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A B S T R A C T  

 

This research mainly focuses on the effects of heat absorption/generation and radiation on the 

hydromagnetic flow of Fe3O4-ethylene glycol nanofluid through a shrinking wall with porous medium 

and the computation of the entropy generation. We considered basic governing ordinary differential 
equations into partial differential equations by using appropriate similarity solutions. Moreover, hyper 

geometric function is employing to determine the formulated problem.  We analyze the effects of 

appropriate physical parameters on the Bejan number, Entropy generation, Nussult number, skin friction, 
fluid temperature and velocity profiles. In addition, the derived result of the present study is compared 

with those in the existing literature. We noted that the presence of heat absorption and suction parameters 

reduces the Bejan number and increases the entropy generation, and the heat source, porous medium, 
radiation parameters minimize the entropy production.  The presence of porosity parameter reduced the 

fluid velocity, improved fluid temperature and minimized the entopy production. Nanosolid volume 

fraction parameter reduced both Nussult number and skin friction coefficient. 

doi: 10.5829/ije.2021.34.02b.25 

NOMENCLATURE   

. magnetic field strength Tw wall temperature 

Br Brinkman number 𝑇∞ temperature far away from the sheet 

Cp specific heat at constant temperature knf thermal conductivity of the nanofluid 

M3 Hartmann number kf thermal conductivity of the base fluid 

M Kummer's function ks thermal conductivity of the nanoparticles 

Nr radiation parameter k* The absorption coefficient of the fluid 

Ns entropy generation number σ electric conductivity 

Pr Prandtl number σ* Stephan-Boltzman constant 

T local temperature of the fluid SG0 characteristic entropy generation rate 

Q Temperature dependent volumetric rate of heat source ΔT temperature difference 

Qr radiative heat flux Ω dimensionless temperature difference 

Rex Reynolds number θ dimensionless temperature 

S Suction parameter ф the solid volume fraction 

SG local volumetric Entropy generation rate β
 

uniform heat generation/absorption 
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1. INTRODUCTION 
 
There are several systematic challenges pertaining to 

efficient heat transfer of heat in different processes, 

example, in batteries, drug formulation, chemical 

reactions, fuel cells, solar cells, and others. This 

phenomenon has been studied through the field of 

nanotechnology. The most important performance of 

nanotechnology is nanofluids. Many scientific and 

technological fields utilize nanofluid models. Choi [1] 

introduced the notion of increase in the thermal 

conductivity of nanofluid. Ibrahim et al. [2] analyzed the 

nanofluid heat transfer effects with hydromagnetic and 

stagnation point flow numerically. Various types of 

nanoparticle, including Cu, Ag, Al2O3 and TiO2, used in 

the base fluid towards a porous stretching surface has 

been examined by Hayat et al. [3].  Al2O3-water with 

hydromagnetic flow towards a vertical microtubefor 

enhancement of the heat transfer rate has been researched 

by Malvandi and Ganji [4]. The effects of flow towards a 

shrinking sheet using nanofluid with slip conditions have 

been developed  by Rahman et al. [5]. The phenomenon 

of flow through a shrinking porous sheet, along with 

analytical result of Fe3O4-water hydrodynamic nanofluid 

flow was researched  by shaha et al. [6].  

Over the most recent few decades, incredible interest 

has been shown by scientists on the subject of stretching 

surfaces with magnetic field because of its colossal 

applications in various mechanical and engineering 

procedures. Some of these fascinating and amazing 

applications are glass plastic expulsion, fiber drawing, 

crystal developing, petroleum industries, paper creation, 

plasma studies, etc. Heat transfer effects in CuO–water 

nanofluid flow with magnetic field were analyzed by 

Sheikholeslami et al. [7].  Jamaludin et al. [8] researched 

the effects of shrinking surface flow of heat generation or 

absorption and hydromagnetic Cu and Al2O3 based 

hybrid nanofluid flow numerically. Heat conduction 

effects on shrinking porous surface with Cu and Ag - 

C6H9NaO7 Corrosion based nanofluids flow has been 

studied by Dero et al. [9]. It is clear that copper and 

silverbased volume fraction nanoparticle improves the 

thermal conduction and reduces the fluid velocity. Heat 

conduction effects of shrinking porous surface with 

thermal radiation and copper based nanofluid flow were 

studied by Haq et al. [10]. Heat conduction of various 

types of nanofluid flow towards shrinking surface was 

reported in literature [11-14]. 

