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A B S T R A C T  
 

 

The prediction of responses of the reinforced concrete shear walls subject to strong ground motions is 
critical in designing, assessing, and deciding the recovery strategies. This study evaluates the ability of 

regression models and a hybrid technique (ANN-SA model), the Artificial Neural Network (ANN), and 

Simulated Annealing (SA), to predict responses of the reinforced concrete shear walls subject to strong 
ground motions. To this end, four buildings (15, 20, 25, and 30-story) with concrete shear walls were 

analyzed in OpenSees.150 seismic records are used to generate a comprehensive database of input 

(characteristics of records) and output (responses). The maximum acceleration, maximum velocity, and 
earthquake characteristics are used as predictors. Different machine learning models are used, and the 

accuracy of the models in identifying the responses of the shear walls is compared. The sensitivity of 
input variables to the seismic demand model is investigated. It has been seen from the results that the 

ANN-SA model has reasonable accuracy in the prediction.  

doi: 10.5829/ije.2021.34.07a.04 
 

 

NOMENCLATURE 

𝑇  Control variable 𝑞  Probability of accepting the potential solution  

𝛥𝐸𝑐  Changes in the value of the objective function  𝐾𝐵  Boltzmann constant 

𝑦𝑖  ith value of the variable to be predicted 𝑦̄  Average of𝑦𝑖 

𝑦̑𝑖 predicted value of𝑦𝑖   

 
1. INTRODUCTION1 
 

Reinforced concrete (RC) shear walls are efficient 

members for providing resisting horizontal forces in tall 

buildings. The non-linear analysis is needed to determine 

the tall buildings' seismic responses more realistically. 

However, non-linear modeling is a challenge for 

practitioner engineers because they should select the 

proper structural model type, define complex parameters 

of the materials, elements, and select as well as scale 

ground motions records. Besides, the ability to predict the 

structural capacity after an earthquake is essential to 

inform whether the tall building can be permanently 

reoccupied or not. Therefore, predicting the structure's 
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response to a new earthquake based on the structure's 

response to past earthquakes could be an excellent 

solution to determine the extent of the damage. This is 

possible using machine learning techniques. In the last 

few years, research has been done on using machine 

learning in civil engineering [1-12]. For instance, Thaler 

et al. [2] developed a machine-learning-enhanced Monte 

Carlo simulation strategy to predict the structural 

response in earthquake engineering in which the neural 

networks are utilized to improve the reliability of the 

method in the tail end of the distribution. Stoffel et al. 

[10] developed an Artificial Neural Network accessible 

to complicated structural deformation under shock-wave 

loads. They calculated plate deflections by means of 
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finite element simulations including a neural network. 

Mangalathu and Jeon [7] applied machine learning 

techniques to identify the failure mode of beam-column 

joints. They also compared various machine learning 

techniques to estimate the shear strength of beam-column 

joints using an experimental database. Khaleghi et al. 

[13] have employed Artificial Neural Networks to predict 

load-bearing capacity and stiffness of perforated masonry 

walls. Mangalathu and Jeon [14] conducted a 

comparative study for failure mode recognition of RC 

bridge columns using various machine learning models. 

A clustering algorithm is proposed by Siam et al. [15] for 

structural performance classifications using a dataset of 

ninety-seven masonry shear walls. Kiani et al. [16] 

developed a method for deriving the fragility curves 

using various machine learning models. They also 

investigated the effect of training sample size and 

imbalanced dataset on machine learning models' 

performance. Gaba et al. [17] classified the damages 

caused by earthquakes using a previously acquired data 

set. To establish the best prediction model, they evaluated 

different machine learning classifier algorithms. Burton 

et al. [18] described a statistical approach to predict the 

aftershock collapse vulnerability of buildings. They also 

mentioned that the Kernel Ridge regression method 

produces the most accurate and stable predictions. Zhang 

et al. [19,20] utilized machine learning algorithms to link 

the capacity of damaged buildings to the response and 

damage patterns. 

As mentioned above, Machine Learning methods to 

analyze and evaluate the dynamic characteristics of the 

structure have been studied in the literature. 

Nevertheless, few articles have focused on tall buildings, 

which are evaluated in the current paper. In addition, tall 

buildings have a large number of components and 

responses that lead to a high dimensional feature space, 

as opposed to low- or mid-rise buildings. Therefore, there 

is a need for a simple method to estimate the responses 

of the tall buildings subject to ground motion. In addition, 

a hybrid intelligent method, which is the optimization of 

the parameters in Artificial Neural Network by the 

revolutionary algorithm of Simulated Annealing, to 

achieve better performance for predicting the response of 

tall buildings. 

In fact, This study's primary purpose is to evaluate the 

ability to exist simple machine learning methods and a 

hybrid technique (ANN-SA model), the Artificial Neural 

Network (ANN), and Simulated Annealing (SA) to 

estimate the responses of structures based on earthquake 

characteristics and the stored responses of a structure 

subjected to the earthquake. Specifically, the following 

objectives have been pursued throughout the research: 

(1) evaluating the performance of various machine 

learning models (namely linear regression, Ridge 

regression, Lasso regression, Elastic net regression, 

Huber regression, RANSAC, and ANN-SA model) in 

estimating of responses of high-rise-concrete-shear-wall 

buildings, (2) investigating the effectiveness of using 

maximum acceleration and maximum speed recorded by 

the sensor in predicting structural responses (3) 

identifying the significant input variables which 

influence the predicting the responses of tall buildings. 
 
 
2. MATERIALS AND METHODS 
 

The central assumption in this study is that there are 

sensors in the stories of the tall building so that the 

maximum acceleration or velocity in the tall building that 

is subjected to a new earthquake can be captured (these 

responses are recorded during the earthquake), and the 

building's responses such as drift, base shear, 

displacement, the maximum acceleration and velocity 

under previously recorded ground motions are calculated 

using any software (Database). In other words, we have 

the maximum velocity or acceleration in the building and 

the building's responses, such as the drift caused by 

previous earthquakes, and only the maximum 

acceleration and velocity, which created by the new 

earthquake, are recorded using sensors. Can this 

information be used to estimate the building's responses 

under the new earthquake? In order to evaluate this 

strategy, four buildings (15, 20, 25, and 30-story) with 

concrete shear walls were analyzed in OpenSees [21,22] 

to generate a dataset.   

