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A B S T R A C T  

 

This article presents a new method for detecting heterogeneities in wind data set to predict wind speed 

based on the well-known Hidden Markov Model (HMM). In the proposed method, the HMM categorizes 
the wind time series into some groups in which each group represents a wind regime. Each regime uses 

an internal first-order Markov Chain (MC) for forecasting, and the combination of all regimes outputs 

generates the final wind speed forecast. The model proposed in this study is called “Hierarchical Markov 
Model ”. The first layer detects and separates wind regimes as heterogenic groups of wind data by the 

use of wind direction data, based on  HMM, and the second layer forecasts the wind speed using MC. 

The proposed model is implemented and tested using real data. Its effectiveness in terms of temporal 
stationary index is compared with that of a first-order MC-based method. The results showed that more 

than 70% improvement can be achieved in wind speed prediction by the proposed method. Moreover, it 

gives a probability distribution function of wind speed prediction, which is sharper than the one obtained 
with the first-order MC; means that more precise prediction.  

doi: 10. 5829/ije.2021.34.02b.13 
 

NOMENCLATURE 

𝛤  Transition probability matrix 𝛼  Initial distribution 

𝑃𝑟  Probability value 𝑥𝑡  Number of successes 

𝑀𝑡  The sequence of random variables 𝑛𝑡  Number of experiments at time t 

𝛾𝑖,𝑗  Probability of transition from state i to state j 𝜋𝑖  Probability of success 

𝑛𝑖,𝑗  Number of transitions from state i to state j m Number of  multinomial-HMM states 

𝑤𝑡  Wind speed (m/s) q Number of quantized levels of HMM 

𝑣𝑡  Quantized wind speed 𝐷𝑗  Quantized wind direction 

𝛽  Temporal stationary  𝑅  Wind regime 

T Number of time intervals 𝑑𝑡  Wind direction 

𝑘  Number of Markov states 𝑉𝑡  Wind speed state vector 

LT Likelihood   

 
1. INTRODUCTION1 
 
The wind is one of the most important atmospheric 

phenomena due to its influence on many aspects of 

human life. Decision-making, in many ways, is directly 

dependent on the wind. Examples include urban air 

pollution management, wind-power-plant generation, 

maritime and air transport, tourism, and sports. Wind 
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speed forecasting has an essential role in wind-power-

plant generation and operation because the generated 

power depends directly on wind speed if it is between two 

upper and lower thresholds [1]. So, this issue has been 

the subject of intense research. For example, 

comprehensive studies have been conducted on the wind 

by Keyhani et al. [2] to investigate wind energy potential 

as a power generation source. 
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In meteorology, using numerical weather prediction 

(NWP) models is a common method of wind forecasting. 

NWP models use physical models of the atmosphere and 

oceans to predict the weather based on current weather 

conditions. These models, which are mainly used for 

large-scale phenomena,  provide accurate results in long-

term forecasts [3]. As discussed by Han et al. [4], 

statistical post-processing of NWP ensembles improved 

the results. They compared and analyzed the statistical 

post-processing methods, including bias-corrected and 

probabilistic forecasts of wind speed to provide more 

accurate weather information. However, NWPs are not 

efficient in terms of high computational volume in short-

term and very short-term forecasts. In such cases, 

statistical models are preferred [5]. 

Short-term wind speed models are built upon either 

probability distribution theory or time series analysis 

approach. In probability distribution models, it is 

assumed that the wind speed follows a specific 

probability distribution such as Weibull. In these 

methods, the parameters of the probability distribution 

function are estimated, usually based on historical data. 

Since these historical data do not always obey one type 

of distribution, considering a particular distribution may 

cause a significant error in these conditions. 

Autoregressive Moving Average (ARMA) and Markov 

Chain (MC) are two methods in the time series analysis 

group. MCs have been used in many applications for 

wind speed modelling. The main feature of these models 

is their ability to incorporate both statistical and temporal 

characteristics of wind speed. In contrast to ARMA,  

MCs (despite their simplicity) can model time-dependent 

wind characteristics. Recent studies have shown that the 

simplicity of MCs makes them a valuable tool in 

modelling. However, MCs are not capable of modelling 

wind characteristics at high frequencies [6]. Wind speed 

time series had been found as long-term correlated 

statistics [7]. Therefore, Statistical methods have been 

used comprehensively to improve wind field simulation 

and wind forecasting. Liu et al. [8] presented an improved 

wind field simulations by the non-Gaussian Least Square 

model by precisely and stably simulating velocity 

skewness and kurtosis  . 

Based on Markov Model, several studies have been 

carried out for forecasting weather parameters like 

temperature and wind. Shamshad et al. [9] compared the 

results of the first and second-order MC for wind 

forecasting and showed that the second-order MC does 

not improve the results so much. 

Tagliaferi et al. [6] showed the Nested Markov Chain 

(NMC) for wind modelling improves MC’s accuracy and 

temporal correlation without excessively increasing 

computational time. The NMC can be considered as an 

extended MC such that each state itself is a standalone 

MC process. In this model, the time series is generated 

using an internal MC. Here, non-Markovian models can 

also be used to generate the inner layer time series in this 

process. In some studies, the semi-Markov model has 

been used to improve the accuracy and autocorrelation of 

standard MCs [10]. This is because of the model’s ability 

to save past transitions through an auxiliary random 

process. The characteristics of this model are as follows. 

First, the time step is not constant; second, the random 

variable may have any distribution; and third, the 

duration of being in each state affects the transition 

probability.  

The wind is affected by other meteorological 

parameters such as air temperature, air pressure and 

relative humidity. These parameters have cyclic change 

over a day and a season. As a result, wind changes have 

a daily periodic regularity [11, 12] or a seasonal period 

[13]. Xie et al. [14] presented a non-homogeneous 

Markov Chain (NHMC) wind speed model to develop a 

more accurate method for modelling wind speed time 

series by considering seasonal and daily changes for wind 

speed. 

Ailliot and Monbet [15] used the Markov Switching 

Auto-Regressive (MSAR) model to describe the time 

series of the wind. In this method, some self-recursive 

models were used to describe the temporal behaviour of 

wind speed. Switching between these models is 

controlled by HMM. Also, non-homogeneous hidden 

Markov-switching models for wind time series were used 

by Ailliot et al. [16]. 