On the other hand, entropy represents an 

irreversibility process and it is utilized to enhance the 

capacity of machine. The entropy models can be related 

to manufacturing and engineering processes pertaining to 

nanofluids. This has been an active research area 

recently. Hayat et al. [15] investigated thermal 

irreversibility analysis for energy activation and non-

linear thermal radiation of Jeffrey nanofluid flow towards 

stretchable sheet. Hosseinzadeh et al. [16] studied 

thermal irreversibility analysis for Fe3O4-Ethylene glycol 

nanofluid with nonlinear thermal radiation and Lorentz 

force effects. Shahsavar at al. [17] presented an analysis 

of heat and irreversibility study of Fe3O4nanofluid flow 

through a concentric annulus. Mehrali at al. [18] 

researched the impacts of Fe3O4 nanofluid flow and 

conducted an analysis of entropy on magnetic. Very 

recently, López et al. [19] investigated the effects of 

Al2O3nanofluid flow and analyzed the entropy on 

hydromagnetic, nonlinear radiation and slip conditions. 

Shukla et al. [20] have studied a homotopy method for 

irreversibility analysis of vertical cylinder flow of 

viscous dissipation and magnetohydrodynamic (MHD) 

nanofluid flow. Hayat et al. [21], investigated on MHD 

nonlinear thermal radiation and joule heating effects with 

respect to nanofluid flow with entropy analysis has been 

conducted.  Rana and Shukla [22] provided an analytical 

solution for an irreversibility study of aligned MHD 

nanofluid flow towards a plate with Ohmic dissipation 

and viscous dissipation effects. 

The study of boundary layer MHD nanofluid flow 

and heat transfer due shrinking wall with porous medium 

is very significant because of its several applications in 

engineering and industrial processes, such as extrusion of 

polymer sheets from a die, drawing of plastic films, 

polyester thin wall heat shrink tubing, shrink film, wire 

drawing, glass fiber, and paper production. Govindaraju 

et al. [23] researched the irreversibility mechanism of 

Ag-water MHD nanofluid fluid flow with heat source or 

sink and radiation effects. Abdul Hakeem et al. [24] 

presented the non-uniform heat source or sink and 

radiation effects on Ag-water MHD nanofluid flow, 

along with the analysis of entropy. Ganga et al. [25] 

researched the effects of the irreversibility and Ag-water 

inclined MHD nanofluid flow towards a stretching sheet. 

Recently, the irreversibility phenomenon of various types 

of nanofluid flow was investigated by many researchers 

[26-32]. Some researchers reported data by 

demonstration of  experimental work [33-38]. To the best 

of author’s knowledge, upto now, no theoretical results 

are given for the effects of heat transfer and irreversibility 

of hydromagnetic Fe3O4-ethylene glycol nanofluid flow 

in a shrinking wall with porous medium, heat sink or 

source and thermal radiation. This is the main motivation 

of our present study. 

Motivated by the above discussions, we designed 

analytically the heat sink or source, MHD and thermal 

radiation effects on Fe3O4-ethylene glycol nanofluid flow 

in a shrinking wall with porous medium. The fluid 

velocity, heat transfer process, Bejan number and the 

irreversibility phenomenon,  skin friction co-efficient and 

temperature transfer rate are examined with the graphs, 

in which our solutions are in good agreement with earlier 

published results. 

The contents of this paper are  divided  up  as  follows: 



519                             U. Humphries et al. / IJE TRANSACTIONS B: Applications   Vol. 34, No. 02, (February 2021)   517-527                                       

 

The description of physical model is clearly 

prescribed in section 2. In this section, the mathematical 

model for the 2-Dimentional incompressible flow of 

Fe3O4-ethylene glycol based nanofluid has been 

presented. Section 3 is devoted to the solution of these 

models equations by hyper geometric function method. 

