
IJE TRANSACTIONS B: Applications  Vol. 34, No. 11, (November 2021)    2545-2556 
 

  
Please cite this article as: N. Emami, M. Kuchaki Rafsanjani, Extreme Learning Machine Based Pattern Classifiers for Symbolic Interval Data, 
International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 05, (2021)   2545-2556 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Extreme Learning Machine Based Pattern Classifiers for Symbolic Interval Data 
 

N. Emami*a, M. Kuchaki Rafsanjanib 
 
 a Department of Computer Science, Faculty of Engineering and Basic Sciences, Kosar University of Bojnord, Iran 
b Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 28 April 2021 
Received in revised form 11 September 2021 
Accepted 28 September 2021 

 
 

Keywords:  
Interval Data 
Classification 
Extreme Learning Machine 
Data Analysis  

 
 

 
 
 
 
 
 

 

A B S T R A C T  
 

 

Interval data are usually applied where inaccuracy and variability must be considered. This paper 

presents a learning method for  Interval Extreme Learning Machine (IELM) in classification. IELM 

has two steps similar to well known ELM. At first weights connecting the input and the hidden layers 
are generated randomly and in the second step, ELM uses the Moore–Penrose generalized inverse to 

determine the weights connecting the hidden and output layers. In order to use Moore–Penrose 

generalized inverse for determining second layer weights in IELM, this paper proposes four 
classification methods to handle symbolic interval data based on ELM. The first one uses a midpoint of 

intervals for each feature value then it applies a classic ELM. The second one considers each feature 

value as a pair of quantitative features and implements a conjoint for classic extreme learning machine. 
The third one represents interval features by their vertices and performs a classic extreme learning 

machine as well. The fourth one takes each interval as a pair of quantitative features after that two 

separated classic extreme learning machines are performed on these features and combines the results 
accordingly. Algorithms are tested on the synthetic and real datasets. A synthetic dataset is applied to 

determine the number of hidden layer nodes in an IELM. The classification error rate is considered as a 

comparison criterion. The error rate obtained for each proposed methods is 19.167%, 15% , 6.536%  
and 18.333% respectively. Experiments demonstrate the usefulness of these classifiers to classify 

symbolic interval data. 

doi: 10.5829/ije.2021.34.11b.17 
 

 

NOMENCLATURE 

𝑎𝐿 Lower limit of interval L Hidden nodes 

𝑎𝑈 Upper limit of interval 𝑤𝑖 First layer weight vector 

𝑎𝑀 Midpoint of interval 𝛽𝑖 Second layer weight vector 

k Positive scalar 𝑏𝑖  Bias 

K Number of classes  G(.) Activation function 

F Increasing function  H Hidden layer output matrix of the neural network 
i/j Index �̂� approximation 

N Number of sample 𝐻+ Moore-Penrose inverse of matrix H. 

𝑥𝑖 The ith sample 𝑓𝑖𝑗
𝐿 The lower limit of the jth feature of the ith sample 

𝑡𝑗  The jth target 𝑓𝑖𝑗
𝑈 The upper limit of the jth feature of the ith sample 

𝑜𝑗 The jth output 𝑓𝑖𝑗
𝑀 The midpoint of the jth feature of the ith sample 

p Number of features 𝛾𝑖 Length of interval 

 
1. INTRODUCTION1 
 

In real-life situations, there is imprecise and 

incompleteness in the feature values [1-6]. It is suitable 
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to apply interval feature value for data [7-11]. Interval 

data offer a way of representing the available 

information where uncertainty or variability must be 

taken into account [12]. Analyzing and modeling for 

interval data have raised in the field of Symbolic Data 

Analysis (SDA) [13]. It is introduced as a new domain 

in multivariate analysis, pattern recognition and 
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artificial intelligence scope. SDA aims to provide 

suitable methods (clustering, factorial techniques, 

decision trees, etc.) for managing aggregated data 

described by multi-valued variables, where the cells of 

the data table contain the sets of categories, intervals or 

weight (probability) distributions [14,15 ]. 

Several clustering methods have been proposed for 

interval data. A fuzzy clustering method is used for 

analyzing interval-valued data which is introduced by 

D’Urso  et al. [16]. A preferential interval-valued fuzzy 

c-means algorithm for remotely sensed imagery 

classification is presented by Feng et al. [17]. A method 

for dealing with hierarchical clustering for interval-

valued data has been proposed by Galdino and Maciel 

[18]. A new interval possibilistic fuzzy c-means 

(IPFCM) clustering method is proposed for clustering 

symbolic interval data [19]. A multivariate outlier 

detection method for interval data is proposed by Silva 

et al. [20] that makes use of a parametric approach to 

model the interval data. A simulation study 

demonstrates the usefulness of the robust estimates for 

outlier detection, and new diagnostic plots allow gaining 

deeper insight into the structure of real world interval 

data. A robust partitioning fuzzy clustering algorithm 

for interval-valued data based on adaptive city-block 

distance that takes into account the relevance of the 

variables according to the boundaries is proposed [21]. 

This distance changes at each iteration of the algorithm 

and is different from one cluster to another. The method 

optimizes an objective function by alternating three 

steps to compute the representatives of each group, the 

fuzzy partition, and the relevance weights for the 

interval-valued variables for each boundary is 

investigated. 

