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A B S T R A C T  
 

 

Identification of drug-target protein interaction plays an important role in the drug discovery process. 

Given the fact that prediction experiments are time-consuming, tedious, and very costly, the 

computational prediction could be a proper solution for decreasing search space for evaluation of the 
interaction between drug and target. In this paper, a novel approach based on the known drug-target 

interactions based on similarity graphs is proposed. It was shown that use of this method was a low-

ranking issue and WNNM (weighted nuclear norm minimization) method was applied to detect the 
drug-target interactions. In the proposed method, the interaction between the drug and the target is 

encoded by graphs. Also known drug-target interaction, drug-drug similarity, target-target and 

combination of similarities were used as input. The proposed method was performed on four 
benchmark datasets, including enzymes (Es), ion channels (IC), G protein-coupled receptors (GPCRs), 

and nuclear receptors (NRs) based on the AUC and AUPR criteria. Finally, the results showed the 

improved performance of the proposed method. 

doi: 10.5829/ije.2021.34.07a.18 
 

 
1. INTRODUCTION1 
 
The evaluation of the drug-target interactions (DTIs) 

has attracted the attention of researchers in the field of 

pharmaceutical science, recently  [1]. Accordingly, 

extensive efforts have been dedicated to the assessment 

of drug repositioning to discover the interaction 

between new targets and the existing drugs. In fact, DTI 

is defined as detection factor between the target and 

drug interaction that leads to changes in the drug’s 

behavior/use. On the other hand, the identification of 

these interactions will minimize the adverse side effects 

of drugs [2]. Wet-lab experiments  to recognize these 

potential interactions are cost and time consuming. 

Therefore, computational prediction (CP) methods have 

been used in recent years [3]. In general, CP methods 
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can be divided into three categories of ligand-based [4], 

docking approaches [5], and chemogenomic approaches 

[6]. 

However, many chemogenomic approaches have 

been attracted attention of many researchers   lately. 

These methods can be extensively used on accessible 

biological data [7]. In fact, these methods use data that 

includes process information simultaneously to predict. 

Here, information about processes means the diagram of 

the chemical structure and genomic sequence for drugs 

and targets. This general technique is divided into two 

categories of feature-based and similarity-based 

methods. Supervised machine learning methods are 

exploited in the feature-based technique. In fact, the 

methods include feature vectors of sets of drug-target 

pairs along with class labels that show the presence of 

interaction (positive instances) and absence of 

interaction (negative instances) [8]. 
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In similarity-based methods, two similarity matrices 

related to drugs and similarity targets along with the 

interaction matrix which represents the interaction 

between drug pairs and targets are used, respectively 

[9]. 

These similarities usually arise through the chemical 

structures for the drug as well as through the protein 

sequence alignment for the target. Similarity-based 

methods have many positive features [10]. 

 Unlike feature-based methods, similarity-based 

methods do not require a feature extraction or feature 

selection, which is a difficult and complex process. 

Computational similarity criteria have recently been 

developed and widely used, the similarity of the 

chemical structure of drugs as well as the similarity of 

genomic sequences  of targets are examples of this. 

Due to the direct relationship between similarity-

based approaches and kernel methods, similarity-based 

methods have better performance in prediction. 

Similarity matrices show relationships between 

drugs and genes through chemical space and genomic 

space, respectively. 

These features represent the superiority of 

similarity-based approaches over other approaches. 

In the present research, we used a method based on 

Low-Rank Matrix Approximation (LRMA) according to 

weighted nuclear norm minimization (WNNM). In 

addition, the graph of drug-drug similarity and target-

target similarity, and drug-target interaction was used to 

improve the performance of the proposed method. The 

details of the proposed method and the steps of the 

algorithm are described in the following sections. 
 