The Entropy generation and Bejan number has been 

computed in section 4. The results and discussion has 

been presented in section 5. Finally, the main findings of 

the current study have been given in section 6. 
 
 

2. MATHEMATICAL ANALYSIS 
 

In this investigation, consider the incompressible 2-

dimentional flow of Fe3O4-Ethylene glycol based 

nanofluid towards a shrinking wall with porous medium. 

The fluid flow is along the x-axis (horizontal) and the y-

axis is the vertical dimension, then y>0 is the occupied 

volume of the fluid. Suppose normal to the flow of an 

applied magnetic field is B(x) with velocity u=ax (Figure 

1). The two-dimensional thermal radiation with 

magnetohydrodynamic flow of governing equations are 

given, as follows [26, 39-41] (Figure 2): 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜇𝑛𝑓

𝜌𝑛𝑓

𝜕2𝑢

𝜕𝑦2
−

𝜐𝑛𝑓

𝐾𝑝
𝑢 −

𝜎𝑛𝑓𝐵(𝑥)2

𝜌𝑛𝑓
𝑢  (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓

𝜕2𝑇

𝜕𝑦2
−

1

(𝜌𝐶𝑝)
𝑛𝑓

𝜕𝑞𝑟

𝜕𝑦
+

𝑄(𝑇−𝑇∞)

(𝜌𝐶𝑝)
𝑛𝑓

  (3) 

Here u and v denote the velocity components along the x-

axis and the y-axis, respectively; B(x) represents the 

magnetic parameter; 𝜈𝑛𝑓, 𝜇𝑛𝑓, 𝜌𝑛𝑓, 𝛼𝑛𝑓 denote the 

kinematic viscosity, dynamic viscosity, density, thermal 

diffusivity, respectively. The subscript nf indicates the 

nanofluid; T denoted as fluid temperature, while Q 

represents the volumetric heat sink or source rate.The 

heat flux 𝑞𝑟 [26, 41] through the Rosseland 

approximation is defined as: 

𝑞𝑟 = −
𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
.  (4) 

Here k* is the absorption coefficient of the fluid, from 

Equations (3) and (4), we have 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓

𝜕2𝑇

𝜕𝑦2 −
16𝜎∗𝑇∞

3

3𝑘∗(𝜌𝐶𝑝)
𝑛𝑓

𝜕2𝑇

𝜕𝑦2 +
𝑄(𝑇−𝑇∞)

(𝜌𝐶𝑝)
𝑛𝑓

  (5) 

The heat conductivity can be expressed as follows: 

μ
nf

=
μf

(1−φ)2.5,        𝜌nf = (1 − φ)𝜌f + φ𝜌s 

(𝜌Cp)
nf

= (1 − φ)(𝜌Cp)
f

+ φ(𝜌Cp)
s
, 

 knf =
ks+2kf−2φ(kf−ks)

ks+2kf−φ(kf−ks)
,      αnf =

knf

(𝜌Cp)
nf

, 

σnf

σf
= 1 +

3(
σnf
σf

−1)ф

(
σnf
σf

+2)−(
σnf
σf

−1)ф
  

(6) 

 

 
Figure 1. Schematic representation of the flow diagram 

 

 
where the physical problem of the surface conditions is 

𝑢 = −𝑈𝑥, 𝑣 = −𝑣𝑥, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0(𝑥)𝑛, at 𝑦 = 0,    

𝑢 → 𝑢 = 0,         𝑇 → 𝑇∞, as 𝑦 → ∞. 
(7) 

Here, 𝑣𝑥 noted as wall mass transfer velocity; in 

which 𝑣𝑥 < 0and 𝑣𝑥 > 0 are the injection and suction 

parameters. The non-dimensional and similarity varia-

bles are [26, 42, 43]. 
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(8) 

After applying the similarity transformation of Equations 

(2) and (3), we have 

𝑓′′′ + 𝐵1𝐵2𝑓𝑓′′ − 𝐵1𝐵2𝑓′2
− 𝐵2(𝑀3 − 𝐵1𝑘)𝑓′ = 0  (9) 

