transform based pulse compression is performed 

by using Equation (9). In the next stage, the ordinary 

pulse compression value is determined using Equation 

(10). Further, the time-domain phase of a particular 

pixel is obtained by using Equation (11) [19]. 

 (9) 

Furthermore, in the next phase procedure, the normal 

cross-correlation can be performed among the thermal 

profile as reference and temporal for individual pixels as 

shown in Equation (10). 

 (10) 

Finally, the time domain phase will be obtained using 

 
(11) 

by re-arranging the outcome phase values into 

corresponding positions, the time-domain phase images 

are obtained. 

 

3. 2. 3. Pulse Compression             As per the 

methodology, the attenuation and delay possessed 

through correlated thermal waves are used to 

discriminate the defective locations from its 

counterparts [20]. Initially during the period of stage 1, 

a thermal profile as a reference point is carefully chosen 

as of the exact location of the region that is non-

defective. Later, with the help of reference point the 

interrelationship for the two points said to be the cross-

correlation is conducted, which results a correlation 

coefficient sequence between 0 to 1 using Equation 

(12). These obtained normalized correlation coefficients 

are rearranged into their corresponding pixel locations 

to form correlation images for that delayed instant. The 

correlation contrast in constructed images is helpful to 

visualize the defects. This coefficient contrast obtained 

can be utilized for subsurface feature extraction [21]. 

 
(12) 

Figure 2 shows the block diagram representation of 

various signal processing methods [21]. Figures 2a and 

2b show the processing approaches steps for obtaining 

the frequency domain-based results whereas Figure 2c 

shows the processing steps to obtain time-domain phase 

results. 

 
Figure 2. Block diagram representation of various singnal 

processing approaches 

 
 
3. 2. 4. Artificial Neural Network                   Based on 

the research undertaken in the area of Inverse Heat 

Transfer Problem (IHTP), this study aims for 

quantitative and qualitative detection of defects through 

ANN based model, which is further validated 

experimentally [22]. 
The Artificial Neural Networks (ANN) have been 

widely used to classify the information regarding 

subsurface characteristics qualitatively and 

quantitatively. This contribution focuses on qualitatively 

assessing the subsurface anomalies using classification-

based modality using ANN and quantitatively 

visualizing the depth of anomalies using phase-based 

depth assessment using BCTWI. Generally, ANNs 

comprise of units that are interconnected which are 

termed as artificial neurons as depicted in Figure 3. 

Input layer (Input) is considered as temporal thermal 

profile information and associated parameters (neurons) 

offer over the output (output layer), correspondingly the 

other neurons from the view are hidden (hidden layers). 

Based on the interconnection between neurons, the 

network membership function is determined, in which 

the connections are not simple, merely particular non-

linear functions [23-25]. The network utilizes multilayer 

perceptron NN using 250 input nodes. The network 

employs successive hidden layers which has nodes 

about 50 and 25, respectively. These nodes were used 

for training and analysis partitioning as two targets 

carrying single output node which is signified as 

targeted areas of defective and non-defective regions. 

For detection and quantification assessment, a tan- 

sigmoid activation function is utilized in combination 

with the back propagation neural network (BPNN). 

Through the classification based supervised learning, 

the detection and quantification of irregularity 

characteristics including depth and location is conducted 

in the range of two successive actions. The temporal 
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sequence of the thermograms is first recorded, later 

training vectors are formed correspondingly to the data 

acquisition. In a sequence, input count is equivalent to 

the thermogram count using which training vectors are 

formed. After the adjustment of weights through back 

propagation, the outputs offered are defected and non-

defected region. 

 
3. 2. 4. 1. Clasiification Mode for Anomaly 
Detection           To model and detect the features of 

subsurface of inverse thermography problem, the 

classification employs the phases of training and testing 

phase. The temporal thermal response of defect spots 

resembles the unique characteristics of subsurface 

anomalies in the terms of delay and attenuation, but 

non-defective points retain similar properties that 

employs in classifying defect points for particular 

methodology. In the phase of training, the removal of 

mean thermal profile at some defect-free spots (100 

intended for the case) were down sampled further 

utilized for network training. In which the network has 

achieved 100 times targeting "0" over such period of 

150 s with the system configuration of Intel 7 processor 

with specifications of 16 GB RAM, 512 GB SSD. 
For recognition, the data provided during the test 

phase should be classified into defective and non-

defective points. Each down converted pixel in the case 

of temporal thermal can be given as input i.e., input 

layer, then propagates additional to the hidden layer 

besides eventually stretched to the output layer, which 

produces whichever a defective or a non-defective class. 

It uses a backpropagation algorithm to set weights and 

generate binary values based on the state of the output. 