A percentage of total data is considered information 

obtained from the building subjected to the new 

earthquake (for example, 20%). This means that the 

obtained acceleration/velocity of this 20 % is considered 

the sensor's values under the new earthquakes, and the 

obtained responses (the maximum base shear, maximum 

drift, and maximum displacement) are considered as 

unknown variables. Therefore, the maximum 

acceleration, maximum velocity, and earthquake 

characteristics are used as predictors in order to estimate 

the maximum base shear, maximum drift, and maximum 

displacement for a specific seismic excitement. The 

characteristics of the earthquake that are considered are 

the scale factor, significant duration (D5-95 (s)), moment 

magnitude of the earthquake (magnitude), and Joyner-

Boore distance (Rjb (km)).  

 
2. 1. Buildings, Seismic Records, and Modeling        
Dual RC (shear wall–frame) high-rise structures are 

adopted. The dual system buildings have 15, 20, 25, and 

30 stories. The story height is equal to 3.5 m. The 

buildings plan consists of five bays (Figure 1). The 

gravity framing is considered using the leaning column, 

which is linked to the main structure. Rigid truss 

elements are used to connect the shear wall-steel frame 

and leaning columns and transfer the P-Delta effect. The 

design dead and live loads are 5𝑘𝑁/𝑚2 and 2𝑘𝑁/
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𝑚2, respectively. The concrete compressive strength is 

assumed to be 55 MPa. Both longitudinal and transverse 

reinforcement has a yield strength of 420 MPa. In 

Appendix A, the fundamental parameters for material 

properties have been listed. The design was conducted 

based on ACI [23] and ASCE [24]. The building was also 

designed based on the modal response spectrum analysis 

(ASCE [24]), and the first 15 modes were used in the 

design. Table 1 presents the building site and the design 

parameters, which and are the maximum considered 

earthquake (MCE) spectral acceleration at short periods 

(𝑆𝑠) and 1-s period (𝑆1), respectively. Table 2 provides the 

modal periods of the prototype buildings. Rayleigh 

damping is assumed. The damping is set as 2% of critical 

damping proportional to the mass and initial stiffness 

matrix. The dimensional details of the beams, columns 

and rebar sections of the concrete shear wall are 

presented in Appendix A. 

The buildings' finite element model is generated by 

the OpenSees program [21,22] using displacement-based 

beam-column elements for the RC beams and columns. 

Concrete02 and Steel02 materials are used to define the 

material model of concrete and reinforcing steel fibers. 

The displacement-based beam-column element is a 

distributed-plasticity-fiber-based element based on 

Bernoulli's theory. Although different macro elements 

have been proposed for modeling concrete shear walls 

[25,26], in this study, RC walls are molded using a state-

of-the-art element (SFI_MVLEM- Figure 2) and a 

nDMaterial FSAM material [26]. The SFI_MVLEM [26] 

element is a macro element which can simulate the 

behavior characteristics induced by non-linear shear 

deformation such as shear– axial/flexural interaction, 

shear cracking, stiffness deterioration, pinching effect, 

and strength deterioration. Studies have shown that (1) 

shear cracking can increase shear deformation of the 

walls in the plastic hinge region and (2) existing previous 

models usually underestimate compressive strains at the 

boundary elements, even for walls that their behavior is 

dominated by flexure. The confinement parameters of the 

boundary elements are calibrated according to the model 

proposed by Mander et al. [27]. 

 

 
TABLE 1. The building site and the design parameters 

Latitude 

(degree) 

Longitude 

(degree) 

Design 

Cat. 

Risk 

Cat. 

Soil 

Cat. 

𝑺𝒔 

(MCE) 

𝑺𝟏 

(MCE) 

35.6535 -120.4407 D I 

D 

(stiff 

soil) 

1.5g 0.6g 

 
 

TABLE 2. The modal periods of the prototype buildings 

Story 15 20 25 30 

Modal periods (sec) 2.66 3.17 3.8 4.3 

 

 
 

 
Figure 1. 2D model of the prototype buildings 

 
 

 
Figure 2. Shear-Flexure Interaction Multiple-Vertical-Line-

Element Model (SFI-MVLEM). 

The nonlinear time-history analyses are performed 

for the MCE level. The buildings are subjected to 150 

seismic records, resulting in 600 non-linear response 

history analyses. Earthquake records are selected from 

the database of the Pacific Earthquake Engineering 

Research (PEER) center [28]. The key information of 

these records wall is presented in Appendix A. The 

minimum magnitude of records is taken as 6.0, and 

records are within a distance less than 20 km to the fault. 

Each ground motion is scaled in such a way that its 

response spectrum equals or exceeds the ASCE [24] 

spectrum over a determined period range (from 0.2T to 
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1.5T, where T is the first mode of vibration). All non-

linear time-history analyses adopted the Newmark time 

integration method of constant acceleration. The 

Newton–Raphson iteration method is utilized to 

determine how the sequence of steps taken to solve the 

non-linear equation of motion. The convergence of the 

algorithm was based on the relative work increment. If a 

time step failed to converge, the Newton method 

switches to a modified Newton method with constant 

stiffness equal to the initial stiffness of the time step. 

Model calibration is done using experimental results 

for reverse cyclic loading conducted by Tran and Wallace 

[29]. As an example, the element's response and related 

laboratory story test for specimen S78 are shown in 

Figure 3. Table 3 summarizes specimen information. 

 
2. 2. Supervised Learning Methods       One of the 

simplest supervised machine learning techniques is the 

family of regression models. Six regression models such 

as linear regression [30], Ridge regression [31], Lasso  

 

 

 
b) Cross-section and reinforcement distribution 

 
a) Global response 

Figure 3. Typical cross-section and response for specimen  S78. 

 

 
TABLE 3. Specimen information 

Aspect 

ratio 

Web 

Reinf. 

Boundary 

Reinf. 

Compressive 

strength of 

concrete 

Yield 

strengths of 

Reinf. 

1.5 0.0073 0.0606 55 MPa 440-470 MPa 

regression [32], Elastic net regression [33, 34], Huber 

regression [35], and RANSAC [36] are used in this paper. 