Several supervised classification methods are 

directed toward developing efficient tools related to 

interval data. A symbolic classifier as a region-oriented 

approach for the quantitative, categorical, interval, and 

categorical multi-valued data was introduced by Rizo 

Rodríguez and de Assis Tenório de Carvalho [22]. This 

approach is an adaptation of the concept of mutual 

neighbors to define the concepts of mutual neighbors 

between symbolic data and Mutual Neighbourhood 

Graph (MNG) between groups. At the end of the 

learning step, the symbolic description of each group is 

obtained through the use of an approximation of a MNG 

and a symbolic join operator. In order to reduce the 

complexity of the learning step without compromising 

the classifier performance with regarding to the 

prediction accuracy another MNG approximation is 

proposed [23]. A region-oriented approach in which 

each region is determined by the convex hull of the 

objects belonging to a class was introduced by 

D’Oliveira et al. [24].  A generalization of binary 

decision trees to predict the class membership of 

symbolic data is presented in literature [25]. A novel 

approach by Singh and Huang [26],  in order to solve 

the problems of classification and decision-making by 

employing the interval-valued fuzzy sets, rough sets and 

granular computing (GrC) concepts. A novel approach 

which is introduced in literature [27] is a  generalization 

of probabilistic neural network for interval data 

processing that can be used in classifying interval 

information.  Generalized multi-perceptions to work 

with interval data are mentioned in literature [28]. The 

fuzzy radial basis function network to work with 

symbolic data was introduced by mali and Mitra [29]. A 

lazy-learning approach that extends K-Nearest Neighbor 

classification to modal and interval data is stated in 

literature [30]. A new model from multilayer perceptron 

based on interval arithmetic  where inputs and outputs 

are considered as interval values but weights and biases 

are considered as single-values introduced in literature 

[12]. Different pattern classifiers for interval data based 

on the logistic regression methodology have been 

presented by De Souza et al. [31]. 

Lately, the Extreme Learning Machine (ELM) has 

been proposed by Huang [32-34]. It is derived from the 

single-hidden layer feed forward neural networks 

(SLFNs) and has an input and hidden layer. There are 

two steps for computing weights in ELM. In the first 

step, the weights are generated randomly between the 

input and hidden layer. The second step applies the 

Moore–Penrose generalized inverse to specify the 

weights connecting between the hidden and output 

layer. 
We proposed four ELM based pattern classifiers for 

symbolic interval data.  Inputs are vectors with interval 

components and output are crisp. Also, the weights and 

biases are real numbers. The first one uses the midpoint 

of intervals for each feature and uses a classic ELM. 

The second one considers each feature values as a pair 

of quantitative features and applies a conjoint classic 

ELM. The third one is represented by its vertices and 

performes classic ELM. The fourth one takes each 

interval as a pair of quantitative features and then it 

performes two separate classic ELM on these features 

and combines the results in suitable way. The main 

contributions of this paper are: 

• Classification of aggregated data described by 

multi-valued features.  

• Providing some ways in which interval data can be  

compatible for Moore-Penrose inverse calculation 

in the second layer of ELM.  

• Reducing the classification error rate. 

The rest of the paper is organized as follows: section 

2 points out some important preliminaries, section 3 

introduces proposed pattern classifiers for interval data 

based on ELM. The performance of these classifiers is 

based on the prediction error rate Experimental data and 

results have been presented in section 4 and the 

performance results on the car interval dataset are 
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shown. Disscussion over the proposed methods can be 

found in section 5. Finally, section 6 concludes the 

paper.   

 
 
2. PRELIMINARIES 
 

This section describes preliminaries about interval 

arithmetic and original ELM. 

 

2. 1. Interval Arithmatic       Interval arithmetic was 

early introduced as a technique for considering 

uncertainty, inaccuracy or variability. It works by 

expressing every uncertainty quantity as a range of 

possible values. The size of this range (or interval) 

expresses the uncertainty associated with the quantity 

[7, 35, 36]. An interval number A is a closed interval 

[𝑎𝐿 , 𝑎𝑈]⊂ R of all real numbers that including the end 

points 𝑎𝐿 𝑎𝑛𝑑 𝑎𝑈, such that 𝑎𝐿 ≪ 𝑎𝑢. If 𝑎𝐿 = 𝑎𝑢 then 

interval is called to be degenerated, thin or even point 

interval. Let interval number  𝐴 = [𝑎𝐿 , 𝑎𝑈]𝑎𝑛𝑑 𝐵 =
[𝑏𝐿 , 𝑏𝑈] ⊂  𝑅. Intervals are produced for each arithmetic 

operation in Equations (1)-(6). 

[𝑎𝐿, 𝑎𝑈] + [𝑏𝐿, 𝑏𝑈] = [𝑎𝐿 + 𝑏𝐿, 𝑎𝑈 + 𝑏𝑈]  (1) 

[𝑎𝐿, 𝑎𝑈] − [𝑏𝐿, 𝑏𝑈] = [𝑎𝐿 − 𝑏𝐿, 𝑎𝑈 − 𝑏𝑈]   (2) 

[𝑎𝐿, 𝑎𝑈] × [𝑏𝐿, 𝑏𝑈] = [min(𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑢, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈),  

max (𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑢, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈)] 
(3) 

𝑘 × [𝑎𝐿, 𝑎𝑈] = [𝑘𝑎𝐿, 𝑘𝑎𝑈] (4) 

𝐹([𝑎𝐿, 𝑎𝑈]) = [𝐹(𝑎𝐿), 𝐹(𝑎𝑈)] (5) 

𝑎𝑀 =
𝑎𝐿+𝑎𝑈

2
  (6) 

 

2. 2. Extreme Learning Machine (ELM)        The 

mathematical modeling of the ELM describes here [33]. 