The Backpropagation (BP) algorithm uses the method 

of gradient descent to seek the minimum of the error 

function by optimal weight nodes [17]. Consider a 

Neural Network (NN) with k inputs and l outputs, in 

which, 𝑤𝑖𝑗 is the weight associated with the 

interconnection between the   node of one layer and the 

node of the next layer. Besides, are denoted by the input 

and target of the dataset respectively; is the outputs of 

neural networks with the inputs. The minimized error 

function of the network is described as Equation (13). 
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The BPNN aims to look for a local point that represents 

a minimum of the error function. The initial weights are 

selected stochastically by the BP algorithm. In the next 

stage, to correct initial weight, using an iterative process 

of gradient descent, the error function computes 

repeatedly [23] using Equation (14). 
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The weight’s updating of BPNN can be obtained by 

using Equation (16). 
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where, 𝛾 is the constant or learning rate of NN, and 𝜉(𝑡) 
is a stochastic term. Defective areas can be 

characterized with "1" and non-defective areas can be 

characterized by "0". Consequently, with the detection 

outcome, all pixels exist under thermogram can be 

further categorized as non-defective or defective areas 

of the test sample [22-23]. 

 

3. 2. 4. 2. Estimation of Depth           In order to 

estimate and visualize the depths quantitatively, Fast 

Fourier transform is applied over each and every 

thermal profile pertaining to each pixel location in view 

and corresponding phase images were developed. Chirp 

z transform is applied over selected range of frequencies 

[26] about the frequency corresponding to the best 

phase image possessing all the subsurface details. 

Further, this phase value is converted to the 

corresponding depth value using Equation (7) and phase 

value of each pixel in view is represented with this 

corresponding value quantitatively in Figure 10; thus, 

the subsurface features will be represented in terms of 

their corresponding depths for ease of further analysis. 
 

 

 
Figure 3. Block diagram of neural network used for 

classification of defects 
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4. RESULTS AND DISCUSSIONS 
 

With the two samples of Glass fiber reinforced plastic 

(GFRP) and Carbon fiber reinforced plastic (CFRP), the 

experimentation has been undertaken to assess the 

proposed approach. The GFRP sample consists of 10 

Teflon patches with different size variations at two 

different depth value. Whereas the CFRP sample 

comprises of 12 artificially made flat bottom holes with 

size variations at variety of depth rates as depicted in 

Figure 4.  

By means of 7-bit barker coded optical stimulus, the 

sample to be tested has been energized for a time period 

of 100s.  The pair of halogen lamps, which are of 1 kW 

power each one is focused on the test sample. With the 

help of camera that is maintained at 1m distance to the 

test sample holding specifics of FLIR SC 655A IR with 

spectral range of 7.5-14µm and 25 fps, the temporal 

thermal response has been captured from the surface 

region of test sample. Figure 5 depicts the set up for 

experimentation for active infrared thermography. 

 

 

 
Figure 4. Experimental a. GFRP and b. CFRP specimen & 

Layout of c. GFRP and d. CFRP specimen 

 

 

 
Figure 5. Active infrared tehrmography experimental setup 

To obtain subsurface features using a suitable post-

processing method, the mean from thermal profiles is 

removed to extract the dynamic response of each pixel. 

In comparison with conventional methods for 

processing such as PC, FFT phase, Hilbert phase and 

ANN based method is also implemented against 

detrended (detached mean) contour profile for 

extracting the details of subsurface. Figure 6 represents 

the processed results to visualize the subsurface details 

by using different post processing methods and 

proposed ANN method for experimental specimen of 

GFRP. Figure 7 illustrates the subsurface details of 

CFRP sample by means of different post processing 

methods and proposed ANN methodology.  

Figures 6d and 7d show the artificial neural 

network-based classification modality exhibits all the 

defects with good contrast and better visualization. 

Among several processing approaches, the artificial 

neural network offers superior detectability with good 

contrast. 

Eventually, the detectability of several processing 

methods can be measured by the help of signal to noise 

ratios (SNR). The calculation of SNR of individual 

pixel is done by means Equation (17) for which the 

mean of the defective and non-defective area along with 

standard deviation of the non-defective region are 

 

 

 
Figure 6. Outputs of a. FFT Phase b. Hilbert phase c. Pulse 

compression d. Aritificial neural networks for GFRP sample 

 

 

 
Figure 7. Outputs of a. FFT Phase b. Hilbert phase c. Pulse 

compression d. Aritificial neural networks for GFRP sample 



99                                      M. Parvez M. et al. / IJE TRANSACTIONS A: Basics  Vol. 35, No. 01, (January 2022)   93-101                                                      

calculated [27]. The SNR’s of CFRP and GFRP samples 

for various processing methods and proposed ANN 

method is represented in Figures 8 and 9, respectively. 

It is clear from the Figures 8 and 9; the artificial neural 

network-based methodology provides us better results 

compared to that of other processing methodologies. 