For further information on regression models, interested 

readers should study corresponding references of each 

model. In the case of the seismic demand model for the 

tall buildings, the input vector consists of the scale factor, 
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significant duration (D5-95 (s)), moment magnitude of 

the earthquake (magnitude), Joyner-Boore distance (Rjb 

(km)), and the maximum acceleration as well as velocity 

(Outputs from the non-linear time history analysis) in the 

tall building. . Significant duration (D5-95 (s)) is defined 

as the time needed to build up between 5 and 95 percent 

of the total Arias intensity for a specific earthquake 

record. The Joyner-Boore distance is defined as the 

shortest distance from a seismic station or any other site 

to the surface projection of the seismic event's rupture 

surface. Table 4 summarizes the range of parameters 

used. Other outputs from the non-linear time history 

analysis (the maximum base shear, maximum drift, and 

maximum displacement) are considered target variables. 

Ordinary Least Square (OLS) regression (or linear 

regression) is one of the most widely known modeling 

techniques. The OLS regression is also known as linear 

regression. The OLS regression assumes that the 

relationship between the input variable (features 

vector,𝑋) and the output variable (target vector,𝑌) is 

approximately linear (Equation (1)).  

𝑌̑ = 𝛽𝑇𝑋 + 𝛽0  

𝑚𝑖𝑛
𝛽∈ℝ

∑ ‖𝛽𝑇𝑥𝑖 + 𝛽0 − 𝑦𝑖‖𝑛
𝑖=1

2
  

(1) 

where in Equation (1), 𝑦̑is predicted values vector, 𝑋 =
(𝑥1, 𝑥2, . . . , 𝑥𝑖) are the n input variables,𝑌 =
(𝑦1, 𝑦2, . . . , 𝑦𝑖) are the n output variables, and 𝛽𝑇 are the 

coefficients.  

The OLS estimates often are subjected to the 

drawback of large variance. Previous studies have shown 

that there is a statistical trade-off between bias and 

variance. These observations have led to consider biased 

estimates such as Ridge regression. Ridge regression 

(Equation  2) introduces some bias by adding a penalty to 

the sum of the squared errors. Although model efficiency 

is decreased, the test error is decreased too. The 

coefficients are shrunk toward 0 as α becomes large. 

𝑚𝑖𝑛
𝛽∈ℝ

∑ ‖𝛽𝑇𝑥𝑖 + 𝛽0 − 𝑦𝑖‖𝑛
𝑖=1

2
+ 𝛼‖𝛽‖2  (2) 

Note that in this case (using Ridge regression) 

solutions are not equivalent under scaling of the 
 

 

TABLE 4. The modal periods of the prototype buildings 
 Scale Factor D5-95 (s) Acc. (

𝒎

𝒔𝟐
 ) Vel. (

𝒎

𝒔
) 

Mean 8.43 23.63 7.33 1.37 

Std. 9.11 12.24 2.81 0.57 

Min. 0.47 7.2 1.52 0.39 

25% 2.45 14.62 5.64 0.97 

50% 5.68 20.6 6.95 1.27 

75% 11.83 28.67 9.14 1.69 

Max. 70.15 65.8 14.85 3.72 

predictors (inputs); therefore, the predictors have to be 

standardized before using the Ridge regression model. 

The penalty contains the squared of the L2 norm of β 

(Equation (2)). The Lasso regression is a shrinkage 

method like Ridge regression. Lasso regression 

minimizes a loss function, using the L1 norm which is the 

sum of absolute values (Equation (3)). 

𝑚𝑖𝑛
𝛽∈ℝ

∑ ‖𝛽𝑇𝑥𝑖 + 𝛽0 − 𝑦𝑖‖𝑛
𝑖=1

2
+ 𝛼‖𝛽‖1  (3) 

The difference between the L1 norm and L2 norm 

methods is that L1 penalizes coefficients equally but L2 

penalizes more very large coefficients. In other words, 

for some values of α, L1 setting some coefficients equal 

to 0, and thus the most important variables are kept, this 

is called feature selection. Elastic Net is similar to Ridge 

regression and Lasso regression but uses both the L1 

norm and L2 norm together (Equation (4)). 

𝑚𝑖𝑛
𝛽∈ℝ

∑ ‖𝛽𝑇𝑥𝑖 + 𝛽0 − 𝑦𝑖‖𝑛
𝑖=1

2
+ 𝛼 ⋅ 𝜂 ⋅ ‖𝛽‖1 +

𝛼 ⋅ (1 − 𝜂) ⋅ ‖𝛽‖2
2  

(4) 

where η is a coefficient that captures the relative amount 

of L1-penalty. This coefficient (η) is considered 0.5 [33, 

34]. α needs to be determined by the analyst in Ridge, 

Elastic Net, and Lasso. By using the GridSearchCV in 

python, the value of α that maximizes the 𝑅2 is 

calculated. The results are discussed further in section 3. 

In a sample, generally, outliers are considered as an 

example that differs remarkably from other observations. 

The models (Ridge, Elastic Net, and Lasso) are presented 

so far are sensitive to outliers  since every single point 

participates in minimizing the function. To overcome this 

problem, Robust Regression is proposed. In the 

following, brief descriptions about Huber Regression and 

the RANdom SAmple Consensus (RANSAC), which 

allow the fit of robust regression, are provided. The 

Huber regression applies a piecewise function (loss) to 

samples that are classified as outliers. In other words, the 

loss optimizes either the squared loss or absolute loss for 

the samples based on a parameter (𝜀, Equation (5)). The 

cost function that Huber regression minimizes is given 

by: 

𝑚𝑖𝑛
𝛽

∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑛
𝑖=1   

𝑤ℎ𝑒𝑟𝑒  

𝐿(𝑦, 𝑓(𝑥)) = {
(𝑦 − 𝑓(𝑥))2𝑖𝑓|𝑦 − 𝑓(𝑥)| < 𝜀

2 ⋅ 𝜀 ⋅ |𝑦 − 𝑓(𝑥)|𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(5) 

Hence, the loss function is squared for small 

prediction errors. RANSAC is a non-deterministic 

algorithm that divides the complete data set into two 

different subsets (outlier and inlier). The inlier subset is 

also known as the hypothetical inliers which are used to 

fit the model. The basic steps of the RANSAC algorithm 

are summarized as follows: 1) Select randomly the 

minimum samples from the original data (the 
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hypothetical inliers). 2) Fit a model to the selected points. 

3) Points from the set of all points are then evaluated 

against the fitted model by considering a predefined 

tolerance. If the points fit the computed model well 

(using loss function), they will be considered as part of 

the consensus set (CS). 4) Save the estimated model as 

the best model if the consensus set is large enough ((the 

number of inliers/ the total number points) > predefined 

threshold). 5) Otherwise, repeat steps 1 through 4 (a trial 

and error process).  

