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A B S T R A C T  
 

 

Epilepsy is one of the common neurological disorders which can cause unprovoked seizures. Currently, 

diagnosis and evaluation are carried out using electroencephalogram (EEG) signal analysis, which is 
performed visually by clinicians. Since EEG signals tend to be random and non-stationary, the visual 

inspection often provides misrepresentation of results. Numerous studies have been proposed computer-

based analysis for epileptic EEG classification; however, there is still a gap to improve detection 
accuracy with a small number of features. Therefore, in this study, we proposed an automatic detection 

protocol for epileptic EEG classification. The proposed methods are relative wavelet energy and wavelet 

entropy for feature extraction and combined with the classifier method for automatic detection. In this 
study, three classes of EEG consisted of pre-ictal, ictal, and interictal were used as test data and also 

evaluate the proposed method. EEG signals were decomposed using wavelet transform into five 

conventional sub-bands, including gamma, beta, alpha, theta, and delta. The relative energy and entropy 
were then calculated in each of these bands as a feature set. These methods are chosen with consider of 

low-cost computing. We tested the performance of our feature extraction method using Support Vector 

Machine (SVM), both linear and non-linear kernels. From the simulation, the highest accuracy was 80-
96.7% for ictal vs. pre-ictal, ictal vs. inter-ictal, pre-ictal vs. inter-ictal, and ictal vs. non-ictal. Finally, 

this work was expected to help clinicians in the detection of epilepsy onset based on EEG signals. 

doi: 10.5829/ije.2021.34.01a.09 
 

 

NOMENCLATURE 

Ψ Basis wavelet 𝑤 Normal vector length 

𝑎 Scale  T Trade-off parameter 

𝑏 Shift 𝜀𝑖 Set of slack variables 

𝑡 Time 𝑎𝑖 , 𝑏𝑖  Training set 

 
1. INTRODUCTION1 
 
Epilepsy is one of the most common neurological 

disorders. Patients may suffer seizures due to abnormal 

or excessive of electrical brain activity [1]. Currently, 

neurologists conduct the diagnosis and evaluation of 

epilepsy patients based on analysis of EEG signals by 

visual inspection [2]. This process takes a long time and 

allows many error detections [3]. EEG signals show 

dynamic changes in nerve activity concerning seizures in 

the brain [4]. Nowadays, computer based-methods have 

                                                           

*Corresponding Author Institutional Email: 

sugondo@telkomuniversity.ac.id (S. Hadiyoso) 

been developed to detect and analyze epilepsy based on 

EEG signal so that it is more effective and accurate. 

EEG signals are processed to obtain features that can 

represent information characteristics to be classified [5, 

6]. According to literature [7], EEG signal classification 

can be performed by processing the signals in the time 

domain, frequency domain, time-frequency domain, and 

many others using nonlinear techniques. Researchers 

developed a wavelet method for extracting features on 

EEG signals based on energy and entropy of the signal 

[8]. Faust et al. [4] stated that wavelet transforms produce 
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detailed information of EEG signal to detect and predict 

seizures. Wavelet transform has better representation 

than other signal processing methods. Wavelet energy 

describes energy information at different frequencies in 

the EEG signal that is adjusted to the needs of the analysis 

[9]. Entropy shows an index that illustrates brain wave 

disorder. Wavelet entropy can analyze EEG signals with 

very dynamic features [10]. Daubechies discrete wavelet 

transform and wavelet harmonic used to characterize and 

analyze epileptiform [11]. Wavelet analysis of EEG 

signals may produced accurate features to analyze 

different brain rhythm, even on a low scale. The other 

study by Lee et al. [12] combined wavelet transforms, 

phase-space reconstruction, and Euclidean distance to 

classify the normal EEG and epileptic seizures on the 

EEG signal. This method produced 24 features, and a 

minimum of four features with the highest accuracy was 

selected for classification using fuzzy logic. Guo et al. [9] 

explored relative wavelet energy for representing the 

EEG signal and classifying it using artificial neural 

networks. In our previous work, we examined the 

classification of seizure patterns on the EEG signal using 

SVM.  We divided four classifications scenarios, which 

are three based on seizure and normal conditions from 

feature extractions combination consisting of Hjorth 

Descriptor, Independent Component Analysis (ICA), and 

Mel Frequency Cepstral Coefficients (MFCC) [13]. 