 
(17) 

 

4. 1. Analysis for Quantitative Depth             FFT is 

applied over thermal profile and corresponding phase 

images were generated among them phase gram at 

0.01hz is presenting all the subsurface details hence, the 

frequency band 0.005-0.015hz is zoomed with 8192 

samples and observing corresponding phase values the 

phase gram at 0.01056hz is presented the defects very 

clearly. Hence corresponding phase values of the 

defects were taken for quantification leading to the 

depth estimation as shown in Figure10 of CFRP. 
  

4. 2. Defect Sizing         The full width at half maxima 

(FWHM) method has utilized for calculation of defect 

sizing [27]. The sizing of defects at different depths of 

the GFRP sample for different processing methods has 

been computed, and the obtained values are shown in 

Table 1. The size estimated from the artificial neural 

network nearly resembles that of the actual defect size. 
 

 

 
Figure 8. SNR for processed results of GFRP data 

 

 

 
Figure 9. SNR for processed results of CFRP data 

4. 3. Probability of Detection (POD)        As per the 

industrial requirements processing method mush 

possess the high reliability in terms of defect detection 

even for small aspect ratios, reliability of the proposed 

modality is evaluated through POD [27-28]. 
Figure 11 depicts about the estimate of POD as well 

as aspect ratio of a variety of post-processing techniques 

such as artificial neural networks (ANN), pulse 

compression (PC), Hilbert phase (HP), and phase 

analysis (FFT). From the above figure, the ANN has the 

highest Probability of detection even for small aspect 

ratios as compared to the other post-processing 

methodologies. 
 

 

TABLE 1. Comparison of processed data for full width half 

maxima 

Sample Defect 
Actual 

Size (mm) 

FFT 

Phase 
HP PC ANN 

GFRP 

a 15 14.11 14.22 14.32 15.12 

b 10 9.21 9.13 9.7 10.12 

c 7 6.12 7.62 6.48 7.01 

d 5 4.63 4.31 4.82 5.11 

e 3 2.68 2.64 2.83 3.03 

 
 

 
Figure 10. Defects involved for CFRP samples in respective 

to depth verses phase constrast 

 

 

 
Figure 11. Curve of POD for various post-processing methods 

mean of defective area-mean of non defective area
SNR(dB)=

standard deviation of non defective area
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5. CONCLUSION 
 

To detect and differentiate subsurface anomalies in the 

experimentation of GFRP and CFRP specimens, the 

artificial neural network-based classification technique 

is employed using BCTWI. By exerting the 

experimental validation, the capability of the proposed 

ANN-based approach has been demonstrated. A phase 

based theoretical model was developed with a 

maximum depth error of 3%. The obtained results 

evident for the estimation of sizing by applying full 

width at half maxima with an average error percentage 

of 4.2 including the reliability at the combined analysis 

of POD based assessment. SNR is also considered to 

further validate the potentiality of detecting the defects. 

Based on the above validation parameters the analysis 

dependent on ANN technique holds by experimentation 

is achieved with enhanced reliability, detection of depth 

and evaluation of the subsurface anomalies 

quantitatively by employing BCTWI. 
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Persian Abstract 

 چکیده 
برای اتوماسیون انواع کاربردهای صنعتی مانند هوافضا ، دفاع ، تولید مواد و غیره تمرکز دارد. کاربرد این اصول در بر استقرار هوش مصنوعی در زمینه های مختلف    4.0صنعت  

این مقاله از روش طبقه ترموگرافی فعال ، تشخیص خودکار نقص را بدون دخالت انسان تسهیل می کند و در ارزیابی. یکپارچگی و کیفیت اتوماسیون کمک می کند محصول  

برای بررسی ناهنجاری های زیر سطحی با وضوح بهتر و قابلیت تشخیص بیشتر استفاده می کند. برای شبیه سازی نمونه ها از یک   ANN)ندی مبتنی بر شبکه عصبی مصنوعی )ب

و پلاستیک تقویت   (CFRP)یت شده با الیاف کربن  تصویربرداری موج حرارتی هفت مرحله ای اصلاح شده با پارکر استفاده می شود. آزمایش بر روی نمونه های پلاستیکی تقو

عمق   با استفاده از سوراخ های ته صاف مصنوعی در اندازه ها و اعماق مختلف انجام شده است. یک مدل نظری مبتنی بر فاز نیز برای ارزیابی کمی (GFRP)شده با الیاف شیشه 

و   (POD)تأیید شده است. علاوه بر این ، ناهنجاری های زیر سطحی بر اساس احتمال تشخیص    cross  3ناهنجاری توسعه یافته و به صورت تجربی با حداکثر خطای عمق  

احتمال تشخیص حتی در نسبت ابعاد کوچک در مقایسه با روشهای معمول پردازش   ٪96تجسم بهتری از نقایص با    ANNمقایسه می شوند.    SNR)نسبت سیگنال به نویز )

 پست فراهم می کند.

 