Although presented regression models provide 

remarkable feature selection, the prediction performance 

is limited. The main disadvantage of presented regression 

models is that they cannot consider non-linearity in the 

available data. An alternative method of tackling these 

problems is the use of Artificial Neural Networks. A 

neural network is a hierarchical organization of neurons 

which are joined by weighted connections. The structure 

of Artificial Neural Networks is made of three main 

components, which are referred to as (1) the input layer, 

which takes in a numerical representation of the data; (2) 

the hidden layer, where computations take place; and (3) 

the output layer. A direct consequence of this approach is 

an improvement of the estimation of drift, displacement, 

and base shear of different buildings. The network used 

to solve the problem in this study consists of three layers 

(input layer, one hidden layer, and output layer). We 

determined the number of neurons in the hidden layer and 

the percentage of the training and test data using a 

simulated annealing algorithm to reduce the 

computational time. Simulated Annealing (SA) is a 

stochastic algorithm for estimating the optimum value of 

a given function [37]. This method is inspired by the slow 

cooling of metals. The simulated annealing algorithm 

randomly selects a new potential solution. The range of 

the training dataset is 60-80% (X %) of the whole dataset, 

and the remaining ((100-X)/2 %) is used as the validation 

and test set. The codes are developed in MATLAB with 

its toolbox. The dataset (input and output) used in this 

section is the same as the regression models' dataset. A 

popular training algorithm (so-called "Trainlm" [37]) that 

updates weight and bias values according to Levenberg-

Marquardt optimization is used. Activation functions for 

the hidden and output layers are hyperbolic tangent 

sigmoid (Tansig) and linear transfer function (Purelin), 

respectively. 

 
2. 3. Simulated Annealing Algorithm          Simulated 

annealing (SA) algorithm is one of the most preferred 

methods for solving optimization problems developed by 

Kirkpatrick et al. [39]. The SA algorithm, which is 

inspired by the slow cooling of metals, is a heuristic 

method with the basic idea of generating random 

displacement from any feasible solution. A probability 

function (Equation  6) is utilized to decide the transition 

between the current solution and the randomly generated 

new solution. 

𝑞 = 𝑚𝑖𝑛{ 1, 𝑒−𝛥𝐸/𝐾𝐵𝑇}  (6) 

where 𝑇 is the control variable, 𝑞 is the probability of 

accepting the potential solution, 𝐾𝐵 is the Boltzmann 

constant, and 𝛥𝐸 is changes in the value of the objective 

function. The SA algorithm has some crucial advantages, 

including the following: (1) the SA algorithm is relatively 

easy to code, even for complex problems, and can deal 

with highly non-linear models, chaotic and noisy data, 

and many constraints.; (2) most optimization algorithms 

use the gradient descent, but the SA algorithm does not 

spend the computational time in calculating it; (3) the SA 

algorithm can be utilized to identify the minimum of the 

objective function more efficiently instead of being 
 

 

 

 
Figure 4. Computation procedure of the number of neurons and the percentage of the training and test data 
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trapped in a local minimum, and (4) Simulated annealing 

algorithm is independent of initial conditions [40]. As 

mentioned earlier, the number of neurons in the hidden 

layer and the percentage of the training and test data are 

determined using the simulated annealing algorithm. The 

proposed computation procedure of the number of 

neurons in the hidden layer and the percentage of the 

training data is summarized in the flow chart of Figure 4. 

The SA algorithm searches in the range 5-30 and 60-90% 

for the number of neurons in the hidden layer and the 

training data percentage, respectively. 

 
 
3. RESULTS AND DISCUSSION 
 
The machine learning techniques explained in the 

previous section are utilized to predict the high-rise 

concrete shear wall buildings' responses. The codes 

(regression models) are developed using a free software 

machine learning library of the Python programming 

language, so-called scikit-learn [41]. Observations 

(targets and features) are (randomly) split into two sets, 

traditionally called the test set and the training set. In this 

study, 80% and 20% of the entire dataset are considered 

for training and testing, respectively. The input variables 

are centered and scaled (a standard space with 0 mean 

and unit variance). Generally, the model is fitted on the 

training data, and the performance of the model is 

evaluated using unknown (test) data and the 𝑅2  

(Equation  7) or residual sum of squares (RSS, Equation  

8) or mean square error (MSE, Equation  9) as score 

metric. 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̑𝑖)2

𝑖

∑ (𝑦𝑖−𝑦̄)2
𝑖

  (7) 

where 𝑦𝑖is the ith value of the variable to be predicted, 

𝑦̄is the average of𝑦𝑖, and 𝑦̑𝑖predicted value of𝑦𝑖 .  

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̑𝑖)2
𝑖   (8) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̑𝑖)2

𝑖   (9) 

The 𝑅2is used in this study in order to compare the 

efficiency of the models in predicting the seismic demand 

(e.g., Table 5). The𝑅2is utilized because it is easily 

interpretable and it is a normalized version of the RSS. 

Besides, the 𝑅2 does not depend on the scale of the data. 

The 𝑅2is computed for the remaining data (test data). 

In machine learning, a hyperparameter is a parameter 

whose value is utilized to control the learning process. As 

an example, the changes in the performance of the 

models (Elastic Net regression) against the changes in the 

hyperparameter α are shown in Figure 5. The 

performance of the models dramatically decreases as the 

hyperparameter α gets bigger. Based on these results, an 

optimum value of the hyperparameter α is chosen for 

TABLE 5. Results of Linear regression 

Linear 

Reg. 
Displacement Drift 

Base 

shear 
Structure 

R2 0.65 0.70 0.65 15-stroy 

R2 0.7 0.70 0.65 20-story 

R2 0.6 0.65 0.69 25-story 

R2 0.72 0.75 0.77 30-story 

Average 0.66 0.7 0.69  

 

 

each method and the target variable (displacement, drift, 

or base shear). The optimum value of the hyperparameter 

α is given in Appendix B. Here the performance of 

different methods utilized in this study is compared. 

Figure 6 (or Table 6) shows the𝑅2scores from 5 different 

regression models for displacement, drift, and base shear 

obtained using a test set for the different tall buildings. 

Overall Ridge, Lasso, Huber, and Elastic Net regression 

have very close𝑅2scores for displacement, drift, and base 

shear. On the contrary, there is a difference between the 

RANSAC and other methods. The RANSAC regression 

performs the worst among the methods in estimating the 

base shear. Based on Figure 6, it can be concluded that 

the regression models have different𝑅2scores for almost 

all the target variables and various buildings. 