𝜔𝜃′′ + 𝑃𝑟 𝑓 𝜃′ − 𝑛𝑃𝑟𝑓′𝜃 + 𝛽 𝑃𝑟 𝜃 = 0.      (10) 

With 

𝑓(𝜂) = 𝑆, 𝑓′(𝜂) = −1, 𝜃(𝜂) = 1 at 𝜂 = 0  𝑓′(0) →
0, 𝜃(𝜂) → 0 as 𝜂 → ∞ 

(11) 

Based on Equations (9), (10) and (11), Prandtl number 

𝑃𝑟 =
𝜐𝑓

𝛼𝑓
, porosity parameter 𝑘 =

𝑣𝑓

𝑎𝐾𝑝
, 𝛽 =

𝑄

𝑎(𝜌𝐶𝑝)
𝑓

 noted 

heat sink or source parameter, 𝑀3 =
2𝐿𝜎𝐵0

2

𝜌
 noted as 

Hartmann number. In addition,  

𝐵1 = (1 − φ (1 −
𝜌𝑠

𝜌𝑓
)), 𝐵2 = (1 − φ)5/2, 𝐵3 =

𝑘𝑛𝑓

𝑘𝑓
, 

B4 = 1 − φ + φ
(𝜌Cp)s

(𝜌Cp)f
, ω =

𝐵3

B4

3Nr𝐵3+4

3Nr𝐵3
, Nr =

𝑘∗𝑘𝑓

4σ∗T∞
3 . 

 
 
3. ANALYTICAL SOLUTION OF FLOW FIELD AND 
THERMAL ANALYSIS 
 
The shrinking sheet fluid flow solution of (9) with (11) is 

obtained as follows [26, 41]: 
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,
1

)(



−−

−=
e

Sf
  

with  𝛼 =
𝑆𝐵1𝐵2+√(𝑆𝐵1𝐵2)2−4𝐵1𝐵2+4𝐵2𝑀3−4𝑘𝐵1𝐵2

2
 

(12) 

Substituting Equation (12) into Equation (10), we have 

𝜔𝜃′′ + 𝑃𝑟 (𝑆 − (
1−𝑒−𝛼𝜂

𝛼
)) 𝜃′ − 𝑛𝑃𝑟𝑒−𝛼𝜂𝜃 + 𝛽 𝑃𝑟 𝜃 = 0.  (13) 

Here, we introduce a new variable 

𝜉 =
𝑃𝑟𝑒−𝛼𝜂

𝜔𝛼2
  (14) 

Substituting Equation (14) into Equation (13) , we have 

𝜉𝜃𝜉𝜉 + (1 − 𝑎0 + 𝜉)𝜃𝜉 + (𝑛 +
𝛽𝑃𝑟

𝜔𝛼2𝜉
) 𝜃 = 0.  (15) 

From Equation (11), it becomes 

𝜃(𝜉) = 1, 𝜃(0) = 0 .    (16) 

Using Kummer’s function [26,43], we obtain the solution 

of Equations (14), (15), and (16), in terms of η 
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(17) 

where 𝑎0 =
𝑃𝑟

𝜔𝛼
(S −

1

α
), 𝑏0 = √𝑎0

2 − 4
𝛽𝑃𝑟

𝜔𝛼2. 

The dimensionless wall temperature gradient is 

𝜃′(0) = −𝛼 (
𝑎0+𝑏0

2
) +

𝛼
𝑎0+𝑏0

2
−𝑛
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2
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(18) 

We denote the skin friction and Nusselt number as 
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(19) 

 
 

4. ANALYSIS OF ENTROPY AND BEJAN NUMBER 
 

Now, using the second law of thermodynamics, the 

analysis of entropy generation expression of 

magnetohydrodynamic nanofluid flow with thermal 

radiation is given by 
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(20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of the study 

 

 
The rate of entropy generation characteristic is given by 

(SG)0 =
knf(∆T)2

𝑥2T∞
2 .  (21) 

Using Equations (20) and (21), we obtain the entropy 

generation number 

Ns =
SG

(SG)0
.  (22) 

From Equations (17), (20), (21) and (22), we can specify 

the entropy generation number as 

Ns = (
3+4Nr

3
) θ′2

(η)Rex +
Br

Ω
𝑓′′2
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Ω
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(23) 
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where Br is the Brinkman number and Hartmann number 

denoted as M3.  