Generally, the aforementioned researches did not 

separate the behaviour of different wind regimes in order 

to achieve better forecasting results. Most of Markov-

based methods use the MC only for predicting wind 

speed. In reality, detecting and separation of wind 

regimes is an important issue. This issue cannot be 

achieved through MCs.  

Major efforts have been invested in finding a way to 

accommodate heterogeneous groups with distinct 

probability distribution function in wind direction time-

series to produce a sharper and more accurate 

probabilistic wind speed forecast. For this aim, HMM can 

be utilized as a powerful tool. The aim of this article is to 

take the hidden Markov model to detect heterogeneities 

in wind data set from which wind regimes can be 

extracted. States of the model are in fact wind regimes, 

and the subsystems of each regime (HMM state) is a six-

state MC denoting the specific wind speed interval. This 

hierarchal model gives us the probability of having a 

wind speed within a specific interval in a specific regime 

in the near future 

This paper is structured as follows. Following this 

introduction, the first-order MC and its stationary 

evaluation are briefly explained in section 2. The 

theoretical concept of mixed models is described, and 

HMM is introduced. Based on the described features, a 

new method for predicting wind speed is proposed based 

on HMM, and an evaluation method is developed based 
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on temporal stationary test. Having applied this method 

to real data, the results are compared with those of the 

first-order MC in section 3 and the advantages of the 

proposed model are described. Considerations for real-

time applications are also discussed in this section. 

Section 4 concludes the paper with a summary and gives 

an outlook on future works. 

 

 
2. MATERIAL AND METHODS 
 

2. 1. Markov Theory            The various versions of 

Markov models have been used in different engineering 

fields. MCs are used for short-term predictions. Semi-

Markov models have been commonly used where state 

transition probabilities in systems are time-dependant. 

HMMs are used to find heterogeneities in data sequences 

and time-series, i.e., for behaviour recognition [17]. 

In this article, HMM is taken to detect and separate 

wind regimes as heterogenic groups of wind data. Each 

regime is, in fact, a state of this HMM. Members of each 

group are then modelled with an MC for wind prediction. 

In the following, the Markov chain and hidden Markov 

theorems are briefly explained.  

 

2. 1. 1. First Order Markov Chain            A sequence 

of random variables (time-series) {𝑀𝑡: 𝑡 ∈ N}  is an MC 

if for all 𝑡 ∈ N it satisfies the property 

𝑃𝑟(𝑀𝑡+1|𝑀𝑡 , … ,𝑀1) =  𝑃𝑟(𝑀𝑡+1|𝑀𝑡). It means that 

considering the history of the process up to time t is 

equivalent to considering the most recent value 𝑀𝑡.  
In a first-order k-state MC, the transition probability 

matrix 𝜞 has a size of k × k represented as Equation (1): 

𝜞 = [

𝛾1,1 𝛾1,2 … 𝛾1,𝑘
𝛾2,1 𝛾2,2 … 𝛾2,𝑘
⋮ ⋮ ⋮ ⋮
𝛾𝑘,1 𝛾𝑘,2 … 𝛾𝑘,𝑘

]    (1) 

where 𝛾𝑖,𝑗  represents the probability of transition from 

state i to state j. This probability is calculated as Equation 

(2): 

𝛾𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑖,𝑗𝑗
    (2) 

where 𝑛𝑖,𝑗 is the number of transitions from state i to state 

j in the whole time-series. Partitioning the whole range 

of wind speed to several equal or unequal levels gives the 

states of the representing MC of the system. A simple 

way is to take all partitions equal, except the last one, and 

to partition the whole range into some levels (here, for 

example, 6) as Equation (3):  

𝑣𝑡 =  𝑖     𝑖𝑓     5(𝑖 − 1) ≤ 𝑤𝑡 < 5𝑖  ,   𝑖 = 1, 2, 3, 4, 5 

𝑣𝑡 =  6     𝑖𝑓     5𝑖 ≤ 𝑤𝑡   ,      𝑖 = 6  
(3) 

where  𝑤𝑡   is  wind  speed  (m/s)  and  𝑣𝑡 is  the  quantized 

wind speed. Probabilistic wind speed prediction in the 

next step can be declared easily using Equation (4). 

𝑉1 = 𝑉0 . 𝜞   (4) 

where 𝑉0 is the initial condition vector, indicating the 

current wind state. For example, if six levels are 

considered for wind speed, the vector 𝑉0 = [ 0 1 0 0 0 0] 
shows that the system is currently in state 2. In this case, 

according to Equation (4), 𝑉1 shows the probability of 

each state in the next step. This method is only valid 

when the Markov process is not time-dependent (i.e. it is 

stationary). 

A common way to test the temporal stationary 

attribute of an MC of a time-series is dividing the time-

series into two or more parts and designing an MC for 

each part. The primary Markov chain is stationary if the 

transition probability matrices of each part’s MC 

are nearly equal. One way for evaluation of the temporal 

stationary conditions, parameter 𝛽 is defined by Equation 

(5) [9]. 

𝛽 = 2∑ ∑ 𝑛𝑖,𝑗(𝑡)ln (
𝛾𝑖,𝑗(𝑡)

𝛾𝑖,𝑗

𝑘
𝑖,𝑗

𝑇
1 ) ,     t =  1, 2, . . . , T (5) 

where T is the number of time intervals, k is the total 

number of states, and  𝑛𝑖,𝑗(𝑡) and 𝛾𝑖,𝑗(𝑡) are the numbers 

of occurrence and probability of transitions from state i 

to state j, respectively.  

Such an MC is stationary if 𝛽 has a 𝜒2 distribution 

with 𝑘(𝑘 − 1)(𝑇 − 1)  degrees of freedom. It is 

stationary in a 5% confidence interval if 𝛽 <
𝜒2 (5% , Degrees of Freedom). 
 

2. 1. 2. Hidden Markov Model          Hidden Markov 

model is a well-known model for univariate or multi-

variable  time  series  and  is  specially  used  for 

modelling discrete series such as group series or counting 

series. 

Hidden Markov Model {𝑋𝑡 ∶ 𝑡 ∈  ℕ } is a special 

kind of dependent mixed models. Considering 𝑴(𝑡) and 

𝑿(𝑡) as histories from 1 to t, this model is expressed as 

Equation (6). 