It is helpful to understand what factors may or may 

not impact estimating the tall building responses using 

regression methods. In order to compare regression 

coefficients, first, the average coefficients for all 

buildings are calculated for all target variables. Then, 

average coefficients are normalized by dividing each 

average coefficient by the sum of all the average 

coefficients to form a sum of 1.0. As an example, the 

process for displacement is shown in Figure 7. 
 

 

 
TABLE 6. Results of Regression Models 

Model Structure  Displacement Drift 
Base-

shear 

Ridge 

15-stroy 

R2 

0.66 0.72 0.66 

20-story 0.72 0.72 0.65 

25-story 0.61 0.65 0.70 

30-story 0.73 0.75 0.78 

Average 0.68 0.71 0.69 

Lasso 

15-stroy 

R2 

0.63 0.71 0.63 

20-story 0.76 0.75 0.69 

25-story 0.63 0.68 0.70 

30-story 0.73 0.77 0.75 

Average 0.69 0.73 0.69 
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Elastic 

Net 

15-stroy 

R2 

0.63 0.70 0.63 

20-story 0.74 0.75 0.69 

25-story 0.62 0.68 0.71 

30-story 0.71 0.77 0.76 

Average 0.68 0.73 0.70 

Huber  

15-stroy 

R2 

0.64 0.73 0.65 

20-story 0.73 0.76 0.69 

25-story 0.63 0.68 0.70 

30-story 0.71 0.76 0.75 

Average 0.68 0.73 0.70 

RANSAC 

15-stroy 

R2 

0.58 0.68 0.45 

20-story 0.65 0.72 0.51 

25-story 0.60 0.68 0.65 

30-story 0.73 0.79 0.82 

Average 0.64 0.72 0.61 

 

 
Figure 5. Elastic Net regression performance for predicting 

base shear of various structures 

 

 

   
Figure 6. Results of Regression Models 

 

 

 
Figure 7. Results of Regression Models 

 

 

Figure 8 shows the average-normalized estimated 

regression coefficients of various regression models for 

each target variable (displacement, drift, and base shear). 

Figure 8, the 0.0 values indicate that the associated 

features are not significant in predicting target variables. 

Also, Figure 8 illustrates that: 

The crucial parameters to take into account tend to 

vary from method to method. 

As mentioned above, the Elastic Net and Huber 

regression have the most 𝑅2 scores, but unlike the first 

method, the second method recognizes more variables as 

influential input variables,  

All regression models identify velocity as a 

significant input variable, 

Huber and RANSAC regressions recognize all the 

input variables as influential variables, 

In the case of displacement, all regression models 

identify velocity and magnitude as significant input 

variables, 

In the case of base shear, all regression models 

identify velocity, acceleration, and magnitude as 

significant input variables, 
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Lasso, Ridge, and linear methods identify that the 

Rjb, 5-95 Duration, and scale factor have a minimal 

effect on predicting the target variable (seismic 

response). 

In this study, the ANN-SA algorithm is utilized as an 

alternative solution. The Artificial Neural Network 

parameters are adjusted to maximize the 𝑅2 to 1. Table 7 

gives the number of neurons of the neural networks, 

which are determined using the simulated annealing 

algorithm for different buildings and target variables. 

Figure 9 depicts the results obtained from the ANN-SA 

algorithm. Comparison of the ANN-SA algorithm and 

regression results (Tables 6 and 7) reveals that the ANN-

SA algorithm gives more accurate results for all predicted 

variables. Surely this could be due to the fact that the non-

linearity of the relationship of the responses and features 

can be captured by an Artificial Neural Network. The 

above results emphasize the need for a comprehensive 

evaluation of different models before establishing a 

machine-learning-based response prediction model. 

Also, the percentage points of training, validation, and 

test data are determined using the simulated annealing 

algorithm. The results (Table 7) indicate that selecting 

the percentage points of training, validation, and test is 

an influential parameter. 

The sensitivity analysis examines how uncertainty in 

a model's target variables can be apportioned to different 

uncertainty sources in the model input parameters. In 

other words, the sensitivity analysis allows the 

determination of the model key input factors of an output 

of interest. In this section, a MATLAB toolbox 

developed by Vu-Bac et al. [42] is used to carry out the 

sensitivity analysis. The framework links different steps 

from generating a sample, constructing the surrogate 

model, and implementing the sensitivity analysis method. 

The joint and conditional probability distribution 

functions of the input parameters are used to generate the 

 

 

 

 

 
Figure 8. Average estimated coefficients for target variables  
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Figure 9. Performance of ANN-SA for estimating (a) 

Displacement (cm) (b) Drift (c) Base-Shear (N) 
 

 

4. SENSITIVITY ANALYSIS 

 

sample data since they must account for the input space 

constraints. The so-called surrogate-based approach is 

employed as an approximation of the real model for 

sensitivity analysis. The computation procedure of the 

sensitivity analysis is summarized in the flow chart of 

Figure 10. The description of the toolbox has been 

presented in literature [42]. Table 8 shows the results of 

the sensitivity analysis for all buildings. For all target 

variables (displacement, drift, and base shear), the 

earthquake's magnitude is estimated as the most crucial 

parameter. The second important parameter varies 

according to the building and the type of the target 

variable. Possible reasons for what may have caused this  

 

 

TABLE 7. Results of Optimized Artificial Neural Networks 

Story 

Displacement Drift Base-shear 

Neurons 

Num. 

Training 

Percent 
R2 

Neurons 

Num. 

Training 

Percent 
R2 

Neurons 

Num. 

Training 

Percent 
R2 

15 14 70 0.94 28 90 0.96 13 70 0.91 

20 16 75 0.93 24 85 0.92 30 75 0.94 

25 17 75 0.94 28 85 0.94 30 75 0.9 

30 28 75 0.95 26 85 0.96 14 75 0.95 

Average 0.94   0.94   0.92 

 

 

issue can be: (1) structural responses are not identical 

since earthquake records have a random nature and their 

content are different from one another [43], and (2) as the 

building height increases, the effect of the modes 

(especially higher modes [44, 43]) on the structural 

response is increased, changing the structural behavior 

and response under a given earthquake. 
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Figure 10. Diagram for sensitivity analysis 

 
 
TABLE 8. Results of the sensitivity analysis for all buildings 

15-story 

Target 
Scale 

Factor 
Duration 

Magni

tude 
Rjb Acc. Vel. 