Based on previous research, we proposed a new 

method for seizure detection in epilepsy patients based 

on the relative wavelet energy and wavelet entropy from 

the EEG signal. In this study, a combination of wavelet 

methods for feature extraction and SVM for 

classification were conducted. Wavelet transform 

segmented the EEG signals into five bands consisting of 

gamma, beta, alpha, theta, and delta. Relative wavelet 

energy and entropy are then calculated for these bands as 

feature sets. Finally, we evaluate the performance of the 

proposed feature extraction method using support vector 

machine.  

The rest of this paper is organized as follows. Section 

2 illustrates the EEG dataset collection and methods that 

support the findings of this study. The performance 

evaluation and discussion are shown in section 3. The 

conclusion and future works are drawn in section 4. 

 

 

2. MATERIAL and METHOD 

 
2. 1. EEG Dataset         In this study, the epilepsy EEG 

dataset, which was used for simulations, was taken from 

the Hauz Khas Neurology and Sleep Center, India. It is 

available on the 

https://www.researchgate.net/publication/308719109_E

EG_Epilepsy_Datasets. The EEG was taken from 10 

epilepsy patients in the department and recorded using 

Grass Telefactor Comet AS40 with 200 Hz sampling 

frequency. The 10-20 system placement standard was 

applied to 16 scalp electrodes. The EEG signal was pre-

processed with a band-pass filter (0.5 Hz and 70 Hz) to 

reject large amounts of noise. 

Furthermore, the EEG dataset was segmented into 

pre-ictal, ictal, and inter-ictal. Each stage contained 50 

segments of the EEG signal with a duration of 5.12 

seconds. Our proposed method was tested in several 

classification schemes included: ictal vs. pre-ictal, ictal 

vs. inter-ictal, pre-ictal vs. inter-ictal, and ictal vs. non-

ictal. 
 

2. 2. Proposed Method          Figure 1 presents a 

proposed method for epileptic EEG classification. First, 

the EEG signal which consists of ictal, pre-ictal, and 

inter-ictal is segmented into delta, theta, alpha, beta, and 

gamma bands using Wavelet transform. The relative 

energy and entropy are then measured for each band. 

Finally, a performance evaluation was carried out using 

a support vector machine with various kernels. The 

following sub-sections describe the details of the 

proposed method. 
 

2. 2. 1 Band Segmentation Using Wavelet 
Transform          Wavelet transform (WT), or then called 

wavelet decomposition, is generally a frequency 

decomposition of sub-band signals where the 

components are produced by decreasing the hierarchical 

decomposition. Wavelet-based transformation methods 

has been widely used over the past decades [14]. 

Implementation of wavelet transform can be done by 

passing the high-frequency signal or high pass filter and 

low frequency or lowpass filter [15, 16]. This method is 

suitable for representing EEG signals that have 

characteristics, high frequency in a short period, and low 

frequency in a long period. Wavelet extracts features that 

can be used for analyzing the diverse transient case in the 

signal, as in the EEG signal. Wavelet transform has been 

commonly used for EEG analysis, as reported in studies 

[17-19], where WT produces high performance in signal 

characterization.  

In the family of wavelet, the mother wavelet is the set 

of basis functions which is expressed in Equation (1) 

below. 

Ψ𝑎,𝑏(𝑡) =  
1

√𝑎
 Ψ (

𝑡−𝑏

𝑎
)  (1) 

where Ψ is basis or mother wavelet, 𝑎, 𝑏ϵℜ, 𝑎 ≠ 0 is the 

scale parameter, and 𝑏 is the shift parameter, while 𝑡 is 

the time.  

In its function for signal segmentation or 

decomposition, WT is often used as a filter bank (consists 

of low pass and high pass filter) [20]. In this research, we 

use wavelet decomposition to obtain the delta, theta, 

alpha, beta, and gamma bands. Since the sampling 

frequency is 200 Hz, 5-level decomposition was applied 

to obtain these bands with Daubechies-2 (DB2) as the 
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Figure 1. Proposed method for epileptic EEG classification 

 
 

basis wavelet function. Sub-band D2 correspondence 

with gamma, D3 correspondence with beta, D4 

correspondence with alpha, D5 correspondence with 

theta, and A5 correspondence with delta. The relative 

energy in each band is then measured as a function of 

normalization with the total energy of all bands. Shannon 

entropy is also calculated on all bands as a representation 

of the randomness or uncertainty of the signal. The 

scheme of the WT method can be seen in Figure 2. 
 
2. 2. 2 Classification with Support Vector Machine 
(SVM)          Support vector machine (SVM) is one method 

that is commonly used for classification problems in 

biomedical signal processing [21-24]. SVM is a 

supervised learning method. Initially, SVM was used to 

classify two groups and then developed to solve multi-

class classification problems. In addition, SVM is also 

able to overcome the problem of linear and non-linear 

classification. SVM is used to find optimal hyperplane 

functions by maximizing the distance between classes 

[25]. Hyperplane can be determined by calculating the 

hyperplane's margin and measuring its maximum point. 