𝑃𝑟(𝑀𝑡|𝑴
(𝑡−1)) =  𝑃𝑟(𝑀𝑡|𝑀𝑡−1),  𝑡 = 2, 3, … 

𝑃𝑟(𝑋𝑡|𝑿
(𝑡−1), 𝑴(𝑡) ) =  𝑃𝑟(𝑋𝑡|𝑀𝑡),   𝑡 𝜖 𝑁  

(6) 

The model has two parts. One is ‘parameter 

process’ {𝑀𝑡 ∶ 𝑡 = 1,2, … } which is unobserved and 

satisfies Markov property. The other is ‘state-dependent 

process’ {𝑋𝑡 ∶ 𝑡 = 1,2, … }, where the distribution of 𝑋𝑡 
depends only on the current state 𝑀𝑡  and is not dependent 

on previous states or observations. {𝑋𝑡 } is an m-state 

HMM, if the Markov chain {𝑀𝑡} has m states. Whenever 

the model stays in one of these states, the distribution of 

the model will be its corresponding 𝑋𝑡; i.e., {𝑋𝑡 ∶ 𝑡 =
1,2, … }. This structure is expressed with the directional 

graph of Figure 1. 
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Figure 1. Directional graph of HMM model structure. In this 

model, the parameter process selects one of M1, M2, M3, M4 

and its corresponding distribution (X1, X2, X3, X4) is 

determined. 

 

 

Likelihood of an m states HMM (LT) for the data 

sequence (𝑥1, 𝑥2, … , 𝑥𝑇) with initial distribution 𝜶 and 

transition probability matrix 𝜞 , is expressed by Equation 

(7) where 𝑷(𝑥𝑇) is the probability of occurrence of 𝑥𝑇 

and 𝟏 is a row vector of ones. 

𝐿𝑇 = 𝜶𝑷(𝑥1)𝜞𝑷(𝑥2)𝜞𝑷(𝑥3)…  𝜞𝑷(𝑥𝑇)𝟏
′  (7) 

 

2. 1. 3. Multinomial-HMM            When the output of 

an experiment is binary (success or failure), the binomial 

model is used to calculate the probability of success in a 

certain number of experiments. Binomial probabilities 

are expressed by Equation (8). 

𝑝𝑖(𝑥𝑡) = (
𝑛𝑡
𝑥𝑡
) 𝜋𝑖

𝑥𝑡(1 − 𝜋𝑖)
𝑛𝑡−𝑥𝑡    (8) 

where 𝑥𝑡 is the number of successes, 𝑛𝑡 the number of 

experiments at time t and 𝜋𝑖 is the probability of success. 

For instance, if “Tails” is the success in tossing a coin, 

and in the first experiment there are five times toss with 

two “Tails” outcome, then 𝑛1=5 and 𝑥1=2.  

“Binomial-HMM” Model is a type of HMM in which 

the observed values {𝑥𝑡: 𝑡 = 1,… , 𝑇}, are the number of 

successes in 𝑛1, 𝑛2, … , 𝑛𝑇 independent Bernoulli 

experiments. A model with m states has m values for 

success probability 𝜋𝑖 (𝑖 indicates each of the states).  

A “multinomial-HMM” is the extended model of 

binomial-HMM. In this case, it is assumed that there are 

q possible outcomes in each experiment, where    𝑞 > 2.  

Therefore, the number of observed results is 𝑞 times the 

previous case and is: {𝑥𝑡𝑗: 𝑡 = 1,… , 𝑇; 𝑗 = 1,… , 𝑞} and 

𝑥𝑡1 + 𝑥𝑡2 +⋯+ 𝑥𝑡𝑞 = 𝑛𝑡 (𝑛𝑡 is the number of 

experiments at time t). For example, in a 6-state dice 

throw, if the dice is thrown seven times in the first 

experiment and the number “3” comes twice, then 𝑛1 =
7 and 𝑥13 = 2. The vector 𝑋𝑡, which contains all 

observations at time t, can be written as Equation (9). 

𝑋𝑡 = (𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑞)   (9) 

For an m-state “multinomial-HMM” model, there is a 

𝑚 ×𝑚 transition probability matrix Γ. Each of the m 

states is associated with a multinomial distribution, and 

each of these multinomial distributions has q unknown 

probabilities (emission), which for state i, denoted by 

𝜋𝑖1 , 𝜋𝑖2   … , 𝜋𝑖𝑞 . 

An important case of the multinomial–HMM is 

obtained by considering 𝑛𝑡   = 1 for all t. In this case, as 

∑ 𝑥𝑡𝑘 = 1
𝑞
𝑘=1 , in the vector 𝑋𝑡 with dimension 𝑞, one of 

the elements is “1”, and the rest is “0”. Considering: 

𝑋𝑡 = (0, . . . ,0 ⏟    
𝑗−1

, 1 , 0, . . . ,0 ⏟    
𝑞−𝑗

)  

Defining 𝛑(𝑗) = 𝑑𝑖𝑎𝑔(𝜋1𝑗  , … , 𝜋𝑚𝑗), the likelihood of 

observed groups 𝑗1 , 𝑗2 , … , 𝑗𝑇  at times 1, 2, … , 𝑇  is 

expressed as Equation (10) [18]. 

𝐿𝑇 = 𝜶𝛑(𝑗1)𝚪𝛑(𝑗2)𝚪…  𝛑(𝑗𝑇)𝟏
′   (10) 

 
2. 2. A Novel Method for Wind Forecasting             In 

this section, a novel wind speed forecasting method is 

presented based on a hierarchical Markov model. This is 

a two-layer model, in which the top layer is a 

Multinomial-HMM. In this layer, each state, representing 

a particular wind regime, is a firs-order MC for which 

each state represents a specific wind speed interval. 

Figure  2  shows  the  basic  structure  of  the  proposed 

model.  

The proposed method is suitable for very short-term 

wind forecasting (from a few seconds up to a few hours). 

Hourly forecasts of wind direction and speed are widely 

used for daily public planning. Meanwhile, shorter times 

are usually employed, for example, in wind turbine 

management to maximize the receivable power and 

prevent damage to equipment [19-21]. 

This kind of forecasting also is useful for aircraft 

landing and take-off processes. 

 

2. 2. 1. Method Implementation     The 

implementation of the proposed method, results in 

predicting probability values for wind speed, leading to 

improved results of the well-known first-order MC. 

Figure 3 illustrates the proposed method. The method 

includes the following three phases. 