𝐵𝑟 =
𝜇𝑛𝑓𝑢𝑤

2

𝑘𝑛𝑓∆𝑇
,   𝛺 =

∆𝑇

𝑇∞
,  (24) 

The Bejan number (Be) was proposed by Bejan with 

respect to the energy optimization problem utilized by the 

solution of thermal irreversibility. Thermal irreversibility 

pertaining to the sum of all entropy in the model is given 

as: 

𝐵𝑒 =
𝐸ℎ

𝐸ℎ+𝐸𝑚
  (25) 

 

 

5. RESULTS AND DISCUSSION 
 
In this study, the analytical solutions are established for 

Fe3O4-ethylene glycol nanofluid through a shrinking wall 

with porous medium and the computation of entropy 

generation is analyzed. Figures 3 to 21 depict the  effects 

of various important physical parameters, including the 

Bejan number, velocity of the fluid, Nusselt number, heat 

profile, entropy generation and skin friction co-efficient. 

The important physical parameters, nanosolid volume 

fraction (ф), heat sink or source (β), porosity parameter 

(k), radiation parameter (Nr), Hartmann number (M3), 

suction parameter (S) effects are analyzed based on the 

trends in the respective figures. The current results have 

been discussed to the solutions achieved by Muhaimin et 

al. [39] and Bhattacharyya [40] (see Table 2). The 

presented results showed a good agreement with data 

reported in literature [39, 40]. 

 

5. 1. Fluid Flow and Heat Transfer            The profiles 

of fluid velocity along with various settings of the 

 

 

 
Figure 3. Impact of nanoparticles volume fraction parameter 

on f’(η) 

 
Figure 4. Impact of porosity parameter on f’(η) 

 

 

 
Figure 5. Impact of suction parameter on f’(η) 

 

 

nanosolid volume fraction, suction and porosity 

parameters are presented in Figures 3-5, respectively. 

From these figures, increasing the porosity and nanosolid 

volume fraction parameters result in a reduction of the 

fluid flow, while increasing the suction parameters 

causes enhancing the fluid flow. The presence of both 

porosity and nanosolid volume fraction slows down the 

fluid velocity. The impact of ф variation on f ′(η) is 

presented in Figure 3, while the variation of porosity 

parameter onf ′(η) is represented in Figure 4. Figure 5 

demonstrates the evolution of suction parameter on f ′(η). 

It is noted that the enhancing of ф and k reducesf ′(η), 

while increasing S leads to a reduction in f ′(η).  

The thermal profile for various settings of the 

nanosolid volume fraction, porosity, suction, radiation, 

heat sink or source parameters are presented in Figures 6-

10, respectively. Increasing the value of Fe3O4 
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nanoparticle leads to a development of heat conduction 

in Ethylene glycol based nanofluid. The porosity 

parameter also increases heat conduction in Ethylene 

glycol based nanofluid. But, the presence of radiation and 

suction parameters reduces heat conduction in Ethylene 

glycol based nanofluid. The effect of ф on θ(η)is 

exhibited in Figure 6, while that of the porosity parameter 

on θ(η) is shown in Figure 7. Both parameters enhance 

the thermal transfer in nanofluid flow, but the opposite 

result is given by the radiation and suction parameters, as 

shown in Figures 8 and 9, respectively. Further, the 

presence of Fe3O4 nanoparticle enhances with the 

temperature profile. This is because Fe3O4 particles have 

high thermal conductivity, so the thermal boundary 

layerthickness increases. The porosity parameter also 

develops the thermal boundary layer thickness. However, 

the presence of thermal radiation and suction parameters 

are reduces the thermal boundary layer thickness. 