 

2. Proposed Method 
 

The drug-target interaction was shown with x-matrix, 

where the rows represent the drugs, and the columns 

represent the target. The matrix value is indicative of 

drug-target interactions. Since all interactions are not 

known, they are a relative matrix of observations which 

are expressed as follows: 

𝑌 = 𝑅. 𝑋  (1) 

In Equation (1), R is a subsampling operator. In this 

binary matrix, the value of 1 is indicative of known 

interaction and the value of zero shows unknown 

interaction or absence of interaction. A sampled DTI 

relative matrix is available. The goal of this equation is 

to estimate the x-matrix from known Ys and Rs. X is a 

low-rank matrix that needs to be retrieved. To this end, 

Equation (2) was applied: 

𝑚𝑖𝑛
𝑋

𝑟𝑎𝑛𝑘(𝑋)    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑌 = 𝑅. 𝑋  (2) 

There are numerous methods for minimization of 

rank in various fields of vision and machine learning, 

which have attracted the attention of many researchers 

in this field. One of the most important methods is 

nuclear norm minimization (NNM), which can 

guarantee the matrix rank exactly under some limited 

and theoretical conditions. Nonetheless, the NNM 

method is unable to make an exact approximation of the 

matrix rank for various real applications since it often 

tends to minimize the grade components too much. 

These methods are used to reconstruct the data by 

applying additional rank constraints to the estimated 

matrix. Given the fact that the direct minimization of the 

rank is an NP-hard problem, it is difficult to solve. In 

general, WNNM is used to minimize the matrix’s rank. 

The nuclear norm of x-matrix, shown by ‖𝑋‖∗, is the 

sum of its singular values. For instance, in ‖𝑋‖∗ = ∑ 𝜎𝑖𝑖  

is the singular value of the x-matrix. The goal of NNM 

is retrieving the low-rank x-matrix from its degraded 

observation Y matrix by minimizing the ‖𝑋‖∗. 

Recently, NNM-based methods are used in various 

areas, including removing noise from video, background 

extraction, and subspace clustering. Nonetheless, 

nuclear norm is often accepted as convex substitution of 

matrix rank. Although it has a theoretical guarantee, 

singular value thresholding (SVT) model reduces degree 

variables too much for NNM since it treats components 

of different degrees equally, and therefore, cannot 

estimate the matrix rank accurately. Numerous methods 

are proposed to improve the NNM performance. For 

intrinsic reconstruction, by solving an NNM problem, 

low-grade noise input can most likely be solved. In this 

method, nuclear norm proximal (NNP) can be defined 

as follows: 

𝑋̂ = 𝑝𝑟𝑜𝑥𝜆‖.‖∗
(𝑌) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋‖𝑌 − 𝑅. 𝑋‖𝐹

2 + 𝜆‖𝑋‖∗  (3) 

Equation (3) can be solved by applying a norm 

threshold action on singular values of the observation 

matrix in the form of Equation (4) [11, 12]: 

𝑋̂ = 𝑈𝑆𝜆
2

(Σ)𝑉𝑇 (4) 

where Y = UΣVT is a SVD of Y, and Sλ

2

(Σ) is the norm 

threshold in the Σ convex matrix with the 
λ

2
 parameter. 

For each convex component, Σii exists in Σ. The norm 

threshold function can be defined in the form of 

Equation (5): 

𝑆𝜆

2

(Σ)𝑖𝑖 = 𝑚𝑎𝑥 (Σ𝑖𝑖 −
𝜆

2
, 0)  (5) 

While solving the equation is simple, the NNM has 

some limitations. The nuclear norm treats all singular 

values equally and ignores previous knowledge that 

often exists for matrix values. For instance, larger 

singular values of the data matrix are usually more 

important than smaller values in the most vision 

applications since they show the main components of 

the data. Different weights must be visually assigned to 
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different individual values so that the NNM flexibility is 

commensurate with the real scenarios. To correct the 

NNM’s weakness, recent advancements have shown 

that the minimization of weighted nuclear norm can 

achieve a better matrix rank approximation, compared 

to NNM, which innovatively equates inverse weight 

with singular values. Researchers have proposed the 

WNNM method to improve NNM flexibility. The 

weighted imbalanced norm of the matrix is defined in 

the form of Equation (6): 

‖𝑋‖𝑤,∗ = ∑ |𝑤𝑖𝜎𝑖(𝑋)|𝑖   (6) 

where,  σ1(X) ≥  σ2(X) ≥ ⋯ ≥ σn(X),     w =
[w1, w2, … , wn] and wi ≥ 0, the non-negative weight is 

allocated to σi(X). The weight factor increases the 

ability to show the main nuclear norm. Logical weights 

determined based on prior knowledge and 

understanding of the problem use the model of the 

corresponding nuclear norm minimization of WNNM to 

make a better estimation of latent data from corrupted 

input. In this research, the WNNM method was applied 

for the DTI problem. As mentioned, the present research 

exploited the adjacent matrix, which shows the drug-

target interaction matrix. 