Disp. 0.0004 0.0003 0.6661 0.0000 0.0012 0.0437 

Drift 0.0031 0.0959 0.4580 0.0935 0.0312 0.0154 

B. shear 0.0008 0.1668 0.3934 0.0091 0.0385 0.0440 

20-story 

Target 
Scale 

Factor 
Duration 

Magni

tude 
Rjb Acc. Vel. 

Disp. 0.0000 0.0001 0.6769 0.0171 0.0020 0.0006 

Drift 0.0036 0.0010 0.5450 0.0018 0.0021 0.0502 

B. shear 0.0039 0.0009 0.4993 0.0004 0.0387 0.0097 

25-story 

Target 
Scale 

Factor 
Duration 

Magni

tude 
Rjb Acc. Vel. 

Disp. 0.0000 0.0004 0.6764 0.0056 0.0001 0.0007 

Drift 0.0016 0.0029 0.4438 0.0001 0.0003 0.0208 

B. shear 0.0049 0.0379 0.1698 0.0019 0.0092 0.1429 

30-story 

Target 
Scale 

Factor 
Duration 

Magni

tude 
Rjb Acc. Vel. 

Disp. 0 0 0.7268 0 0.0004 0.0016 

Drift 0.0002 0.0065 0.6074 0.0001 0.0008 0.0304 

B. shear 0.0004 0.0001 0.7296 0.0006 0.0153 0.0033 

 
 

5. CONCLUSIONS  
 
Reinforced concrete shear walls are used in high-rise 

buildings to resist earthquakes or wind loads. The need 

for an easy-to-use response estimation method for rapid 

damage assessment of the high-rise buildings after an 

earthquake leads to the study of existing simple 

regression methods and a hybrid technique, the Artificial 

Neural Network (ANN), and Simulated Annealing (SA) 

(ANN-SA model), for estimating the response of the 

structures in this study. In the initial part of this paper, 

four tall buildings were molded, and non-linear time-

history analyses were performed to generate an extensive 

database. The computer software OpenSees was used to 

simulate the buildings under 150 earthquakes and 

calculate the responses. The primary purpose was to 

compare regression models and a standard Artificial 

Neural Network in predicting the tall building's response.  

Analysis of results showed that if (1) during the 

earthquake, the maximum velocity created in the 

structure was stored (which can be done using the sensor) 

and (2) a database of the structure's responses to past 

earthquakes was produced (database) using existing 

software, the ANN-SA algorithm can use this 

information to estimate structural responses with 

acceptable accuracy.  

Besides, the efficiency of different regression models 

such as RANSAC, Huber, linear, Ridge, Lasso, and 

Elastic Net regressions was studied in terms of estimation 

of structures' response. The training set (Eighty percent 

of the data) was utilized to fit the models, and the 

performance of the models was evaluated through the 

remaining unknown data (the test set). The performance 

of the regression models was assessed using scores. In 

general, the Elastic Net and Huber regression had better 

performance compared to other regression methods. 

Also, by using Ridge, Lasso, and Elastic Net regressions, 

the various input variables' relative importance on the 

estimated responses was identified. From the further 

exploration of the Elastic Net regression, critical 

parameters in determining the responses were velocity, 

acceleration, magnitude, and 5-95-Duration.  

In order to evaluate the effect of non-linearity in the 

available data, the hybrid technique (ANN-SA 

algorithm) was utilized. The developed model had three-

layer structures (input, hidden layer, and output layer). A 

simulated annealing algorithm was utilized to determine 
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the optimal number of the Artificial Neural Network 

neurons and the percentage of data that should be used in 

the training, validation, and testing set. By comparing the 

results of the ANN-SA algorithm and regression models, 

it can be concluded that (1) the effect of the non-linear 

relationship between data is significant, and considering 

it increases the accuracy of the model in predicting the 

target variables, and (2) the Artificial Neural Network 

outperforms regression models.  

In addition, the sensitivity analysis was performed to 

examine how uncertainty in the target variables of a 

model could be apportioned to different sources of 

uncertainty in the model input parameters. The 

earthquake's magnitude was estimated as the most critical 

parameter, but the second important parameter varied 

according to the building and the type of target variable. 

Although the findings and conclusions are based on the 

case studies of four concrete shear wall buildings, the 

methodology has a wealth of applications in functional 

domains. 

According to the literature and the results obtained in 

this study, it is suggested that researchers follow the 

process of the current paper for 3D modeling of irregular 

buildings and investigate the efficiency of Artificial 

Neural Networks for predicting their responses. 

Furthermore, the investigation of the Soil-Structure 

Interaction (SSI) effect can complement this research. 

Besides, comparing the performance of finite element 

and Neural Network models with the empirical 

vulnerability model of the actual seismic damage 

investigation can be very helpful and practical. 
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APPENDIX A 
 

TABLE A1. Parameters of steel material 

Yield strength Initial elastic tangent Strain-hardening ratio 

420𝑀𝑃𝑎 200 𝐺𝑃𝑎 0.01 

 

 
TABLE A2. Parameters of concrete material 

Compressive strength (𝑀𝑃𝑎) 
Unconf. 55 

Confined 66 

Strain at the compressive strength 
Unconf. -0.002 

Confined -0.005 

Strain at the tensile strength 0.00008 

Tensile strength 1.9𝑀𝑃𝑎 

Concrete modulus of elasticity 37𝐺𝑃𝑎 

 
TABLE A3. The frame section of the buildings 

Building No. of story 
Thickness 

(cm) 

Long. 