Consider N arbitrary samples(𝑥𝑖 , 𝑡𝑖),where 𝑥𝑖 =
[𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑝]

𝑇 ∈ 𝑅𝑝and 𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚]
𝑇 ∈ 𝑅𝑚, 

a standard Single Layer Feed Forward Neural 

Network(SLFN) with L hidden nodes can approximate 

these N samples with zero error means ∑ ‖𝑜𝑗 − 𝑡𝑗‖
𝐿
𝑗=1 =

0; i.e., there exist (𝑤𝑖 , 𝑏𝑖) and 𝛽𝑖 such that 

∑ 𝛽𝑖𝐺(𝑤𝑖 , 𝑏𝑖 , 𝑥𝑗)
𝐿
𝑖=1 = 𝑡𝑗 ,        𝑗 = 1, … ,𝑁    (7) 

Equation (7) can be written in compact form as 𝐻𝛽 =
𝑇  where  

𝐻 = [
ℎ(𝑥1)
⋮

ℎ(𝑥𝑁)
] = [

𝐺(𝑤1, 𝑏1, 𝑥1) … 𝐺(𝑤𝐿, 𝑏𝐿, 𝑥1)
⋮ ⋯ ⋮

𝐺(𝑤1, 𝑏1, 𝑥𝑁) … 𝐺(𝑤𝐿, 𝑏𝐿, 𝑥1)
]

𝑁×𝐿

  

𝛽 = [
𝛽1
𝑇

⋮
𝛽𝐿
𝑇
]

𝐿×𝑚

 𝑎𝑛𝑑  𝑇 = [
𝑇1
𝑇

⋮
𝑇𝑁
𝑇
]

𝑁×𝑚

  

The ith column of H is the ith hidden node output with 

respect to inputs 𝑥1, 𝑥2, … , 𝑥𝑁. 

Figure 1 shows the overal scheme of ELM. weights 

are selected randomly in the input layer but weights in 

the hidden layer need to be adjusted based on the 

training samples. Therefore, we have the linear system 

𝐻𝛽 = 𝑇 to find a least squares solution �̂� such that 

‖𝐻�̂� − 𝑇‖ = min
𝛽
‖𝐻𝛽 − 𝑇‖    (8) 

The smallest norm least square solution of Equation (8) 

is �̂� = 𝐻+𝑇. 

 

 

3. PROPOSED ELM CLASSIFIERS  FOR INTERVAL 

DATA 

 

In this section, MELM, JELM, VELM and LUELM 

pattern classifiers based on ELM for interval data are 

presented. In all these methods, the weights are real. 

The first layer weights are selected randomly and the 

second layer weights are learned by training data. 

Afterwards, the learned weights are used to assign new 

samples to the classes. 

Suppose (𝑥𝑖 , 𝑡𝑖), 𝑖 = 1, … , 𝑁, be a training symbolic 

sample set with K class labels. Sample ith presents by 

interval features {𝑓𝑖1, 𝑓𝑖2, … . 𝑓𝑖𝑝} which 𝑓𝑖𝑗 =

[𝑓𝑖𝑗
𝐿 , 𝑓𝑖𝑗

𝑈] , 𝑗 = 1,2, . . . , 𝑝 and a categorical discrete 

variable 𝑡𝑖 ∈ {1,2, …𝐾}.  
Let p, 𝑁 and m to be the number of neurons for the 

input, hidden and output layers, respectively. The 

weight vector connecting the input and the ith hidden 

layers is denoted by 𝑤𝑖 = [𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑝]
𝑇  ∈ 𝑅𝑝  and 

𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑚]
𝑇  ∈ 𝑅𝑚, 𝑖 = 1,2, … , 𝑁 and 𝑏𝑖 

denotes the threshold of the ith hidden node for 𝑖 =
1,2, … , 𝑁. An 

activation function g(.) is used for the hidden and output 

layers. 
 

 

3. 1. MELM       This method uses the midpoint of the 

intervals in the representation of interval data. That 

means a feature 𝑓𝑖𝑗 = [𝑓𝑖𝑗
𝐿 , 𝑓𝑖𝑗

𝑈]  is represented by 𝑓𝑖𝑗
𝑚 =

𝑓𝑖𝑗
𝐿+𝑓𝑖𝑗

𝑈

2
. Therefore each symbolic interval training sample 

i has a vector of p features midpoint 𝑥𝑖
𝑀 =

[𝑓𝑖1
𝑀, 𝑓𝑖2

𝑀, … , 𝑓𝑖𝑝
𝑀] that are fed as an input to the network. 

Then weights are selected randomly in the input layer 

and the second layer weights are earned by solving the 

linear system 𝐻𝛽 = 𝑇. The smallest norm least square 

solution of the linear system is 𝛽 = 𝐻+𝑇. So 𝛽 

coefficient learned by training samples is being applied 

in the classification of interval data. Algorithm1 

summerises the proposed MELM. 
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Figure 1. Overall Scheme of ELM 

 

 

3. 2. JELM       Here,  pattern classifier is introduced 

which utilises the lower and upper bounds of the 

intervals conjointly. Sample interval training data are 

𝑥𝑖 = [[𝑓𝑖1
𝐿 , 𝑓𝑖1

𝑈], [𝑓𝑖2
𝐿 , 𝑓𝑖2

𝑈], … , [𝑓𝑖𝑝
𝐿 , 𝑓𝑖𝑝

𝑈]].  In order to  

consider the lower and upper bounds of the intervals 

conjointly, each sample has been represented by 2p 

feature values 𝑥𝑖 = [𝑓𝑖1
𝐿 , 𝑓𝑖1

𝑈, 𝑓𝑖2
𝐿 , 𝑓𝑖2

𝑈, … , 𝑓𝑖𝑝
𝐿 , 𝑓𝑖𝑝

𝑈]. These 

vectors are being fed as inputs to the ELM.  

The first layer weights are being produced randomly 

and for the second layer we need to solve the linear 

system 𝐻𝛽 = 𝑇. The smallest norm least square solution 

of the linear system comes from training samples and 

we have equation 𝛽 = 𝐻+𝑇. After we find the 

approximate weights by training data, classification can 

be done.  Algorithm 2 summerises  the proposed JELM.  