• Phase A: HMM definition and parameter estimation 

• Phase B: Regime separation 

• Phase C: Online forecasting 

 

 

 
Figure 2. Structure of the proposed hierarchical Markov 

model 
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Each phase has some steps as the following: 

Phase A: 

a. In this step, wind speed and direction time series at a 

given interval is gathered and pre-processed to produce 

training data for estimating model parameters. Like other 

data-driven methods, the completeness and proper 

sequence of collected data must be checked. The purpose 

of this step is to ensure the validity of the wind time 

series. For better consistency, data series should be 

examined and, in case of missing, should be recovered 

based on an interpolation algorithm. When the wind 

speed is zero, the wind direction is assumed invalid and 

deleted from the data set. The observed wind direction 

data should be treated in a way that any single observed 

wind direction is coded from 1 to 16, depending on lying 

in one of the 16 conventional directions N, NNE, …, 

NNW. Thus, there are 16 possible outcomes for any 

single direction value i.e. 𝐷1, 𝐷2, … , 𝐷16 . 
b. In this step, the maximum likelihood problem for the 

“multinomial-HMM” model problem based on the well-

known Baum-welch algorithm on wind direction time 

series is solved such that to determine the model 

parameters to maximize Equation (10). These parameters 

are the transition probability matrix between m states 

(𝛤𝑚×𝑚) and the probability corresponding to each of 

𝐷1, 𝐷2, … , 𝐷16  in each state (emissions). Considering 

m=2, each direction 𝐷𝑗  is associated with two probability 

values: the probability of occurrence in state one 𝜋1𝑗 and 

the probability of occurrence in state two 𝜋2𝑗. 

Phase B: 

c. In this step, the wind time series is separated into two 

parts according to probability corresponding to each of 

16 directions. Any direction that is more likely to occur 

in the first state falls into the first part, and any direction 

that is more likely to occur in the second state falls into 

the second one. Equation (11) shows the procedure. 

𝑖𝑓     𝜋1𝑗 > 𝜋2𝑗    𝑡ℎ𝑒𝑛    

   𝐷𝑗 ∈ 𝑅1   

     𝑒𝑙𝑠𝑒     𝐷𝑗 ∈  𝑅2 ,  

  𝑖 = 1,… , 𝑞  

 (11) 

This is used to separate wind time series into two groups 

𝑅1  and 𝑅2 according to wind direction, which is named 

them as “wind regime” from now on. 

d. In this step, the transition probability matrix of the 

first-order MC is calculated . 
According to Equations (1) and (2) represent wind 

speed time series in each regime.   

Phase C: 

e. In this step, online wind speed and direction are 

measured, and the most probable regime is chosen 

according to the direction. 

f. In the last step, wind speed is predicted based on 

current wind speed and the first-order MC corresponding 

to the dominant regime and also considering transition 

probability between regimes. 

The above six steps can also be carried out for more 

numbers of regimes. 

 

2. 2. 2. Method Evaluation Approach            Generally, 

the most important criterion to evaluate Markov models 

is to compare the transition probability matrix obtained 

from the test data with the transient probability matrix 

obtained from the training data. The more the similarity 

between these two transition probability matrices is, the 

more successful the forecasting model will be. 

“Temporal Stationary” is one of the most practical 

comparison tools. 
 

 

 
 

 
Figure 3. Proposed Flowchart for Implementation of HMM 

Model, a. Flowchart Part I (Modeling), b. Flowchart Part II 

(Forecast) 
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Using the proposed method, the temporal stationary 

value for the whole model is calculated as follows. By 

choosing T=2, the Equation (5) is simplified as Equation 

(12), and the degree of freedom is equal to 𝑘(𝑘 − 1). 

𝛽 = 2∑ (𝑛𝑖,𝑗(1)𝑙𝑛 (
𝛾𝑖,𝑗(1)

𝛾𝑖,𝑗

𝑘
𝑖,𝑗 ) + 𝑛𝑖,𝑗(2)𝑙𝑛 (

𝛾𝑖,𝑗(2)

𝛾𝑖,𝑗
))  (12) 

As the wind time series has been partitioned into two 

regimes, according to step C of the proposed method, 

temporal stationary of each regime is calculated by 

Equation (12). The value of  𝛽𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑  can then be 

computed from the expanding Equation (13). 

𝛽𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 =
𝑛(1)𝛽1+𝑛

(2)𝛽2

𝑛(1)+𝑛(2)
 ,   (13) 

where 𝛽1 and 𝛽2 are the temporal stationary values of the 

first and the second groups, respectively, and 𝑛(𝑟) is the 

number of the existing elements in regime 𝑟, 𝑟 = 1,2. 

To compare the performance of the proposed model 

against the first-order MC, it is necessary to calculate and 

compare their β values for wind time-series data. The 

smaller value indicates a better (near to reality) forecast. 

To calculate the temporal stationary index of first-

order MC for two-time series {𝑀1, 𝑀2, … ,𝑀𝑛} and 

{𝑁1, 𝑁2, … , 𝑁𝑛},  it is enough to find 𝛾𝑖,𝑗(1)   for the first 

time-series and 𝛾𝑖,𝑗(2) for the second time-series 

according to  Equation (2).  The 𝛾𝑖,𝑗 is then calculated 

according to Equation (2) for the time-series 

{𝑀1, 𝑀2, … ,𝑀𝑛 , 𝑁1, 𝑁2, … , 𝑁𝑛}. Now the value of 𝛽 can 

be calculated cording to Equation  (12). To calculate 

temporal stationary of the proposed method, each of the 

time-series {𝑀1, 𝑀2, … ,𝑀𝑛}  and  {𝑁1, 𝑁2, … , 𝑁𝑛}  should 

be split into groups according to the defined HMM 

regiems. Group one of the first time-series and group one 

of  the second time-series are used to calculate 𝛽1and 

send groups of them are used to calculate 𝛽2. Then having 

the number of elements each group, it is easy to calculate 

the temporal stationary of the proposed method by 

Equation (12). 

 

2. 3. Implementation of The Proposed Forecasting 
Method          In this section, the proposed method is 

implemented and examined by real wind time series. The 

results are compared to the first-order MC. It is assumed 

that the inner layer of each regime is a first-order MC. 

The states are defined as described in Equation (3).  