To analyze the WNNP problem, a lemma is 

presented [13] which following  special Lemma 1 is 

derived from this lemma [14]: 

Lemma 1. For any m × n matrices A and B, 

tr(ATB) ≤ ∑ σi(A)σi(B)i , where σ1(A) ≥ σ2(A) … ≥ 0 

and σ1(B) ≥ σ2(B) … ≥ 0 are the descending singular 

values of A and B, respectively. Equality occurs if it is 

only possible to find units U and V which concurrently 

singular value analyze A and B because 

A = UΣAVT, and B = UΣBVT,  
where the ordered eigenvalue matrices are showed 

by  ΣA  and ΣB with singular value  
σ(A)  and σ(B) along the diagonal with the same order, 

respectively. 

The following main theorem is concluded based on 

the result of Lemma 1 [15]. 

Theorem 1 Given Y ∈ ℜm×n, without loss of 

generality, it is assumed that m ≥ n , and let Y = UΣVT 

be the SVD of Y, where Σ = (
diag(σ1, σ2, … , σn)

0
) ∈

ℜm×n.   X̂ = UD̂VT is expressed as the universal optimal 

WNNP problem in (3),  where D =

(
diag(d1, d2, … , dn)

0
)  is a diagonal  non-negative matrix 

and the solution  (d1, d2, … , dn)  is for the following 

convex optimization problem: 

min
d1,d2,…,dn

∑ (σi − di)
2n

i=1 + widi    

  s. t. d1 ≥ d2 ≥ ⋯ ≥ dn 

(7) 

According to theorem 1, the WNNP problem is a new 

quadratic optimization problem with linear constraints 

whose global optimization is easily calculated by off-

the-shelf convex optimization solvers. Therefore, for the 

non-convex WNNP problem, a global solution can be 

obtained through (7). The next results show that when 

the weights are arranged in non-descending order, the 

global solution (7) can be obtained in closed-form [15]. 

Result 1 If σ1 ≥ σ2 ≥ ⋯ ≥ 0 and the weights 

convince 

0 ≤ w1 ≤ w2 ≤ ⋯ ≤ wn , then the global 

optimization of (7) is d = max (σ −
wi

2
, 0)

̂
 

The conclusion in result 1 is very useful considering 

that the singular values of a matrix are arranged in non-

ascending order and the larger singular values usually 

correlate with the subspaces of the most important 

components of the data matrix. 

Larger singular values have shrinked less to preserve 

original and valid information of the underneath data. 

Therefore, through result 1, there is an optimal closed-

form solution to the WNNP problem using the weighted 

singular value soft-thresholding operation [15]:  

proxλ‖.‖∗
(Y) = USW

2

(Σ)VT (3) 

where Y = UΣVT is the SVD of Y, and Sw

2
(Σ) is the 

generalized soft-thresholding operator with weight 

vector w 

Sw
2

(Σ)ii = max (Σii −
wi

2
, 0) (3) 

Also the above WNNP solver exactly decadents to 

the NNP solver for the traditional NNM problem when 

all the weights wi are set the same. 

In this matrix, the value is 1 in case of the presence 

of a known interaction between the drug (dt) and target 

(tj); otherwise, the value is zero. In the present study, the 

drug similarity matrix (Sd) and target similarity matrix 

(Ss) were applied in addition to the interaction matrix  . 

In addition, we applied the SIMCOMP similarity 

method [16] based on the number of common 

substructures in chemical structure. In fact, Sd shows the 

similarity of the chemical structure of drug pairs. Also 

St shows the degree of similarity between the two 

proteins, estimated according to the genome sequence 

similarity based on the amino acid sequence of target 

protein . 

Notably, the normalized Smith-Waterman method 

[17] was applied for estimating this case.  

in addition to the application of the introduced 

similarity matrix there are four other similarity matrices, 

including cosine (Scos), correlation (Scor), hamming 

(Sham), and jaccard (Sjac) which were used for DTI 

prediction [5].   

The current research also exploited five similarity 

matrices estimated by the drug-target interaction matrix. 