The closest pattern is called a support vector. The 

hyperplane in SVM is illustrated, as shown in Figure 3. 

In this study, linear SVM and non-linear SVM are 

used to validate the proposed method. The function of 

linear SVM is expressed in Equation (2). 

min 1
2⁄ ‖𝑤⃑⃑ ‖2 + 𝑇 ∑ 𝜀𝑖

𝑘
𝑖=1   (2) 

Where  𝑤 is normal vector length, T is the trade-off 

parameter between training set errors and class 

separation. Whereas 𝜀𝑖 is the set of slack variables. The 

aim of this function is to find the minimum distance 

between two hyperplanes (2‖𝑤⃑⃑ ‖) by minimizing ‖𝑤⃑⃑ ‖. 

Since the boundary line have variations by applying 

other kernels, therefore non-linear SVM kernels 

including quadratic and cubic SVM also simulated to find 

the best performance in classification. This function is 

obtained by Equation (3). 

𝑘(𝑎𝑖 , 𝑏𝑖) = (𝑎𝑖 , 𝑏𝑖 + 1)𝑑  (3) 

where (𝑎𝑖 , 𝑏𝑖) is training set, meanwhile for quadratic 

function the 𝑑 = 2, and for cubic function, the 𝑑 = 3. 

 
 
3. RESULTS AND DISCUSSION 
 
Figure 4 shows the results of the Wavelet transform 

which generates the five conventional EEG bands,  

 

 

 
Figure 2. Wavelet decomposition and correspondence with 

the EEG sub-band 
 

 

 
Figure 3. Hyperplane as a separator between classes [26] 
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including delta, theta, alpha, beta, and gamma. Then the 

relative energy and entropy are measured for each band. 

The average values of the relative energy and entropy of 

each EEG stage are shown in Figures 5 and 6. The 

relative energy in the delta and theta bands in the ictal 

stage tends to be higher compared to the non-ictal stage. 

This indicates a slowing of the EEG wave in the ictal 

stage. Pre-ictal and inter-ictal stages show that the 

relative energy in the alpha, beta, and gamma bands is 

higher than the ictal stage. Meanwhile, the entropy value 

in the ictal stage is the lowest in all EEG bands compared 

to the non-ictal stage.  

Since entropy is related to the degree of complexity 

of the dynamic system, the ictal stage has the lowest 

signal complexity compared with other conditions. These 

results were confirmed by Weng et al. [27], that the ictal 

EEG decreased the complexity of the signal with the 

entropy value of the pre-ictal stage higher than the ictal 

stage. The parameters which are measured in this study 

provide discriminant features between groups of epileptic 

EEG signals. We also confirmed by conducting a 

significance test using the analysis of variance 

(ANOVA). In this study, features with statistically 

significant differences if they have a p-value <0.05 and if 

it generates a p-value <0.01, it has a higher degree of 

significant difference. The results of the significance tests 

for each classification problem are presented in Table 1. 

From these results, we highlight that in all ictal vs. non-

ictal stage scenarios, there are differences with high 

significance (p <0.01), which is almost generated by all 

features. Meanwhile, in the case of inter-ictal vs. pre-

ictal, there were six features that did not have high 

significance, two of which had p <0.05. This indicates 

that these two stages have several similar signal 

properties, which may be more difficult to classify. Next 

is the performance validation of the proposed method 

using SVM. In this study, the number of features which 

is used as a predictor is 10 features from the measurement 

of the relative energy and entropy of each EEG band. 
 

 

 
Figure 4. The results of decomposition using wavelet 

transform in the ictal stage 

 
Figure 5. The average of the relative energy of the ictal, 

inter-ictal, and pre-ictal stages 

 

 

 
Figure 6. The average of entropy of the ictal, inter-ictal, and 

pre-ictal stage 

 

 