 

3. 3. VELM       This subsection introduces a method 

based on ELM by employing the vertices of the 

hypercube for symbolic interval data. Suppose a 

symbolic interval vector is shown by 𝑥𝑖 =

[[𝑓𝑖1
𝐿 , 𝑓𝑖1

𝑈], … , [𝑓𝑖𝑝
𝐿 , 𝑓𝑖𝑝

𝑈]] that have 2𝑝 vertices in 𝑅𝑝 

space. It can be described by a matrix 
 

 

ALGORITHM 1: Pseudocode of MELM 
MELM algorithm 

Input: Given interval training set 

𝑥𝑖 = ( [[𝑓𝑖1
𝐿 , 𝑓𝑖1

𝑈], … , [𝑓𝑖𝑝
𝐿 , 𝑓𝑖𝑝

𝑈]] , 𝑇𝑖), 𝑖 = 1, . . , 𝑁 

Output: class label 
1. Calculate the midpoint of intervals  

𝑥𝑖
𝑀 = [𝑓𝑖1

𝑀, . . , 𝑓𝑖𝑝
𝑀] ∈ 𝑅𝑝 

2. Randomly assign the input weights 𝑤𝑖 and bias 𝑏𝑖 
3. Calculate the hidden layer output matrix H 

4. Calculate the output weights matrix as �̂� = 𝐻+𝑇  

5. Calculate the class label based on  �̂� coefficient 

 

ALGORITHM 2: Pseudocode of JELM 
JELM algorithm 

Input: Given interval training set. 

𝑥𝑖 = ( [[𝑓𝑖1
𝐿 , 𝑓𝑖1

𝑈], … , [𝑓𝑖𝑝
𝐿 , 𝑓𝑖𝑝

𝑈]] , 𝑇𝑖), 𝑖 = 1, . . , 𝑁 

Output: class label 
1. Consider lower and upper bounds of the intervals 

conjointly 

 𝑥𝑖 = [𝑓𝑖1
𝐿 , 𝑓

𝑖1
𝑈 , 𝑓

𝑖2
𝐿 , 𝑓

𝑖2
𝑈 , … , 𝑓

𝑖𝑝
𝐿 , 𝑓

𝑖𝑝
𝑈 ] ∈ 𝑅2𝑝, 𝑖 = 1, . . , 𝑁 

2. Randomly assign the input weights 𝑤𝑖 and bias 𝑏𝑖 
3. Calculate the hidden layer output matrix H 

4. Calculate the output weights matrix as �̂� = 𝐻+𝑇  

5. Calculate the class label based on  �̂� coefficient 

𝑀 =

(

 
 
 

𝑓𝑖1
𝐿 ⋯ 𝑓𝑖𝑝

𝐿

𝑓𝑖1
𝐿 … 𝑓𝑖𝑝

𝑈

⋮
𝑓𝑖1
𝑈

𝑓𝑖1
𝑈

⋱
…
…

⋮
𝑓𝑖1
𝐿

𝑓𝑖𝑝
𝑈
)

 
 
 

of all the vertices of hypercube in 𝑅𝑝 

space. Therefore each symbolic interval training sample 

is a matrix 2𝑝 × 𝑝  corresponds to all possible 

combinations of the limits of intervals. Class variable 

for each row of matrix M is similar to the original 

representation of the samples. If training sample dataset 

have N samples then the size of training sample 

becomes 𝑁 × 2𝑝 rows and 𝑝 column in this 

representation.  

For instance, let N=2, p=2 and suppose the sample𝑥𝑖 =
([𝑓𝑖1

𝐿 , 𝑓𝑖1
𝑈], [𝑓𝑖2

𝐿 , 𝑓𝑖2
𝑈]). matrix of vertices of the hyper 

cubes for this sample is:  

𝑀 =

(

 
 

𝑓𝑖1
𝐿 𝑓𝑖2

𝐿

𝑓𝑖1
𝐿 𝑓𝑖2

𝑈

𝑓𝑖1
𝑈

𝑓𝑖1
𝑈

𝑓𝑖2
𝐿

𝑓𝑖2
𝑈
)

 
 

  and the symbolic interval training dataset 

changed to a new dataset  𝑀 =

(

 
 
 
 
 
 

𝑓11
𝐿 𝑓12

𝐿 𝑦1
𝑓11
𝐿 𝑓12

𝑈 𝑦1
𝑓11
𝑈

𝑓11
𝑈

𝑓21
𝐿

𝑓21
𝐿

𝑓21
𝑈

𝑓21
𝑈

𝑓12
𝐿

𝑓12
𝑈

𝑓22
𝐿

𝑓22
𝑈

𝑓22
𝐿

𝑓22
𝑈

𝑦1
𝑦1
𝑦2
𝑦2
𝑦2
𝑦2
)

 
 
 
 
 
 

. 

By constructing the M-matrix, the ELM inputs are 

prepared for the symbolic interval training data, and the 

weights of the first layer are randomly selected. Then 

the weights of the second layer are approximated by 

calculating the Moore-Penrose generalized inverse of H 

-matrix. Algorithm 3 summarises   the proposed VELM. 

 
3. 4. LUELM       A pattern classifier for symbolic 

interval data based on ELM is defined by the lower and 

upper bounds of the interval separately. In this method, 

we  will perform one ELM based on lower bounds and 

another ELM is based on the upper bounds. In each 

ELM, first layer weights are produced randomly and 

second layer weights are calculated  by solving the 

linear system𝐻𝛽 = 𝑇. So an approximation of 𝛽 

coefficient is 𝛽 = 𝐻+𝑇. 

In order to label the samples, the weighted average 

output of the networks is calculated and passed through 

the discretized function. Algorithm 4 summerises the 

proposed LUELM. 

 
ALGORITHM 3: Pseudocode of VELM 

VELM algorithm 

Input: Given interval training set  

𝑥𝑖 = ( [[𝑓𝑖1
𝐿 , 𝑓𝑖1

𝑈], … , [𝑓𝑖𝑝
𝐿 , 𝑓𝑖𝑝

𝑈]] , 𝑇𝑖), 𝑖 = 1, . . , 𝑁 

Output: class label 
1. Represent  interval data by vertices of the hypercube 

𝑥𝑖 ∈ 𝑅
𝑝, 𝑖 = 1, …𝑁 × 2𝑝 

2. Randomly assign the input weights 𝑤𝑖 and bias 𝑏𝑖 
3. Calculate the hidden layer output matrix H 
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4. Calculate the output weights matrix as �̂� = 𝐻+𝑇  

5. Calculate the class label based on  �̂� coefficient 

 

 

4. EXPERIMENTAL AND RESULTS 
 

In this section, the proposed methods for interval 

extreme learning machines have been applied for three 

examples. Example one is a synthetic interval data with 

a low degree of class overlapping. Example two is a 

synthetic interval data too; however, it has a moderate 

degree of class overlapping. These synthetic data sets 

are being used to determine the number of layers for 

each model. Example three is a real dataset.  