 

2. 3. 1. Field Data            The measured values of wind 

speed and direction near the runway 29 of Imam 

Khomeini International Airport (IKIA) were taken as test 

data. Direction and speed of wind in this site are 

measured and saved every 30 seconds by an anemometer 

that is installed at the top of a 10 meters length mast. The 

installed anemometer is of WMT700 type with a 

measuring range of 0.01 to 75 m/s and accuracy of ±0.1 

m/s or 2 % of reading, whichever is greater. Ultrasonic 

sensors provide reliable data due to their extremely low 

measuring threshold, good stability, accuracy and their 

ability to operate in harsh and cold climates [22]. 

The mast is placed at coordinates 35° 24' 54"  N, 51° 

9' 46" E close to the runway as shown in Figure 4. 

Statistical data for four years (2013 to 2016) was 

gathered. It was seen that the ratio of missing data to all 

data is less than 0.1% in the entire collection period in 

our data set. The collected data are used by the proposed 

method, and the results are gathered to study. Previous 

studies on the wind in Tehran was carried out based on a 

3-hour period measured long-term wind speed data of 

meteorological station in Mehrabad airport in Tehran [2]. 

An Alternative data source would be remote sensing 

systems that gather the data remotely over a wide area as 

reported in literature [23, 24] for precipitation. 

 

2. 3. 2. Parameters Estimation          The two-state 

HMM is fed with eight sets of monthly test data (The 

wind speed of March and July of the year 2013 to the year 

2016). Eight  sets of parameters are presented in in Tables 

1 and 2, which correspond to the eight sets of these 

monthly data. 

Table 1 shows that the transition probability matrices 

for the same month of different years are more similar 

than the values of the other months. 

From Table 2, it is observed that 16 probabilities 

associated with each state in March 2013 (𝝅𝟏𝒋 and  𝝅𝟐𝒋)  

are almost similar to other March months, while they 

differ from values of July months. Also, those values are 

approximately similar in all July months. 

 

 

 
Figure 4. Position of runway anemometer of IKIA 

 

 

TABLE 1. Transition probability matrix for each of eight data 

sets (March and July of four consecutive years from 2013 to 

2016). 

 July March 

2013 𝚪 = [
0.9935 0.0065
0.0085 0.9915

] 𝚪 = [
0.9883 0.0117
0.0281 0.9719

] 

2014 𝚪 = [
0.9950 0.0044
0.0055 0.9945

] 𝚪 = [
0.9844 0.0156
0.0291 0.9709

] 

2015 𝚪 = [
0.9930 0.0070
0.0095 0.9905

] 𝚪 = [
0.9896 0.0104
0.0217 0.9783

] 

2016 𝚪 = [
0.9941 0.0059
0.0066 0.9934

] 𝚪 = [
0.9861 0.0139
0.0202 0.9798

] 
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TABLE 2. 16 probabilities associated with each state in two 

groups of identical months in four consecutive years. All of the 

probabilities multiplied by 1000. 

 
March 

2013 

March 

2014 

March 

2015 

March 

2016 

Direction 𝝅𝟏𝒋 𝝅𝟐𝒋 𝝅𝟏𝒋 𝝅𝟐𝒋 𝝅𝟏𝒋 𝝅𝟐𝒋 𝝅𝟏𝒋 𝝅𝟐𝒋 

1 N 0 40 0 64 0 79 0 59 

2 NNE 0 36 0 66 39 6 50 16 

3 NE 0 14 0 64 58 0 60 10 

4 ENE 21 88 1 58 36 0 34 0 

5 E 48 3 48 3 51 0 40 0 

6 ESE 127 0 117 0 100 0 109 0 

7 SE 81 0 91 0 82 0 73 0 

8 SSE 30 0 40 0 35 0 37 0 

9 S 29 0 29 0 22 0 20 0 

10 SSW 36 0 26 0 17 0 21 0 

11 SW 30 0 33 0 21 0 17 0 

12 WSW 93 0 113 0 68 0 78 0 

13 W 219 0 216 0 207 0 195 0 

14 WN 284 68 280 48 257 101 247 121 

15 NW 2 594 6 544 1 647 3 677 

16 NNW 0 166 0 162 0 165 0 155 

 
July 

2013 
July 

2014 
July 

2015 
July 

2016 

Direction 𝝅𝟏𝒋 𝝅𝟐𝒋 𝝅𝟏𝒋 𝝅𝟐𝒋 𝝅𝟏𝒋 𝝅𝟐𝒋 𝝅𝟏𝒋 𝝅𝟐𝒋 

1 N 1 93 0 62 3 77 5 73 

2 NNE 3 31 2 62 74 4 2 28 

3 NE 50 2 53 5 98 0 48 0 

4 ENE 61 0 62 0 85 0 55 0 

5 E 177 0 200 0 155 0 165 0 

6 ESE 395 0 464 0 329 0 380 0 

7 SE 170 0 161 0 153 0 168 0 

8 SSE 65 0 33 0 51 0 81 0 

9 S 53 0 13 0 32 0 76 0 

10 SSW 12 2 10 2 16 2 11 2 

11 SW 13 19 1 10 4 14 9 24 

12 WSW 0 19 0 15 0 24 0 14 

13 W 0 38 0 28 0 74 0 54 

14 WN 0 186 0 206 0 191 0 201 

15 NW 0 480 0 492 0 470 0 480 

16 NNW 0 129 0 117 0 143 0 123 

 

 

In Table 2, the probability values are shown by factor 

× 1000 for readability. For instance, in the first row, the 

numbers 0 and 40 in columns “March 2013” show that 

the north wind has a probability of 0  in regime 1 (i.e., in 

regime 1 northern wind does not exist) and 0.04 in regime 

2. It can be concluded that every northern wind belongs 

to regime 2. 

The results of Table 2 also are presented in Figures 5 

and 6 in a bar graph form. As expected, the probability 

values for the same two months are not quite the same. 

But they are much closer than two months apart. 

 

2. 3. 3. Regime Separation             Using Equation (11), 

in March 2013, directions 1, 2, 3, 4, 15 and 16 are 

assigned to regime 2. The remaining directions are 

assigned to regime one as Equation (14). 

𝑅1 = {5,6,7,8,9,10,11,12,13,14} ,  
𝑅2 = {1,2,3,4,15,16} ,  

(14) 

The sets 𝑅1 and 𝑅2 are used to separate March 2013 wind 

speed time series into two groups according to the 

corresponding direction. A first-order MC now can be 

used to forecast wind speed in each of the two separated 

groups. The transition between pre-quantized levels of 

wind speed is now modelled as a first-order MC. 