 
TABLE 1. p-value for each classification scenarios 

Feature 
Ictal vs 

inter-ictal 

Ictal vs pre-

ictal 

Inter-ictal 

vs pre-ictal 

Ictal vs 

Inter-ictal 

vs pre-

ictal 

RGP 5.15E-09** 6.97E-03** 3.89E-03** 1.65E-07** 

RBP 9.00E-18** 3.09E-05** 1.66E-03** 3.55E-13** 

RAP 1.05E-05** 2.45E-02* O.0971 2.76E-04** 

RTP 1.14E-23** 4.95E-12** 0.0649 3.70E-21** 

RDP 0.0812 0.117 1.08E-02* 1.37E-02* 

EG 1.42E-26** 2.02E-24** 1.43E-04** 5.87E-31** 

EB 2.88E-18** 2.38E-17** 6.35E-03** 4.89E-20** 

EA 4.02E-18** 1.57E-16** 2.93E-02* 7.81E-20** 

ET 2.88E-19** 2.33E-14** 0.435 4.80E-18** 

ED 1.18E-14** 5.20E-11** 0.358 3.81E-14** 

RGP = Relative gamma power; RBP = Relative beta power; RAP = Relative 
alpha power; RTP = Relative theta power; RDP = Relative delta power; EG 

= Entropy gamma; EB = Entropy beta; EA = Entropy alpha; ET = Entropy 

theta; ED = Entropy delta 

* p-value < 0.05 

** p-value < 0.01 
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Since SVM is a supervised learning method, a cross-

validation algorithm is needed to split the training and 

test data. The use of this algorithm also aims to avoid 

overfitting. 10-fold cross-validation with SVM is used to 

evaluate the performance of the proposed method in the 

four classification problems, as explained in the sub-

section above. The test results for each scenario are 

presented in Table 2. In the case of classification between 

ictal and pre-ictal the highest accuracy is 95%, with 

sensitivity and specificity of 94 and 96%, respectively. 

For ictal vs. inter-ictal cases, the highest accuracy, which 

is achieved, is 96%. In this case, 100% specificity was 

obtained, which means that the system is able to detect 

all inter-ictal stages without miss classification. 

Meanwhile, in the ictal vs non-ictal (pre-ictal and inter-

ictal) stage classification, the proposed method generates 

an accuracy of 96.7 with 99% specificity in detecting 

non-ictal onset. This scenario shows that the proposed 

method is able to detect ictal and non-ictal onset with 

high accuracy and has a consistent performance when 

applied to ictal vs. pre-ictal or ictal vs. inter-ictal 

classification problems. The simulation results in this 

scenario are expected to be used to predict the onset of 

seizures. In the pre-ictal vs. inter-ictal classification 

problem, the system is able to produce the highest 

accuracy of 80% and a sensitivity of 90%. This result is 

quite good, considering both of the onsets have similar 

characteristics. Where the two conditions are the onset 

before the occurrence of seizures at different intervals, 

from the simulations conducted using different SVM 

kernels, it can be concluded that the quadratic kernel has 

the best performance, providing the highest accuracy for 

the three test scenarios. 

The evaluation of the proposed method was also 

carried out by comparing it with previous studies that 

used the same dataset. In the ictal vs. pre-ictal scenario, 

 

 
TABLE 2. The classification results for each scenario 

Scenario SVM Accuracy (%) Sensitivity Specificity 

Ictal vs 

Pre-ictal 

Linear 94 92 96 

Quadratic 95 92 96 

Qubic 95 94 96 

Ictal vs 

Inter-

ictal 

Linear 94 88 100 

Quadratic 95 90 100 

Qubic 96 92 100 

Pre-ictal 

vs Inter-

ictal 

Linear 78 88 68 

Quadratic 80 90 70 

Qubic 76 86 66 

Ictal vs 
Non-ictal 

Linear 96.7 92 99 

Quadratic 96.7 92 99 

Qubic 95.3 90 98 

TABLE 3. The system performance comparison 

Study by Method Class Acc. (%) 

Sharma, et. al 

[28] 

minimally mean 

squared 
frequency 

localized 

(MMSFL)- 
optimal 

orthogonal 

wavelet filter 
bank (OWFB) 

ictal vs. pre-

ictal 
90 

pre-ictal vs. 

inter-ictal 
NA 

inter-ictal 
vs. ictal 

100 

Gupta, et. al 
[29] 

Discrete cosine 

transform 
(DCT), Hurst 

Exponent 

ictal vs. pre-
ictal 

79.7 

pre-ictal vs. 

inter-ictal 
74.6 

inter-ictal 

vs. ictal 
96.5 

Proposed 

study 

Relative 

Wavelet 

Energy (RWE) 

and Wavelet 

Entropy 

ictal vs. pre-
ictal 

95 

pre-ictal vs. 

inter-ictal 
80 

inter-ictal 

vs. ictal 
96 

 

 

the proposed method outperforms the study by Sharma et 

al. [28] and Gupta et al. [29] where the accuracy was 90 

and 79.7%, respectively. In the pre-ictal vs. inter-ictal 

scenario, the proposed method also outperforms the study 

by Gupta et al. [29], yielding an accuracy of 74.6%. This 

is a good result and should notably since the two stages 

have similar characteristics. Meanwhile, the ictal vs. 

inter-ictal scenario has lower performance than the study 

by Sharma et al. [28] and Gupta et al. [29]; however, the 

gap is relatively low. A brief summary of the 

comparisons with previous studies is presented in Table 

3. 