Each synthetic interval data has three classes. One of 

the classes has an ellipse shape of size 200 and other 

classes have spherical shapes of size 150 and 100. Each 

class in these quantitative datasets was drawn according 

to two independent normal distributions. Each data 

point (z1, z2) of each one of this synthetic quantitative 

dataset is a seed of a vector of intervals (rectangle) 

defined as ([𝑧1 − 𝛾1 2⁄ , 𝑧1 + 𝛾1 2⁄ ], [𝑧2 − 𝛾2 2⁄ , 𝑧2 −
𝛾2 2⁄ ]). 

Example one is constructed according to the 

following parameters:  

class1: 𝜇1 = 50 , 𝜇2 = 25, 𝛿1
2 = 9 𝑎𝑛𝑑 𝛿2

2 = 36 

class2: 𝜇1 = 45 , 𝜇2 = −2, 𝛿1
2 = 25 𝑎𝑛𝑑 𝛿2

2 = 25 

class3: 𝜇1 = 38 , 𝜇2 = 40, 𝛿1
2 = 9 𝑎𝑛𝑑 𝛿2

2 = 9 

It has low degree of class overlapping. Figures 2 and 3 

display the quantitative and interval form of data in 

example one respectively.  

Example two has moderate degree of class 

overlapping and it is constructed according to the 

following parameters: 

class1: 𝜇1 = 50 , 𝜇2 = 25, 𝛿1
2 = 9 𝑎𝑛𝑑 𝛿2

2 = 36 

class2: 𝜇1 = 45 , 𝜇2 = 5, 𝛿1
2 = 25 𝑎𝑛𝑑 𝛿2

2 = 25 

class3: 𝜇1 = 45 , 𝜇2 = 40, 𝛿1
2 = 9 𝑎𝑛𝑑 𝛿2

2 = 9 

Figures 4 and 5 show the quantitative and interval form 

of data in example two, respectively [22]. 

Car dataset is a real symbolic interval dataset. It is 

widely used to compare classification methods of the 

literature of SDA [14, 15,31, 37-39]. It contains a total 

of 33 car models described by eight interval features 

included price, engine capacity, top speed, acceleration, 

step, length, width and height. The nominal variable  of 

Car category places each car in two classes. Class 

 

 
ALGORITHM 4: Pseudocode of LUELM 

LUELM algorithm 

Input: Given interval training set  

𝑥𝑖 = ( [[𝑓𝑖1
𝐿 , 𝑓𝑖1

𝑈], … , [𝑓𝑖𝑝
𝐿 , 𝑓𝑖𝑝

𝑈]] , 𝑇𝑖), 𝑖 = 1, . . , 𝑁 

Output: class label 

Step one: 

1. Consider the lower bounds of the interval  
𝑥𝑖 = [𝑓𝑖1

𝐿 , 𝑓𝑖2
𝐿 , … , 𝑓𝑖𝑝

𝐿 ] ∈ 𝑅𝑝, 𝑖 = 1, . . , 𝑁 

2. Randomly assign the input weights 𝑤𝑖 and bias 𝑏𝑖 

3. Calculate the hidden layer output matrix H 

4. Calculate the output weights matrix as �̂� = 𝐻+𝑇  

5.  
Step two: 

6. Consider the upper bounds of the interval  
𝑥𝑖 = [𝑓𝑖1

𝑈, 𝑓𝑖2
𝑈 , … , 𝑓𝑖𝑝

𝑈] ∈ 𝑅𝑝, 𝑖 = 1, . . , 𝑁 

7. Randomly assign the input weights 𝑤𝑖 and bias 𝑏𝑖 
8. Calculate the hidden layer output matrix H 

9. Calculate the output weights matrix as �̂� = 𝐻+𝑇  

Step three: 

10. Calculate the average of step one and two 

11. Calculate the class label based on average �̂� coefficient   

 

 

 
Figure 2. The quantitative form of data in example1 

 

 

 

Figure 1. Interval form of data in example1 

 

 

 
Figure 4. The quantitative form of data in example 2 
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Figure 5. Interval form of data in example 2 

 

 

one (Utilitarian and Berlina) has 18 car models and 

class two (Sporting and Luxury) has 13 car models. (see 

Table 1). 

In order to evaluate the performance of the proposed 

classifiers, 75% of the original dataset is selected 

randomely as learning set and 25% of the original 

dataset is selected as test dataset. 

The MELM, JELM, VELM and LUELM classifiers 

were applied to the synthetic interval example datasets 

one and two. The error rate of the classification is 

computed on the test data.The estimated error rate of 

classification corresponds to the average of the error 

rates is found among the 100 replications of the test set 

for each synthetic interval example datasets one and 

two.     

The average classification error rate for each 

proposed classifier on synthetic interval example 

datasets one and two are shown in Tables 2 and 3 

respectively. The standard deviation of the results is 

enclosed in parentheses. 𝛾1𝑎𝑛𝑑 𝛾2 are selected 

randomly from [1,10], [1,20], [1,30], [1,40], [1, 50] and 

the number of nodes in hidden layer (M) for each 

classifier is placed in a separate column. Interval data in 

this configuration shows lower degree of classification 

difficulty. Therefore, the best average  rate of the JELM 

is slightly affected by the higher range of  intervals. 