Moreover, the transition probability matrix for each 

group (Γ1 and Γ2) is calculated as Equation (2). These 

matrices will be used later for wind forecasting. 

 

2. 3. 4. Online Forecasting              Now, as the wind 

time series of March 2013 has been used for parameter 

estimation, wind forecasting for March is feasible. 

 

 

 

 
Figure 5. 16 probabilities associated with each state in 

regime 1 and regime 2 in July 2014 and July 2015 
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Since sets 𝑅1 and 𝑅2

2 will be the 

dominant regime. In this case, for the next sample,  𝑅2 

will remain dominant with probability 𝛾22 =0.97 and 

dominant regime will be changed from 𝑅2 to 𝑅1 with 

probability 𝛾21 =0.03 according to Table 1. 

As described in the previous section, Γ1 is the 

transition probability matrix of the first-order MC of 

wind speed in regime 1. Regarding Equation (15), if  𝑅1 

is dominant regime in current and next steps,   𝑉𝑡 × Γ1 is 

vector of probabilistic wind forecasting in the next step, 

when 𝑉𝑡 representing the vector of current wind speed. 

Considering the possibility of transitions between 

regimes, the forecasting of wind speed in the next step 

would be as Equation (15), 

{
𝑖𝑓 𝑑𝑡 ∈  𝑅1      𝑽𝒕+𝟏 = 𝛾11 . 𝑽𝒕 × 𝚪𝟏 + 𝛾12 . 𝑽𝒕 × 𝚪𝟐

𝑖𝑓 𝑑𝑡 ∈  𝑅2      𝑽𝒕+𝟏 =  𝛾21 . 𝑽𝒕 × 𝚪𝟏 + 𝛾22 . 𝑽𝒕 × 𝚪𝟐

  (15) 

where 𝛾𝑖𝑗  , 𝑖, 𝑗 = 1,2 are the elements of regime transition 

probability matrix and 𝑑𝑡 is the measured current wind 

direction. 𝑉𝑡 is the current vector of wind speed; for 

example, it is  [0 1 0 0 0 0] if there are six quantized 

levels for wind, and if the wind speed yields currently in 

the second level. 𝑉𝑡+1 denotes the forecasting vector of 

the wind speed distribution in the next time step. Finally, 

Γ𝑖  , 𝑖 = 1,2 are wind speed transition probability matrices 

in regimes 1 and 2.  

showing 𝑉𝑡+1 as 𝑉𝑡+1
1  when 𝑑𝑡 ∈  𝑅1 and as 𝑉𝑡+1

2  when 

𝑑𝑡 ∈  𝑅2 , then Equation (16) will be obtained. 

  [
𝑽𝒕+𝟏
𝟏

−− −
𝑽𝒕+𝟏
𝟐

]   =  [
𝛾11 𝛾12
𝛾21 𝛾22

] . [
𝑽𝒕 . 𝚪𝟏
− − −
𝑽𝒕 . 𝚪𝟐

]   

=  𝜸  . [
𝑽𝒕 𝟎
𝟎 𝑽𝒕

] . [
𝚪𝟏
𝚪𝟐
]  

 (16) 

where 𝜸  is a   2 × 2 matrix whose elements are 𝛾11 to 𝛾22. 

Equation (16) can be expanded for more number of 

regimes as Equation 17). 

[
 
 
 
𝑽𝒕+𝟏
𝟏

𝑽𝒕+𝟏
𝟐

⋮
𝑽𝒕+𝟏
𝒎 ]
 
 
 

= 𝜸 . 𝒅𝒊𝒂𝒈(𝑽𝒕). [

𝚪𝟏
𝚪𝟐
⋮
𝚪𝒎

]  (17) 

where 𝜸  is an   𝑚 ×𝑚 transition probability matrix of 

HMM states, 𝒅𝒊𝒂𝒈(𝑽𝒕) is a diagonal matrix whose 

elements of its main diagonal are 𝑽𝒕, and  𝚪𝒊, 𝑖 = 1, . . , 𝑚 

is the transition probability matrix of the first-order MC 

of wind speed for each separated group. Figure 7 shows 

the overall process, which is a two-layer Markov model . 

 

 

3. RESULTS 
 

The proposed method has the following two advantages 

compared with the first-order MC. 

• Temporal stationary improvement. 

• Regimes identification 

 

3. 1. Temporal Stationary Improvement        The 

First-order MC is the base of several extended methods 

that have been introduced by researchers for wind 

forecasting [9]. Extensions generally have been 

presented in the form of adding inner layers in the form 

of MC, ARMA, or semi-Markov process to the main MC  

[6, 10, 14]. In all of these works, a first-order MC in 

conjunction  with  some auxiliary process was utilized to 

 

 

 
Figure 7. Schematic of the proposed model. The upper layer 

is a two-state HMM. The lower layer is an n-state MC 

Figure 6. 16 probabilities associated with each state in 

regime 1 and regime 2 in March 2014 and March 2015 

 are known in Equation (14), it is 

easy to find the current dominant regime as long as the 

wind direction can be measured online. For example, the 

wind direction of 93° is coded as 4 (as yields in the 4th 

zone of 16 conventional directions). So 𝑅
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develop a more accurate method for modelling wind 

speed time-series. The proposed method in this article 

presents a new method for using wind direction time-

series as extra information to enrich the MCs for 

modelling the wind speed time-series. In other words, the 

proposed method can be used as the base method instead 

of first-order MC in all of the presented complex methods 

as listed above.  

To evaluate the efficiency of the proposed method, 

the results of the proposed method are compared with the 

results of the first-order MC, which introduced by 

Shamshad et al. [9] using real data. 

The wind data of four consecutive years at IKIA  wind 

station are processed using the first-order MC, and the 

temporal stationary index of two similar months is 

obtained in two consecutive and non-consecutive years. 

The results are presented in Table 3. Same processing 

was carried out using the proposed method with two, 

three and four regimes. The results are presented in 

Tables A1, A2 and A3 of the appendix as well as Figure 

8. Obtaining temporal stationary index, for two similar 

months of two years as mentioned before, means using 

the one month as the training data and the other one as 

the testing data.  