Reinforcement 

20-story 

1-5 45 Ø25@15cm 

6-10 45 Ø20@20cm 

11-15 35 Ø20@25cm 
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https://doi.org/10.1680/jmacr.19.00542
https://doi.org/10.1016/j.compstruc.2017.10.010
https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804)
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1007/978-1-4612-4380-9_35
https://doi.org/10.1007/978-1-4612-4380-9_35
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/s10479-016-2336-8
https://doi.org/10.1007/978-1-349-17741-7
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s00366-010-0195-5
https://doi.org/10.1016/j.advengsoft.2016.06.005
https://doi.org/10.1061/(asce)ae.1943-5568.0000185
https://doi.org/10.1061/(asce)st.1943-541x.0002509
https://doi.org/10.1061/(asce)st.1943-541x.0002509
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16-20 35 Ø20@25cm 

25-story 

1-5 45 Ø25@15cm 

6-10 45 Ø20@20cm 

11-15 45 Ø20@25cm 

16-20 35 Ø20@25cm 

21-25 35 Ø20@25cm 

30-story 

1-5 45 Ø25@15cm 

6-10 45 Ø20@20cm 

11-15 45 Ø20@20cm 

16-20 35 Ø20@25cm 

21-25 35 Ø20@25cm 

26-30 35 Ø20@25cm 

 
 

TABLE A.4. List of ground motions 

ID(s) Name Year ID - Station Name 

1-2 "Imperial Valley-06" 1979 

1-"Brawley Airport" 

2-"El Centro Array 
#10" 

3-6 "Loma Prieta" 1989 
3- "Gilroy - Historic 

Bldg." 

 
4-"Gilroy Array #2"  |  5-"Gilroy Array #3"  |  6- 

"Saratoga - W Valley Coll."  | 

7 "Chi-Chi_ Taiwan" 1999 7-"CHY101" 

8 "Duzce_ Turkey" 1999 8-"Bolu" 

9 "Chuetsu-oki_ Japan" 2007 
9- "Joetsu 

Kakizakiku 
Kakizaki" 

10 
"Darfield_ New 

Zealand" 
2010 

10- "Riccarton High 

School " 

11-12 
"El Mayor-Cucapah_ 

Mexico" 
2010 

11- "El Centro 

Array #12" 

12- "Westside 
Elementary School" 

13 "Imperial Valley-06" 1979 
13- "El Centro 

Array #11" 

14 "Superstition Hills-02" 1987 
14- "Poe Road 

(temp)" 

15 "Superstition Hills-02" 1987 
15- "Westmorland 

Fire Sta" 

16 "Northridge-01" 1994 
16- "Beverly Hills - 

14145 Mulhol" 

17 "Kobe_ Japan" 1995 17- "Amagasaki" 

18 "Kocaeli_ Turkey" 1999 18- "Duzce" 

19 "Iwate_ Japan" 2008 19- "MYG005" 

20-23 
"El Mayor-Cucapah_ 

Mexico" 
2010 

20- "CERRO 

PRIETO 
GEOTHERMAL" 

 
21- "MICHOACAN DE OCAMPO"  |  22- "RIITO"  |  

23- "EJIDO SALTILLO"  | 

24 
"Darfield_ New 

Zealand" 
2010 24- "DFHS" 

25 
"Christchurch_ New 

Zealand" 
2011 

25- "Papanui High 

School " 

26 "Northern Calif-03" 1954 
26- "Ferndale City 

Hall" 

27 "Coalinga-01" 1983 
27- "Parkfield - 

Fault Zone 14" 

28 "Loma Prieta" 1989 

28- "Hollister - 

South & Pine" 

29- "Hollister City 
Hall" 

30 "Kobe_ Japan" 1995 
30-"Sakai" 

31- "Yae" 

32-35 "Chi-Chi_ Taiwan" 1999 32- "TCU038" 

 33-"TCU112"  |  34-"TCU117"  |  35-"TCU118"  | 

36 "St Elias_ Alaska" 1979 36- "Icy Bay" 

37 "Chi-Chi_ Taiwan-03" 1999 
37-"CHY025" 

38- "TCU065" 

39 "Chuetsu-oki_ Japan" 2007 39- "Joetsu City" 

40-42 "Iwate_ Japan" 2008 
40- "Nakashinden 

Town" 

 
41- "Semine Kurihara City"   |  42- "Yokote Masuda 

Tamati Masu"  | 

43-47 
"El Mayor-Cucapah_ 

Mexico" 
2010 

43- 

"TAMAULIPAS" 

 

44-"El Centro - Meloland Geot. Array"  |  45- "El 

Centro - Meloland Geotechnic"  |  46-"El Centro Array 

#7"  | 

47- "El Centro - Meadows Union School"  | 

48-50 
"Darfield_ New 

Zealand" 
2010 

48- "Hulverstone 

Drive Pumping 
Station" 

49- "NNBS North 
New Brighton 

School " 

50- "SPFS" 

51 "Northwest Calif-02" 1941 "Ferndale City Hall" 

52 "Northern Calif-01" 1941 "Ferndale City Hall" 

53 "Borrego" 1942 
"El Centro Array 

#9" 

54 "Kern County" 1952 
"Santa Barbara 

Courthouse" 

55 "Kern County" 1952 
"Taft Lincoln 

School" 

56 "Southern Calif" 1952 "San Luis Obispo" 

57 "Parkfield" 1966 "San Luis Obispo" 

58 "Borrego Mtn" 1968 
"El Centro Array 

#9" 

59-75 "San Fernando" 1971 

59- "2516 Via Tejon 

PV" 

60-"Carbon Canyon 
Dam" 
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61- "Cedar Springs Pumphouse"  |  62- "Cedar Springs_ 

Allen Ranch"  |  63- "Colton - So Cal Edison"  |  64-
"Fort Tejon"  | 

65-"Gormon - Oso Pump Plant"  |  66- "LB - Terminal 

Island"  |  67- "Pearblossom Pump"  |  68- "Port 

Hueneme"  |  69-"Puddingstone Dam (Abutment)"  |  
70- "Santa Anita Dam"  |  71- "Tehachapi Pump"  |  72-

"Upland - San Antonio Dam"  |  73- "Wheeler Ridge - 

Ground"  |  74- "Whittier Narrows Dam"  |  75-
"Wrightwood - 6074 Park Dr"  | 

76-78 "Friuli_ Italy-01" 1976 

76- "Barcis" 

77- "Codroipo" 

78-"Conegliano" 

79 "Tabas_ Iran" 1978 79-"Ferdows" 

80-83 "Imperial Valley-06" 1979 
80- "Coachella 

Canal #4" 

 
81- "Niland Fire Station"  |  82-"Plaster City"  |  83- 

"Victoria"  | 

84 "Victoria_ Mexico" 1980 
84- "SAHOP Casa 

Flores" 

85-87 "Trinidad" 1980 
85- "Rio Dell 

Overpass - FF" 

 
86- "Rio Dell Overpass_ E Ground"  |  87- "Rio Dell 

Overpass_ W Ground"  | 

88-91 "Irpinia_ Italy-01" 1980 88-"Arienzo" 