In fact, similarity matrices are used for DTI, as shown in 

Equation (7): 
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𝑚𝑖𝑛
𝑍

‖𝑌 − 𝑊(𝑍))‖𝐹
2 + 𝜆‖𝑍‖∗  

 +𝛼1𝑇𝑟(𝑍𝑇 ∑ 𝐿𝑑
𝑖 𝑋𝑛𝑠𝑖𝑚

𝑖=1 ) + 𝛼2𝑇𝑟(𝑍𝑇 ∑ 𝐿𝑡
𝑖 𝑋𝑇𝑛𝑠𝑖𝑚

𝑖=1 )    

(7) 

In Equation (7), α1 > 0 and α2 > 0 are balancing 

parameters, Tr(.) is the operator of the matrix’s 

transposes, nsim shows the number of similarity 

matrixes. Here, five similarity matrixes were 

considered. Moreover, Ld and Lt are Laplacian graph for 

Sd and St, estimated in the form of Ld = Dd − Sd and 

Lt = Dt − St, respectively.  

In this regard, Dd and Dt are degree matrices for 

drugs and targets, computed by Dd
ii = ∑ Sd

ij
j  and Dt

ii =

∑ St
ij

j .  

In this section, the WNNM method shown in 

algorithm (1) is used to solve Equation (7). 

 
Algorithm 1. multi graph regularized nuclear norm 

minimization [5] method combined with proposed WNNM 

method 

Procedure Alg(M,A,𝑆𝑑
𝑐𝑜𝑚, 𝑆𝑡

𝑐𝑜𝑚) 

Sparsify: 𝑆𝑑
𝑐𝑜𝑚, 𝑆𝑡

𝑐𝑜𝑚 

Initialize: 𝜆, 𝛼1, 𝛼2, 𝑣1, 𝑣2, 𝐿𝑡
𝑐𝑜𝑚, 𝐿𝑑

𝑐𝑜𝑚, 𝑌 =
𝑀, 𝑍 = 𝑀𝑇 

𝐴𝐴 ← (

𝐴

√𝑣1𝐼

√𝑣2𝐼
)  

For loop, iterate (k) 

𝑌𝑌𝑘 ← (

𝑀

√𝑣1𝑍𝑇

√𝑣2𝑌
)  

𝑋𝑘 ← WNNM(𝑌𝑌𝑘 , 𝐴𝐴, 𝜆)  

𝑌𝑘 ← 𝑠𝑜𝑙𝑣𝑒 − 𝑠𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟(𝑣1𝐼, 𝛼1𝐿𝑑
𝑐𝑜𝑚 , 𝑣1𝑋𝑘

′ ) 

𝑍𝑘 ← 𝑠𝑜𝑙𝑣𝑒 − 𝑠𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟(𝑣2𝐼, 𝛼2𝐿𝑡
𝑐𝑜𝑚 , 𝑣2𝑋𝑘) 

End Loop 

 

In Algorithm 1, Sd
com = Sd + Sd

cos + Sd
cor + Sd

ham +

Sd
jac

= ∑ Sd
insim

i=1  and  St
com = St + St

cos + St
cor + St

ham +

St
jac

= ∑ St
insim

i=1  show the combined similarity for drug 

and target, Dd
com = diag(∑ Sd

Com
j ) and Dt

com =

diag(∑ St
Com

j ) show the combined degree matrix for the 

drug and target also Ld
com = Dd

com − Dd
com and Lt

com =
Dt

com − Dt
com show  the combined Laplacian matrix for  

the drug and target, respectively. This equation is solved 

using the method presented in [5]. Please refer to the 

mentioned article for more details. 
 
 
 

3. Experiments and Analysis of Results 

 

In this section, the experiments and results of the 

proposed method are analyzed separately. 

3. 1. Dataset and Evaluation Criteria        The 

information related to the interactions between drugs 

and target proteins for public databases of KEGG 

BRITE, RENDA, SuperTarget and DrugBank have  

been assessed by Yamanishi et al. [7]. Similar to 

Yamanishi et al. study, we applied four benchmark 

datasets from four different classes of target protein. In 

fact, these criteria are simulated from public databases. 

The following is a description of these datasets: 
• Enzymes (Es): 445 drugs, 664 targets, and 2926 

interactions were extracted in this dataset  . 
•Ion channels (IC): 201 drugs, 204 targets, and 1476 

interactions are extracted in this dataset . 

•  G protein-coupled receptors (GPCRs): 223 drugs, 95 

targets, and 635 interactions are extracted in this dataset  . 