Comparing the results shows that the proposed 

method improves the temporal stationary index in most 

cases. For example, the first number on the top left of  
Table 3 (i.e., 144), shows that the temporal stationary 

value is 144 for January 2013 and January 2014 when the 

first-order MC is used. Meanwhile, it is 97.1 when the 

proposed method is used with two states (m=2), 

according to Table A1 of the appendix. According to 

Tables A2 and A3 of the appendix, the temporal 

stationary value is 81.97 when m=3 and 74.81 when 

m=4.  

 

 
TABLE 3. Temporal stationary values of the first-order 

MC for two identical months of two different years. 

Month/Year 13-14 13-15 13-16 14-15 14-16 15-16 

1 144 187 215 199 363 78 

2 152 61 95 209 149 75 

3 83 87 147 57 170 115 

4 48 91 99 99 147 126 

5 243 259 99 126 165 194 

6 107 143 187 80 61 90 

7 107 381 65 323 223 278 

8 245 231 883 196 728 467 

9 40 245 157 212 131 241 

10 168 143 88 34 203 125 

11 126 184 215 65 246 177 

12 5 124 155 135 171 42 

Inspecting the results show the proposed method 

improves temporal stationary value in about 70% of cases 

when m=2, 80% of cases when m=3 and 85% of cases 

when m=4 against the first-order MC. 

Figure 8 shows the summarized results of the 

comparison of Table 3 and Tables A1 to A3 of the 

appendix. Percentage of improvement of the proposed 

method with the different number of regimes is shown in 

Figure 8. It is seen that the proposed method gives better 

temporal stationary index at least in 50% of cases in some 

months, while 100% improvement is not entirely rare. 

Improvement is better for larger values of m. However, 

increasing the number of states increases the 

computational cost. The computational cost of 

implementation of HMM has a proportional relation to 

the computational cost of the calculation of likelihood, as 

presented in Equation (7). The calculation of likelihood 

needs 𝑇𝑚2 operations, where T is the number of elements 

of time-series of observation, and m is the number of 

regimes. As the T is constant, the computational cost ratio 

of m regime separation to first-order MC ( m=1) is 𝑚2. 

Figure 9 shows the percentage of improvement vs 

computational cost when the number of regimes 

increases  to  4.  It  shows  that  increasing  the  number 

of   regimes   improves   the   results   and   increase   the 

 

 

 
Figure 8. Percentage of improvement by the proposed 

method with 2, 3 and 4 regimes against first-order MC in 

different months. 

 

 

 
Figure 9. Improvement percentage vs ratio of the 

computational cost when the number of regimes increases 
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computational cost. Figure 9 shows that investing 

computational power four times more, with respect to the 

first-order MC results in the improvement percentage of 

70% for 6×12=72 times of model rum. Improvement 

percentage for investing nine times (when m=3) and 

sixteen times(when m=4) more computational power 

with respect to the first-order MC are also shown in 

Figure 9. It is clear that increasing computational power 

doesn’t offer the main changes in improvement 

percentage for a higher value of m. Figure 9 also shows 

that the effect of increasing the value of m from 2 to 3 in 

winter is much more than the summer   
 

3. 2. Regimes Identification        To see how this 

approach works for regime identification, the wind speed 

in March 2014 is forecasted a) with the first-order MC 

(results showed in Figure 10) and b) with the proposed 

method with m=2 (results showed in Figure 11 and 

Figure 12). 
 

 

 
Figure 10. Results of wind speed forecasting based on the 

first-order MC. From left to right and then top to bottom, 

respectively, the graphs correspond to the current wind 

speed level of 1 to 6. 
 

 

 
Figure 11. Results of wind speed forecasting based on the 

proposed method, when regime 1 is dominant. From left to 

right and then top to bottom, respectively, the graphs 

correspond to the current wind speed level of 1 to 6. 

 
Figure 12. Results of wind speed forecasting based on the 

proposed method, when regime 2 is dominant. From left to 

right and then top to bottom, respectively, the graphs 

correspond to the current wind speed level of 1 to 6. 
 

 

To define states of the first-order MC (Equation (3)), 

the wind speed is quantized into six levels, each taken as 

a Markov state. Each of the six graphs in Figure 10 shows 

the probability of wind level in the next step. The top-left 

graph in this figure shows this probability when the 

current level of wind is 1; the middle top graph shows 

that value when the current level of wind is 2, and so on. 

The same order (from left to right and then from top to 

bottom) was considered for Figures 11 and 12. In Figures 

11 and 12, it is assumed that the dominant regime is 

currently 1 and 2, respectively . 

This example shows that by applying the proposed 

model, the single probability distribution of Figure 10 is 

separated into two probability distributions, as shown in 

Figures 11 and  12. Now, the dominant regime can be 

determined by online measuring of wind direction from 

which the relevant probability distribution is selected 

(Figures 11 or 12). This separation increases the 

concentration of the predictive distributions. For 

example, Figure 12 shows that levels 4 and 5 of wind 

speed have zero occurrence probability in regime 2, while 

the occurrence probability for these two levels of wind 

speed is not zero in regime 1 (Figure 11). Also, it is seen 

that level 3 of wind speed in regime one will remain 

unchanged or goes to level 4 of wind speed (Figure 11), 

while in regime two it will remain unchanged or goes to 

level 2 (Figure 11). This kind of distinction is one of the 

advantages of the proposed method  . 

According to long-term observations, there are two 

dominant wind directions at the IKIA weather station. 

One direction is from mountain-to-plain at night, which 

flows from the northern elevations of Tehran to the desert 

in the direction from 270 to 360°. The other is desert wind 

toward the mountain, in the opposite direction from about 

90 to 180°. 

This phenomena matches with the output of the 

proposed  method  and is well visible in the results of the 
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separation of dual regimes performed for all months over 

the four years. In winter, when large-scale phenomena 

are mainly active, in addition to the two aforementioned 

wind directions due to local conditions, there is one more 

dominant wind direction from the south-west. This 

causes to have better results in three regimes separation 

in winter times against summer times. 

 
 

4. CONCLUSIONS  
 

This  article  presented  a  model  for  wind  speed 

forecasting based on the classification of a wind data set 

into some groups (regimes). Each regime has specific 

statistical behaviour. Actually, the model has two 

cascade layers, so it is called “Hierarchical Markov 

Model”. The first layer of the model detects and separates 

wind regimes as heterogenic groups of wind data by 

using wind direction data, based on  HMM, and the 

second layer forecasts the wind speed under this regime 

using MC. 