 

 

4. CONCLUSION 
 

This paper presents a method for epileptic EEG detection 

using relative wavelet energy and wavelet entropy. 

Wavelet transform was used to generate conventional 

EEG bands consisting of the delta, theta, alpha, beta, and 

gamma. Then relative energy and entropy were measured 

as a feature set. From the measurement of relative power, 

it was known that the delta and theta band in the ictal 

stage was higher than in the non-ictal stage. Entropy 

measurements showed that the value of entropy in ictal 

tended to be lower than the non-ictal stage. The entropy 

value in pre-ictal was highest compared to other stages. 

This measurement was considered to be able to provide 

discriminant features between epileptic EEG groups. 

Therefore, performance evaluations were performed with 

SVM and cross-validation to the feature vectors, which 
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were generated by the proposed method. Performance 

evaluation was done in the four classification problems, 

including ictal vs. pre-ictal, ictal vs. inter-ictal, pre-ictal 

vs. inter-ictal, and ictal vs. non-ictal. Each scenario 

generates the highest accuracy of 95%, 96%, 80%, and 

96.7%, respectively. In ictal vs. pre-ictal and inter-ictal 

vs. pre-ictal scenario, the proposed method outperformed 

previous studies. We notably highlighted the cases of 

ictal vs. non-ictal, where the proposed method produced 

high accuracy. It means that the proposed method was 

expected to be used for the prediction of onset seizures.  

In future works, the results of this study will be 

simulated to a larger EEG epilepsy dataset. Moreover, 

various feature extraction and classification methods will 

be explored so that it becomes an opportunity to solve the 

more complicated case of EEG signal classification. 

Other classification parameters are also meaningful so 

that research is more challenging to be addressed. 
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Persian Abstract 

 چکیده
 ل الکتروانسفالوگرام یز سیگناصرع یکی از اختلالات عصبی رایج است که می تواند باعث تشنج بدون برانگیختگی شود. در حال حاضر ، تشخیص و ارزیابی با استفاده از آنال

(EEG)  انجام می شود که توسط پزشکان بصری انجام می شود. از آنجا که سیگنالهایEEG  بازرسی بصری اغلب بیان نادرست نتایج است. تصادفی و غیر ثابت هستند ،

صرعی پیشنهاد شده است. با این حال ، هنوز فاصله ای برای بهبود دقت تشخیص با تعداد کمی از  EEGمطالعات متعددی تجزیه و تحلیل مبتنی بر رایانه برای طبقه بندی 

صرعی پیشنهاد کردیم. روش های پیشنهادی انرژی موجک نسبی  EEGص خودکار برای طبقه بندی ویژگی ها وجود دارد. بنابراین ، در این مطالعه ، ما یک پروتکل تشخی

و  ictalشامل پیش اکتال ،  EEGو آنتروپی موجک برای استخراج ویژگی و ترکیب شده با روش طبقه بندی برای تشخیص خودکار است. در این مطالعه ، سه کلاس 

interictal ستفاده شد و همچنین روش پیشنهادی را ارزیابی کرد. سیگنال های به عنوان داده های آزمون اEEG  با استفاده از تبدیل موجک به پنج زیر گروه معمولی ، از

ر نظر گرفتن ها با د سبه شد. این روشجمله گاما ، بتا ، آلفا ، تتا و دلتا تجزیه شدند. سپس انرژی نسبی و آنتروپی در هر یک از این باند ها به عنوان یک مجموعه ویژگی محا

 (SVM)بردار پشتیبانی محاسبات کم هزینه انتخاب می شوند. ما عملکرد روش استخراج ویژگی خود را با استفاده از هسته های خطی و غیر خطی با استفاده از ماشین 

 ictal، و  inter ictalدر مقابل  inter ictal  ،pre ictalدر مقابل  pre-ictal  ،ictalدر مقابل  ictalبرای  ٪96.7-80آزمایش کردیم. از طریق شبیه سازی ، بالاترین دقت 

 کمک کند. EEGبود. سرانجام انتظار می رفت که این کار به پزشکان در تشخیص شروع صرع بر اساس سیگنال های  ictalدر مقابل غیر 
 