•  Nuclear receptors (NRs): 54 drugs, 26 targets, and 90 

interactions are extracted in this dataset . 

It is notable that the foregoing datasets were 

simulated from public databases, which are available 

with the address of http://web.kuicr.kyoto-

u.ac.jp/supp/yoshi/drugtarget publicly. In the present 

research, cross-validation settings of leave-one-out 

(LOO) were used for data segmentation. Three modes 

of the dataset were considered in the results section. In 

addition, CVS for drug prediction, CVS for target 

prediction, and interaction prediction was introduced 

with titles of CVS1, CVS2, and CVS3, respectively. 

This segmentation was based on  Mongia  et al. study [5], 

as presented below : 

•  CVS1/drug prediction: All drug profiles are set aside 

to be used as the experiment set, which tests the 

algorithm’s ability to predict the interactions of new 

drugs, that is, drugs for which no cross-information is 

available. 

•  CVS2/target prediction: The entire target profiles are 

set aside to be used as the experiment set to assess the 

algorithm’s ability to predict interactions of new targets  . 

•  CVS3/pair prediction: Random drug-target pairs are 

set aside as the experiment set for prediction. This a 

normal adjustment for validation and evaluation.  

When at least one DTI is known for di and tj 

respectively in the training data the CVS1 predicts the 

unknown pair (di,tj). To prevent using the pairs, CV 

used the pairs between the drugs having >= 2 targets 

and the targets interacting with >= 2 drugs, which 

should be used in three other scenarios. Some of these 

pairs are selected by random for testing in each round of 

CV and the union of the rest of them and other entries 

are used for training. 

However, when there are no DTIs for observation of 

new drugs and new targets in the training data, CVS2 

and CVS3 predict new drugs and new targets 

respectively. 

Performance of CV on drugs in CSV2, where the 

rows corresponding to drugs are randomly blinded for 
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testing and the resting rows are used for training. Also 

performance of CV on targets in CSV3 where the 

columns (accounting for targets) are randomly blinded 

for testing and the resting columns are used for training 

as well . 

We have made various tasks of CV under 3 

scenarios showed in Figure 1 respectively. 

In addition, area under the ROC curve (AUC) and area 

under the Precision-Recall (AUPR) were applied to 

assess the performance of the proposed method 

according to Mongia et al. study [5]. 

 

3. 2. Analysis of Experiments’ Results       This 

section includes a comparison of the proposed method 

with previous works in recent years. In the current 

research, we applied the techniques presented in others 

study for comparison [18, 19]. Notably, all methods are 

performed from the same data set and the same CVS. In 

addition, the results of other works were extracted from 

the articles. The results are shown in the tables below 

based on the AUC and AUPR criteria . 

Table 1 presents a comparison of the methods based on 

the AUC criterion in four benchmark datasets and 

various CVSs. According to the results, the proposed 

method had acceptable performance in the evaluation of 

DTI in similar datasets, compared to other techniques. A 

very important point in these tables is related to the 

prediction of the target-drug pair. In this regard, the 

rows related to CVS3 are shown in Table 1.  

Table 2 compares the methods based on the AUPR 

criteria and the results obtained from the techniques in 

four benchmark datasets in three different CVSs. 

According to the results, the proposed method had 

acceptable performance in DTI evaluation (CVS3) in all 

four benchmark datasets, compared to other methods. 

This paper presents a new approach based on  the 

known drug-target interactions based on similarity 

graphs. The weighted nuclear norm minimization 

method was used to identify the drug-target interactions. 

Our proposed method encodes the adjacency between 

the drug and the target by graphs. Also, known drug- 

 
 

 
Figure 1. Presentation of cross-validation schemes for three scenarios. Each column represents a scenario. Row includes the DTI 

matrices, in which the entries marked with “?” are the pairs of interest to be tested 
 

 