The model was implemented and tested with four 

years historical data belong to IKIA, and its results 

compared with those of a first-order MC-based method. 

For this comparison, two indices: temporal stationary and 

Probability Distribution Function (PDF) shape of the 

wind speed forecast, were used. The comparison results 

showed that the proposed method improves temporal 

stationary index (improves prediction accuracy) against 

the first-order MC in at least 70% of cases. Moreover, 

wind regimes identified by the proposed method match 

the long-term observations of local experts. Indeed, our 

method gives a PDF which is sharper than the one 

obtained with the first order MC for forecasted wind 

speeds; means that more precise prediction.  

The proposed method can be used as a suitable tool 

for very short-term wind forecasting in aircraft landing 

and takeoff process, planning of wind power plants, and 

so on. The main restriction of the proposed method is its 

incapability to forecast rare events such as strong wind 

which doesn’t have enough frequency to affect the 

element of MCs. It would be an area of future research to 

deploy the remote sensing instruments to capture the rare 

extreme events before the entrance to the target zone and 

enrich the forecasts. 
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6. APPENDIX 
 
The wind data of four consecutive years at IKIA wind 

station  are processed using the proposed method and the  

temporal  stationary  index of two similar months is 

obtained in two consecutive and non-consecutive years. 

The results are presented in Tables A1, A2 and A3.  

 

 
TABLE A1. Temporal stationary values of the proposed 

method for two identical months of two different years. m=2 

Month/Year 13-14 13-15 13-16 14-15 14-16 15-16 

1 97.17 124.8 129.6 113.4 179.4 76.96 

2 129.5 71.22 91.37 159.4 156.1 78.91 

3 77.7 111.9 117.9 84.2 146.1 81.99 

4 64.37 93.85 114.6 79.54 97.44 110.6 

5 175.1 207.1 102.1 99.8 115.3 147.1 

6 124.4 145.5 173.8 84.6 79.97 87.26 

7 59.01 232.5 109 244.3 133.5 163.3 

8 201.1 166 430.9 242.9 412.7 208.4 

9 55.25 189.6 132.1 176.5 142.6 115.1 

10 163.9 120.2 75.27 95.96 205 119.4 

11 111.5 134.6 125.4 62.05 187.6 145.5 

12 2.5 134 126.4 145.1 138.9 79 

 

 

 

In Tables A1-A3, white cells show the cases for 

which, the proposed method improves the temporal 

stationary against first-order Markov chain (Table 3). 

Gray cells indicate the cases with no change, and dashed 

cells show the cases for which the proposed method 

worsens the temporal stationary compared to the first-

order MC. 

 
 
TABLE A2. Temporal stationary values of the proposed 

method for two identical months of two different years. m=3 

Month/Year 13-14 13-15 13-16 14-15 14-16 15-16 

1 81.77 128.1 122.1 107.7 175.5 75.08 

2 109.1 62.73 93.84 132.1 129.4 98.67 

3 63.83 78.59 108.5 82.07 117.9 82.58 

4 69.87 94.3 103.5 70.71 99.06 91.28 

5 132.1 166.8 93.57 89.65 80.78 134.6 

6 120.5 133.9 153.9 91.22 83.38 82.49 

7 62.79 207.8 102.1 218.4 129.8 153.7 

8 185.5 150.5 378.7 196.4 344.9 181.5 

9 51.82 216.7 111.1 166.5 113.8 143.7 

10 116.3 102.9 59.96 71.76 131.8 88.49 

11 75.91 82.19 101.4 51.27 135 102.8 

12 1.898 114.1 90.36 121.6 99.11 68.33 

 

 
TABLE A3. Temporal stationary values of the proposed 

method for two identical months of two different years. m=4 

Month/Year 13-14 13-15 13-16 14-15 14-16 15-16 

1 74.81 117.4 111.2 104.8 162.4 64.98 

2 105.1 63.59 88.04 146.9 93.13 91.34 

3 58.62 73.22 108 88.61 120.5 79.89 

4 57.73 91.25 98.27 69.53 95.82 84.92 

5 130.6 168.1 83.21 86.35 71.63 122.3 

6 97.03 96.97 109.7 82.47 74.77 69.94 

7 61.7 214.3 108 205.1 122.1 146.9 

8 178 136.9 342.5 178.2 286.7 173.1 

9 60.38 124.1 94.48 134.6 104.8 129.5 

10 116.5 99.36 60.72 77.21 140 88.74 

11 70.52 78.95 99.69 49.77 127.3 97.08 

12 1.839 111.6 82.42 118.9 90.87 68.06 
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Persian Abstract 

 چکیده 
های سری زمانی باد ارائه  های موجود در داده( که به خوبی شناخته شده است، برای آشکارسازی ناهمگونیHMMاین مقاله روشی جدید را با استفاده از مدل پنهان مارکوف )

ها، یک زنجیره مارکوف کند. در داخل هر گروه از دادهبندی میمعرف یک رژیم باد هستند طبقههایی که هر کدام  ه، سری زمانی باد را به گروHMMدهد. در روش ارائه شده،  می

کند. مدل معرفی شده در این مقاله مدل سلسله مراتبی مارکوف  بینی نهایی سرعت باد را تولید میها پیششود و ترکیب خروجی همه رژیمبینی باد استفاده میمرتبه اول برای پیش

کند و لایه دوم سرعت باد را با استفاده از زنجیره  های ناهمگون در داده جهت باد جداسازی میهای باد را به عنوان گروه، رژیمHMMشود. لایه اول با استفاده از  نامیده می

با مقایسه مقدار ایستایی زمانی با زنجیره مارکوف مرتبه اول  شود و موثر بودن آن  سازی و آزموده میکند. روش پیشنهادی با استفاده از داده واقعی پیادهبینی میمارکوف پیش

بینی تابع درصد موارد دارند. علاوه بر آن، مدل پیشنهادی پیش 70بینی سرعت باد توسط مدل پیشنهادی در بیش از یافتنی بودن بهبود پیششود. نتایج نشان از دستسنجیده می

 تر است.بینی دقیق دهد که به معنای پیشارائه می توزیع احتمال سرعت باد را تیزتر و متمرکزتر 
 