The impacts of the heat sink or source parameter with 

respect to the heat profile are presented in Figure 10.  It 

generates energy in the boundary layer, which is caused 

by the heat source (β>0) on the heat profile. Energy is 

absorbed in the boundary layer, which arises from the 

heat sink (β<0) on the heat profile. 

 
5. 2. Nusselt Number and Skin Friction         Figure 

11 represent the effect of skin friction coefficient −f ′′(0)  

for various values of Hartmann number and  nanosolid 

volume fraction parameters against suction parameter. 

The skin friction coefficient −f ′′(0) diminish for higher 

values ofф while the overturn trend is checked for large 

value of Hartmann number. Against Hartmann number, 

the different values of radiation, suction, nanosolid 

volume fraction parameters on Nusselt number has been 

 

 

 
Figure 6. Impact of nanoparticles volume fraction parameter 

on θ(η) 

 
Figure 7. Impact of porosity parameter on θ(η) 

 

 

 
Figure 8. Impact ofsuction parameter on θ(η) 

 
 

depicted in Figure 12. The heat transfer rate improved 

with large value of radiation and suction parameters and 

reduced value of nanosolid volume fraction.  
 

5. 3. Bejan Number and Entropy Generation           
The effects of the porosity, heat sink or source, nanosolid 

volume fraction, radiation, suction parameters pertaining 

to the entropy generation profile are presented in Figures 

13-17. In Fe3O4-ethylene glycol nanofluid, the entropy 

generation increases with the increase in the suction and 

heat sink (β<0) parameters. Furthermore, the presence of 

heat source (β>0), radiation, porosity, nanosolid volume 

fraction parameters diminishes the production of entropy. 

The characteristics of entropy generation with respect to 

φ are shown in Figure 13. Figure 14 indicates the results 

ofentropy generation for different porosity parameters. 

The effects of the suction parameter on Ns are shown in 
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Figure 15. Figures 16 and 17 depict the characteristics of 

radiation and heat sink or source parameters, 

respectively. It is clear that the presence of  Fe3O4 

nanofluid volume fraction, porosity parameter, thermal 

radiation,  uniform heat source parameters are control the 

more entropy production. But the suction parameter 

develop the entropy production. 

The influence of Bejan number with respect to 

various physical parameters like Brinkman number, 

nanosolid volume fraction, heat sink or source, suction 

parameters have been depicted in Figures 18-21. From 

the figures, the Bejan number is improved with the heat 

source (β>0) and nanosolid volume fraction parameters, 

but is reduced with the heat sink (β<0), suction and 

Brinkman number. Figure 18 shows the variation of φ on 

Be. Figure 19. depicts the impact of S onBe. Figures 20 

and 21 indicate the results of Be with respect to different 

values of Brinkman number and heat sink or source 

parameters, respectively. 
 

 

 
Figure 9. Impact of radiation parameter on θ(η) 

 

 

 
Figure 10. Impact of β on θ(η) 

 
Figure 11. Impact of ф and M3on -f’’(0) 

 
 

 
Figure 12. Impactof ф, S and Nr on –θ’(0) 

 

 

 
Figure 13. Impact of nanoparticles volume fraction 

parameter on Ns 
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Figure 14. Impact of porosity parameter on Ns 

 

 

 
Figure 15. Impact of suction parameter on Ns 

 

 

 
Figure 16. Impact of radiation parameter on Ns 

 
Figure 17. Impact of heat source/sink parameter on Ns 

 

 

 
Figure 18. Impact of nanoparticles volume fraction 

parameter on Be 
 

 

 
Figure 19. Impact of suction parameter onBe 
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Figure 20. Effect of heat source/sink parameteron Be 

 

 

 
Figure 21. Impact of BrΩ-1on Be 

 

 
TABLE 1. Thermo-physical properties of ethylene glycol and 

nanoparticles [42] 

 ρ(kg/m3) Cp(j/kgk) k (W/m.k ) 

Ethylene 

glycol 
1110 2400 0.26 

Fe3O4 5200 670 6 

 