 
89-"Bovino"  |  90-"Torre Del Greco"  |  91-"Tricarico"  

| 

92-95 "Irpinia_ Italy-02" 1980 92- "Bovino" 

 
93-"Brienza"  |  94- "Mercato San Severino"  |  95- 

"Tricarico"  | 

96-97 "Coalinga-01" 1983 

96- "Parkfield - 

Cholame 12W" 

97-"Parkfield - 
Cholame 1E" 

98-126 "Coalinga-01" 1983 
98-"Parkfield - 
Cholame 2E" 

 

99- "Parkfield - Cholame 2WA"  |  100- "Parkfield - 

Cholame 3E"  |  101- "Parkfield - Cholame 3W"  |  102-
"Parkfield - Cholame 4AW"  |  103-"Parkfield - 

Cholame 4W"  |  104- "Parkfield - Cholame 5W"  |  

105- "Parkfield - Cholame 6W"  |  106- "Parkfield - 
Cholame 8W"  |  107- "Parkfield - Fault Zone 1"  |  108- 

"Parkfield - Fault Zone 10"  |  109- "Parkfield - Fault 

Zone 2"  |  110- "Parkfield - Fault Zone 3"  |  111- 
"Parkfield - Fault Zone 4"  |  112-"Parkfield - Fault 

Zone 6"  | 

113- "Parkfield - Fault Zone 9"  |  114- "Parkfield - 

Gold Hill 1W"  |  115-"Parkfield - Gold Hill 2E"  |  116- 

"Parkfield - Gold Hill 2W"  |  117-"Parkfield - Gold Hill 
3W"  |  118-"Parkfield - Gold Hill 4W"  |  119-

"Parkfield - Gold Hill 5W"  |  120- "Parkfield - Gold 

Hill 6W"  |  121-"Parkfield - Stone Corral 2E"  |  122- 
"Parkfield - Stone Corral 3E"  |  123-"Parkfield - Stone 

Corral 4E"  |  124- "Parkfield - Vineyard Cany 3W"  |  

125- "Parkfield - Vineyard Cany 4W"  |  126-"Parkfield 
- Vineyard Cany 6W"  | 

127 "Ierissos_ Greece" 1983 127- "Ierissos" 

128-
136 

"Taiwan 
SMART1(25)" 

1983 
128-"SMART1 

C00" 

 

129-"SMART1 E01"  |  130- "SMART1 E02"  |  131- 

"SMART1 I01"  |  132- "SMART1 I07"  |  133-

"SMART1 M01"  |  134-"SMART1 M06"  |  135-
"SMART1 O01"  | 

136- "SMART1 O07"  | 

137-

143 
"Borah Peak_ ID-01" 1983 

137- "CPP-601" 

138-"CPP-610" 

 

139- "PBF (second bsmt)"  |  140-"TAN-719"  |  141-

"TRA-642 ETR Reactor Bldg(Bsmt)"  |  142- "TRA-
670 ATR Reactor Bldg(Bsmt)"  | 

143-

150 
"Morgan Hill" 1984 

143- "APEEL 1E - 

Hayward" 

 

144- "Capitola"  |  145- "Foster City - APEEL 1"  |  

146-"Fremont - Mission San Jose"  |  147- "Hollister 

City Hall"  | 

148- "Los Banos"  |  149-"SF Intern. Airport"  |  150- 
"San Justo Dam (L Abut)"  | 

 
 
 
APPENDIX B 

 
TABLE B1. Comparison of𝛼 (Ridge Reg.) 

Ridge 

Reg. 
Displacement Drift Base shear Structure 

𝛼 0.001 0.022 0.022 15-stroy 

𝛼 0.001 0.278 0.278 20-story 

𝛼 0.001 0.022 0.022 25-story 

𝛼 0.001 0.002 0.001 30-story 

 

 
TABLE B2. Comparison of𝛼 (Elastic Net Reg.) 

Elastic 

Net Reg. 
Displacement Drift 

Base 

shear 
Structure 

𝛼 0.01326 0.00130 0.2222 15-stroy 

𝛼 0.02811 0.00010 0.2222 20-story 

𝛼 0.04941 0.00167 0.0193 25-story 

𝛼 0.01900 0.00115 0.1264 30-story 

 

 

 
TABLE B3. Comparison of𝛼 (Lasso Reg.) 

Lasso 

Reg. 
Displacement Drift Base shear Structure 

𝛼 0.00052 0.00010 1526.41 15-stroy 

𝛼 0.00168 0.00010 2223.00 20-story 

𝛼 0.00268 0.00010 3237.45 25-story 

𝛼 0.00066 0.00010 3237.46 30-story 
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Persian Abstract 

 چکیده 
  یی مطالعه توانا   ن یمهم است. ا  ار یبس  مقاوم سازی  یهاراهبرد  یریگ   میو تصم  یابی، ارزیدر طراح  نی زم  یحرکات قواثر  بتن آرمه تحت    یبرش  یوارهاید  یهاپاسخ   ی نیب  شیپ

 ی برش  یوارهایپاسخ د  ینیب  شیپ  یرا برا ،(SA)  شدهیسازه یشب  دیتبر  تمی( و الگورANN)  یمصنوع  ی(، شبکه عصبANN-SA)مدل    یبیروش ترک  کیو    ونیرگرس  یهامدل

و   هیمورد تجز OpenSeesدر  یبتن  یبرش یوارهایطبقه( با د 30و  25،  20،  15منظور، چهار ساختمان ) ن یا یکند. برای م یابیارز نیزم یقو یهاحرکت  ریبتن آرمه تحت تأث

. حداکثر شتاب، مورد استفاده قرار گرفته است)پاسخ ها(    ی( و خروجمشخصات )  ی داده جامع از ورود  گاهیپا  کی  دیتول  یبرا  ی رکورد لرزه ا  150  . ه استقرار گرفت  لیتحل

 ی هاپاسخ  ییدر شناسا ی ساده و روش ترکیبیها دقت مدل در این مطالعه .شده استاستفاده   )متغییرهای ورودی( کننده ینیب شیحداکثر سرعت و مشخصات زلزله به عنوان پ

  ش یدر پ  ی از دقت منطق  ANN-SAکه مدل    دهدنشان می   ج یشده است. نتا  ی بررس  یالرزه   یبه مدل تقاضا  یورود  یرهای متغ   تیحساسهمچنین    و  شده  سه یمقا  یبرش  یهاوارید

 برخوردار است.   ینیب

 
 