 

 
TABLE 1. Car dataset feature and class values 

 Price 
Engine 

Capacity 
Height Category 

Alfa 145 [27806, 33596] [1370, 1910] [143, 143] Utilitarian 

Alfa 156 [41593, 62291] [1598, 2492] [142, 142] Berlina 

Alfa 166 [64499, 88760] [1970, 2959] [142, 142] Luxury 

Aston 
Martin 

[260500, 
460000] 

[5935, 5935] [124, 132] Sporting 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

passat [39676, 63455] [1595, 2496] [146, 146] Luxury 

TABLE 2. Average classification error rate on synthetic 

interval examples one 

Proposed 

methods 
𝜸 

Synthetic example one 

M=5 M=7 

MELM 

[1,10] 1. 67(1.09) 12.92(27.69) 

[1,20] 1.82(1.32) 18.84(33.51) 

[1,30] 1.40(0.96) 16.34(29.05) 

[1,40] 1.11(0.80) 19.08(33.25) 

[1,50] 1.49(3.57) 18.10(28.15) 

JELM 

[1,10] 1.04(1.02) 0.48(0.69) 

[1,20] 1.85(1.78) 0.71(0.86) 

[1,30] 1.90(1.46) 0.48(0.80) 

[1,40] 1.61(1.88) 0.74(0.85) 

[1,50] 1.07(0.95) 0.71(0.83) 

VELM 

[1,10] 37.21(1.89) 34.79(1.99) 

[1,20] 39.72(3.33) 37.04(2.76) 

[1,30] 40.64(4.77) 32.30(2.29) 

[1,40] 42.30(2.85) 34.12(2.60) 

[1,50] 40.22(4.86) 37.96(4.76) 

LUELM 

[1,10] 2.5(1.18) 4.43(18.11) 

[1,20] 1.04(1.15) 1.16(1.10) 

[1,30] 5.18(13.46) 5.71(14.09) 

[1,40] 2.86(1.43) 7.05(14.41) 

[1,50] 3.27(1.58) 10.06(18.44) 

 

 

TABLE 3. Average classification error rate on synthetic 

interval examples two 

Proposed 

methods 
𝜸 

Synthetic 

example two 

Synthetic 

example two 

M=5 M=7 

MELM 

[1,10] 8.57(2.63) 9.11(2.94) 

[1,20] 8.78(2.03) 20.68(26.00) 

[1,30] 8.93(2.30) 26.93(30.14) 

[1,40] 8.63(2.20) 26.96(28.72) 

[1,50] 9.11(2.94) 31.40(31.97) 

JELM 

[1,10] 8.63(2.89) 4.94(2.63) 

[1,20] 7.59(3.14) 4.32(2.10) 

[1,30] 8.96(4.15) 4.91(3.15) 

[1,40] 8.75(3.22) 6.70(2.46) 

[1,50] 8.39(3.44) 7.05(2.94) 

VELM 

[1,10] 37.70(3.46) 33.91(1.81) 

[1,20] 38.98(2.49) 34.07(2.23) 

[1,30] 36.09(2.06) 35.44(2.93) 

[1,40] 38.88(2.46) 35.81(4.00) 

[1,50] 38.03(4.02) 37.21(4.31) 

Dim1 

Dim2 

D
i

m
2 
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LUELM 

[1,10] 7.92(2.57) 16.67(27.93) 

[1,20] 7.20(2.39) 15.65(22.18) 

[1,30] 8.81(7.41) 14.88(18.10) 

[1,40] 7.20(4.10) 26.49(30.65) 

[1,50] 12.42(21.88) 22.56(25.48) 

 

 

The worst average performance is obtained by the 

VELM that uses vertex to represent data. The size of 

data increases in VELM, therefore it is expected that as 

the size of data increments, the number of hidden nodes 

also becomes large. As a result the classification error 

rate in VELM with 7 nodes in hidden layer for synthetic 

example one and two is better than VELM with 5 nodes 

in hidden layer for synthetic example one and two. 

Tables 2 and 3 show that MELM and LUELM with 

5 nodes in the hidden layer produce better results than 

MELM and LUELM with 7 nodes in the hidden layer. 

JELM and VELM prefer 7 nodes in the hidden layer to 

lead to significant results. However, some high 

dimensional dot product operations appear in the 

training process. Eventually, it  causes increasing of the 

computational complexity and training time. 

In order to better demonstrate and compare the 

classification error rates of the proposed methods, the 

results are shown in Figures 6 to 13. The horizontal axis 

shows degree of classification difficulty and the vertical 

axis  shows classification error rate on the proposed 

methods. 

Figure  6 demonstrates MELM classification error 

rate on synthetic example one. It shows that as the 

degree of classification difficulty increases the results 

do not change significantly in MELM with 5 hidden 

nodes but, with the surge of neurons in the hidden layer, 

the classification error has an almost upward trend. 

Classification error rate on synthetic example one 

obtained from JELM is shown in Figure 7. Trends on 

Figure 7 illustrates that increasing the number of hidden 

layer neurons in JELM results in decreasing the average 

classification error rate. The trend of the average error 

rate based on the degree of classification difficulty is 

almost constant.  Trends on VELM classification error 

rate on synthetic example one is demonstrated in Figure 

8. In VELM, the number of data is increased, so when 

the number of hidden layer neurons increases, better 

results are obtained. The trend which is based on degree 

of classification difficulty is almost constant in this 

case.  

Figure 9 illustrates the results on LUELM method. It 

shows that by increasing the number of hidden layer 

neurons, the classification error is increased and the 

degree of classification difficulty is related to an 

increasing trend. 

Classification error rate diagram on synthetic 

example two is shown in Figure 10. Trends on this 

diagram show  that the increasing in the degree of 

classification difficulty has no effect on  the 

classification error rate of the MELM with 5 hidden 

nodes but  it has an increasing effect on the classification 

error rate of the MELM with 7 hidden nodes. Figuer 11 

illastrates JELM classification error rate in synthetic 

example two. This proposed method tends to have fewer 

neurons in the hidden layer, and the degree of 

classification difficulty of the data does not have much 

effects on the classification accuracy.  
 