TABLE 1. Comparison of the proposed method with other 

techniques based on AUC criteria in four datasets in various 

CVSs 

CVS Dataset [18] [19] [20] [21] 
Proposed 

method 

CSV1 

Es 0.9272 0.9067 0.96 0.97 0.9721 

IC 0.9368 0.9286 0.97 0.98 0.9526 

GPCRs 0.8966 0.8694 0.94 0.96 0.9024 

NRs 0.8373 0.8124 0.88 0.92 0.9421 

CSV2 

Es 0.7755 0.7952 0.78 0.84 0.8512 

IC 0.7669 0.7576 0.79 0.94 0.8013 

GPCRs 0.8800 0.8067 0.88 0.91 0.9186 

NRs 0.8615 0.8124 0.86 0.90 0.9015 

CSV3 

Es 0.9705 0.9635 0.93 0.92 0.9512 

IC 0.9832 0.9786 0.94 0.97 0.9969 

GPCRs 0.9493 0.9458 0.88 0.93 0.9902 

NRs 0.8679 0.9329 0.79 0.88 0.9339 

TABLE 2. Comparison of the proposed method with other 

techniques based on the AUPR criteria in four databases in 

different CVSs 

CVS Dataset [18] [19] [20] [21] 
Proposed 

method 

CSV1 

Es 0.7808 0.5465 0.87 0.92 0.8532 

IC 0.7786 0.7437 0.92 0.92 0.8011 

GPCRs 0.5989 0.5397 0.73 0.79 0.7944 

NRs 0.4774 0.4907 0.60 0.83 0.7720 

CSV2 

Es 0.3848 0.2409 0.40 0.73 0.7322 

IC 0.3538 0.3090 0.36 0.69 0.6921 

GPCRs 0.4059 0.3463 0.42 0.63 0.5812 

NRs 0.5203 0.5373 0.56 0.71 0.7366 

CSV3 

Es 0.8837 0.8093 0.80 0.82 0.9055 

IC 0.9373 0.8459 0.81 0.80 0.9411 

GPCRs 0.7543 0.6933 0.60 0.61 0.7601 

NRs 0.6383 0.7072 0.46 0.64 0.7888 
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target interaction, drug-drug similarity, target-target and 

combination of similarities have been used as input. The 

proposed method was performed  on four benchmark 

based on the AUC and AUPR criteria. Eventually, the 

results showed an improvement in the performance of 

the proposed method 

 

 

4. CONCLUSION 
 

The present research proposed a novel approach to 

identify drug-target interactions, which applied the 

drug-drug, target-target, and target-drug interaction 

similarity graph method. In the current research, the 

proposed method’s performance was improved by using 

the WNNM in order to eliminate NNM limitations in 

the DTI use. In addition, the proposed technique was 

assessed in four benchmark datasets based on the AUC 

and AUPR criteria. The final results were indicative of 

the improved performance of the proposed method 

compared to previous approaches in the field. 
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Persian Abstract 

 چکیده 
و خسته    نهیپرهز  اریزمانبر، بس  ندیفرآ  نیا  ینیبشیپ  شاتیکه انجام آزما  ییکشف داور دارد. از آنجا  ندیدر فرآ  یمهم  اریهدف، نقش بس  هاین ی دارو و پروتئ  نیتعامل ب  ییشناسا

باشد. در   نهیپر هز شات یاستفاده از آزما ی دارو و هدف بجا نیبتعامل  یبررس یجستجو برا یکاهش فضا یبرا یراهکار مناسب کی تواندی م یمحاسبات ینبیشی. پباشدیکننده م

کاربرد جز مسائل با    نیمقاله نشان داده شده که ا  ن یگراف شباهت ارائه شده است. در ا  هیهدف برپا-دارو  نی شناخته شده در ب  یهابر اساس، تعامل   نیراهکار نو کیمقاله    نیا

برای نمایش   همچنین در این مقاله دارو و هدف استفاده شده است. نیتعامل ب صیتشخ یبرا یوزن یاحداقل رساندن نرم هسته وشراستا از ر نیباشند که در ا یم نیی مرتبه پا

استفاده شد که   از گراف مجاورت  بین دارو و هدف  ترک-دارو، هدف -هدف، شباهت دارو-ییتعامل دارومجاورت  به عنوان وروداز شباهت  یبیهدف و  استفاده شد.    یها 

(، بر  NRs)  یاهسته  یهارنده ی( و گ GPCRs)  G  ن یهمراه پروتئ   یهارندهی(، گIC) یونی  یها(، کانال Es)  هام یشامل آنز  ار یچهار مجموعه داده مع   یبر رو  یشنهادیروش پ

 .باشدیم یشنهادیبدست آمده نشان دهنده بهبود عملکرد روش پ جیقرار گرفته است. نتا یابیمورد ارز AUC ،AUPR یارهایاساس مع 

 