 

TABLE 2. Evaluate solution of Skin friction for different 

values of S with M3 = 2 When ф=k=0  

S [39] [40] 
Present 

results 

2 2.414214 2.414217 2.41421 

3 3.302776 3.302772 3.30278 

4 4.236068 4.236073 4.23607 

6. CONCLUSIONS 

 
We have presented an analytical approach pertaining to 

entropy generation on Fe3O4-Ethylene glycol MHD 

nanofluid through a shrinking wall with porous medium 

in the presents of heat sink or source and thermal 

radiation. We have obtainedthe important results, as 

follows:  

• The velocity of Fe3O4-ethylene glycol nanofluidis 

enhanced with the increase in the suction parameters, 

but it slows down with respect to the nanosolid 

volume fraction and porosity parameters. The heat of 

Fe3O4-Ethylene glycol nanofluidis enhanced with 

the increase in the heat source,nanosolid volume 

fraction and porosity and its decreases with the heat 

sink, suction and radiation parameters.The presence 

of Fe3O4 nanoparticle enhances with the temperature 

profile. This is because Fe3O4 particles have high 

thermal conductivity, so the thermal boundary layer 

thickness increases.  The porosity parameter also 

develops the thermal boundary layer thickness. But 

the presence of thermal radiation and suction 

parameters are reduces the thermal boundary layer 

thickness. 

• The skin friction increases with the Hartmann 

number, but decreases with nanosolid volume 

fraction. The Nusselt number is enhanced with 

radiation and suction parameters, but it is reduced 

with nanosolid volume fraction. 

• The entropy generation profile is maximized with 

suction and heat sink, but it is minimized with 

nanosolid volume fraction, porosityand heat source. 

It is clear that the presence of  Fe3O4 nanofluid 

volume fraction, porosity parameter, thermal 

radiation, uniform heat source parameters are control 

the more entropy production. But the suction 

parameter develop the entropy production. 

The Bejan number increases with nanosolid volume 

fraction and heat source, but decreases with suction, 

Brinkman number and heat sink. In the future, this paper 

can be extended for different nanofluids considering the 

effect of magnetic field with nonlinear thermal radiation 

in different types of boundary conditions. 
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Persian Abstract 
 چکیده 

متخلخل و محاسبه   یطکوچک شده با مح یوارهد یقاز طر یکولگل یلنات-4O3Fe یالنانوس یسیمغناط یدروه یانگرما و تابش بر جر یدجذب / تول یرات عمدتاً بر تأث یقتحق ینا

، ین. علاوه بر ایریمگیدر نظر م  یجزئ  یفرانسیلد  عادلات مشابهت مناسب به م   یهاحلحاکم را با استفاده از راه  یمعمول  یفرانسیلمتمرکز است. ما معادلات د  یآنتروپ  یدتول

،  Nussult، تعداد  یآنتروپ  ید، تولBejanتعداد    ی مناسب را بر رو  یزیکیف  یشود. ما اثرات پارامترهایسئله فرموله شده استفاده مم  یین تع   یاز حد برا  یشب   یعملکرد هندس

شود. ما متذکر  یم یسهموجود مقا یات موجود در ادب یجحاصل از مطالعه حاضر با نتا یجه، نتین. علاوه بر ایمکنیم تحلیل و  یهسرعت تجز یلو پروف یعما یاصطکاک پوست، دما

،  لمتخلخ  یطتابش منبع حرارت، مح  یشود و پارامترهایم  یآنتروپ  یدتول  یشدهد و باعث افزایرا کاهش م  Bejanجذب حرارت و مکش، تعداد    یکه وجود پارامترها  یمشد

 ی رساند. پارامتر کسریرا به حداقل م  یآنتروپ  یدبخشد و تولیرا بهبود م  یالس  ید، دمادهیرا کاهش م  یالرسانند. وجود پارامتر تخلخل سرعت س یرا به حداقل م  یآنتروپ  یدتول

 .اصطکاک پوست را کاهش داد یبو هم ضر Nussultهم تعداد  یدنانوسول یحجم
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