 

 
Figure  7. JELM classification error rate in synthetic example 

one 
 

 

 
Figure  6. MELM classification error rate in synthetic example 

one 

 

 

 
Figure  8. VELM classification error rate in synthetic example 

one 
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Figure 9. LUELM classification error rate in synthetic 

example one 

 

 

 
Figure  10. MELM classification error rate on synthetic 

example two 

 

 

 
Figure  11. JELM classification error rate in synthetic example 

two 

 

 

VELM classification error rate in synthetic example 

two is shown in Figure 12. Unlike other proposed 

algorithms in this paper, VELM offers interesting 

results. Here the best error rate is achieved for more 

neurons in hidden layer. As expected, with increasing 

the number of the data, the number of the hidden layer 

neurons increases. Also, the degree of classification 

difficulty  of the data does not have significant effect on 

the VELM, but when VELM has a smaller number of 

neurons, the error increases along with increasing the 

degree of classification difficulty  of the data.  

Figure  13 illustrates LUELM classification error rate 

on synthetic example two. LUELM with 5 hidden 

neurons has significant error rate and it is  as the degree 

of classification difficulty of the data. There is a slight 

increase in the average error rate, as the number of 

neurons increases, On the other hand, the classification 

error increases as the number of neurons increases. 
The proposed methods are also tested on the a real 

Car dataset as an application. Data is divided into 

training and test data randomely such that 75% of the 

original dataset  has been selected as the learning set 

and 25% of the original dataset has been selected as the 

test dataset Table 4 shows the results of the average 

error rate  among the 100 replications of the proposed 

methods for the Car dataset. In real car dataset, MELM 

and LUELM with 5 neurons in the hidden layer 

demonstrate less error rate than MELM and LUELM 

with 7 neurons. Also the JELM and VELM with 7  

 

 

 
Figure  12. VELM classification error rate in synthetic 

example two 

 

 

 
Figure  13. LUELM classification error rate in synthetic 

example two 
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neurons show less error rate than the JELM and VELMs 

with 5 neurons. Table 5 is created to compare average 

classification error rate on car dataset with previous 

works [31]. IDPCs methods are based on logistic 

regression (LR). Average error rate on Table 5 shows 

that proposed methods based on the ELM result in 

significant improvement and also among the proposed 

methods VELM has the best performance. 

 

 

5. DISCUSSION 
 

We tried to classify aggregated data described by multi-

valued features. The essence of ELM is that the hidden 

layer of SLFNs does not need to be tuned. More 

specifically, this paper provides methods in which 

interval data can be  compatible for Moore-Penrose 

inverse calculation in second layer of ELM and reduce 

classification error rate.  
LR based methods and proposed algorithms have 

one problem in common: finding the optimum value for 

their parameters. an iterative optimization method is 

used in LR based methods to minimize the cost 

function, but the iterative optimization of network 

weights is avoided in proposed methods and they use  
 

 
TABLE 4. Average error rate for car dataset 

Proposed methods M=5 M=7 

MELM 19.17 20.83 

JELM 20.83 15 

VELM 7.92 6.54 

LUELM 18.33 19.58 

 

 

TABLE 5. Comparing proposed methods with other methods 

on car dataset 

Methods Error rate(%) 

IDPC_sp1(second application) [31] 57.57 

IDPC_sp(first application) [31] 48.48 

KNN [30] 45 

IDPC_CSP [31] 36.36 

IDPC_VSP(maxrule) [31] 36.4 

IDPC_VSP(minrule) [31] 30.3 

IDPC_VSP(averagerule) [31] 30.3 

IDPC_pp [31] 27.2 

MELM 19.1667 

LUELM 18.3333 

JELM 15 

VELM 6.5385 

the randomization and Pseudo inverse to determine the 

network. On the other hand the results show that 

proposed methods have a significant classification error 

rate than LR based methods. 

Training Time Complexity in logistic regression, 

means solving the optimization problem. and it is 

estimated as 𝑂(𝑁 × 𝑝).  
IDPC-CSP classifier that utilized mid-point 

representation has 𝑂(𝑁 × 𝑝) computational complexity.  

In IDPC-SP classifiers, data are  defined by the 

lower and upper bounds of the intervals conjointly. 

computational complexity for this method  is: 𝑂(𝑁 ×
2 × 𝑝) 

In IDPC-VSP classifier Each symbolic interval 

training sample is a matrix 2𝑝 × 𝑝  corresponding to all 

possible combinations of the limits of intervals. So, the 

size of input matrix is 𝑝 × (2𝑝 × 𝑝 × 𝑁). Considering 

α = (2𝑝 × 𝑝) as a constant value. So, computational 

complexity of IDPC-VSP is 𝑂(2 × ((2𝑝 × 𝑝 × 𝑁 × 𝑝)) 
IDPC-PP classifier is defined by the lower and upper 

bounds of the intervals separately. The analysis in this 

method consists of fitting two logistic binary 

regressions for each class. computational complexity for 

this method is sum of the computational complexity of 

lower bound and upper band based classifiers. So the 

estimation for computational complexity is 𝑂(2 × (𝑁 ×
𝑝)). 

There are two fundamental issues in neuro-

computation: The first one is learning algorithm 

development and the second one is the network 

topology design. In fact, these two issues are closely 

related with each other. The learning ability of a neural 

network is not only a function of time, but also it is a 

function of the network structure. 

A typical neural network contains an input layer, an 

output layer, and one or more hidden layers. The 

number of outputs and the number of inputs are usually 

fixed while the number of hidden layers and number of 

hidden neurons in each hidden layer are parameters that 

can be specified for each application [40]. 

ELM  is a network which has a single hidden layer 

with L neurons. The time complexity of ELM is the sum 

of the calculations performed to obtain the weights 

between the input layer and the hidden layer and the 

weights between the hidden layer and the output layer.  

Assume that the size of the input matrix is 𝑝 × 𝑁 and 

the size of weights matrix between the input layer and 

the hidden layer is 𝐿 × 𝑝.  In this case,  the complexity 

of the matrix multiplication performed at this step is 

𝑂(𝐿 × 𝑝 × 𝑁).  
To calculate the weights in the second layer, ELM 

uses a Moore Penrose pseudo inverse that has a time 

complexity equal to 𝑂(2 × 𝐿 × 𝑁2 + 2 × 𝐿3) for a 

matrix size of 𝐿 × 𝑁 and applying the common Singular 

Value Decomposition (SVD) method [41]. Therefore, 
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the associate computational complexity can be 

estimated as: 𝑂(𝐿 × 𝑝 × 𝑁 + 2 × 𝐿 × 𝑁2 + 2 × 𝐿3) 
The proposed methods in this paper have a structure 

similar to the original ELM however  their 

representations are different from each other. In MELM 

method the size of the input matrix is 𝑝 × 𝑁. Therefore, 

computational complexity equals to the basice ELM.  

JELM method represents  the data in the size of 

2𝑝 × 𝑁. As a result, its computational complexity is: 
𝑂(𝐿 × 2𝑝 × 𝑁 + 2 × 𝐿 × 𝑁2 + 2 × 𝐿3). 
Each symbolic interval training sample is a matrix 

2𝑝 × 𝑝  corresponding to all possible combinations of 

the limits of intervals in VELM method. So the size of 

the input matrix is 𝑝 × (2𝑝 × 𝑝 × 𝑁). Considering α =
(2𝑝 × 𝑝) as a constant value. So, computational 

complexity of VELM is 𝑂(𝐿 × 𝑝 × 𝛼𝑁 + 2 × 𝐿 × 𝑁2 +
2 × 𝐿3). 

Input matrix in LUELM method is 𝑝 × 𝑁. In this 

method we have two networks which perform their 

calculations independently. Therefore, their 

computational complexity is added together and 

estimated as 𝑂(2 × (𝐿 × 𝑝 × 𝑁 + 2 × 𝐿 × 𝑁2 +
2 × 𝐿3)). 
 

 

6. CONCLUSION 
 

In this paper, four new models of ELM are proposed to 

handle symbolic interval data. They have the 

architecture of a standard ELM with single-valued 

weights and biases, but the way interval data entered the 

network is different. In MELM, each interval is 

represented by the midpoints of intervals. JELM uses a 

pair of conjoint intervals. The vertices of intervals 

which has been used in VELM and  LUELM is 

considered as the lower and upper bounds of the interval 

separately. Two Interval synthetic data and error rate 

criteria are used in order to determine the number of 

hidden layer nodes in each proposed pattern classifier 

model. The results show that MELM and LUELM 

produce significantly better results with five hidden 

layer nodes, while the JELM and VELM prefer seven 

hidden layer nodes to produce significant results. 

Proposed classifiers also used car interval dataset as a 

real synthetic dataset. Afterwards the results was 

compared with other methods and showed that the 

proposed methods have a better performance in 

comparison to other methods. 
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Persian Abstract 

 چکیده 
بندی  برای طبقه  ELMعصبی   یادگیری شبکه   مقاله   ن ی. در اوجود دارد  پذیریتغییرکه عدم صحت و    رندیگ یمورد استفاده قرار م  ییهاتیمعمولاً در موقع   یافاصله  یهاداده

ند و در مرحله شویم دیتول یپنهان به طور تصادف ه یو لا  یورود لایه اتصال یها، وزن ل ، دو مرحله دارد. در مرحله او ELMمانند IELMای ارائه شده است. های بازهداده

  ی بندمقاله چهار روش طبقه  نیدر ا .کندیاستفاده م  Moore–Penrose  روش  ، ازی به کمک شبه معکوسخروجلایه  پنهان و    هیلا  های بینوزن  نییتع   یبرا  ELMدوم،  

شبکه  کند سپس  یاستفاده م  یژگیهر مقدار و  یفواصل برا  یانینقطه م   کیشده است. مورد اول از    شنهادیپ  ELMشبکه عصبی  بر    یمبتن  ایفاصله  یهاداده  تیریمد  یبرا

  ک یکلاس   ELMشبکه عصبی    کیو از    ردیگیدر نظر م  یکم  یژگیجفت و  کیرا به عنوان    یژگیمورد دوم هر مقدار و  دهد.یرا انجام مبندی  طبقه  کیکلاس  ELMعصبی  

. رودبندی بکار میبرای طبقه  کیکلاس  ELMشبکه عصبی    کی  نیدهد و همچنیفاصله را نشان م  یهایژگیرئوس آن و  قیکند. مورد سوم از طریاستفاده م  بندیبرای طبقه

  سپس   و  بینندبر اساس حد بالا و حد پایین آموزش می  جداگانه  ELMشبکه عصبی  بعد از آن دو    ،ردیگ یدر نظر م  یکم  یژگیجفت و   کیمورد چهارم هر بازه را به عنوان  

 ه یلا  یهاتعداد گره  نیی تع   یبرا  یمصنوع  یهااند. مجموعه دادهشده  شیآزما  یو واقع   یمصنوع  یهامجموعه داده  یها روتمیکند. الگوریم  ب یرا به طور مناسب ترک  جینتا

م  ELMشبکه عصبی  پنهان در   نظر گرفته شده است. م  سهیمقا  اریبه عنوان مع   یدبنطبقه  یخطا  زانیم  شود.یاعمال  برا  ی خطا  زانیدر   ی هر چهار روش به دست آمده 

 .دهدینشان م یابازه یهاداده یبندطبقه ی ها را برابندطبقه نی ا یها سودمندش ی. آزمااست ٪18.333 و ٪6.536 ، ٪15 ، ٪19.167 بی تبه تر یشنهادیپ

 


