IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

International Journal of Engineering

Journal Homepage: www.ije.ir

Services Composition in Multi-cloud Environments using the Skyline Service

Algorithm

M. Heidari, S. Emadi*

Department of Computer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

PAPER INFO

Paper history:

Received 08 June 2019

Received in revised form 22 September 2020
Accepted 20 November 2020

Keywords:

Skyline Service

Dominant Relationship
Web Service

Service Composition
Multi-cloud Environments

ABSTRACT

The rapid growth of cloud environments has led to the expansion of resources that offer a variety of
services. The opertions of the services are usually very simple and may not satisfy the complex needs
of the user, hence there is a need for a combination of these services that can fulfill the user's
requirements. Most of the service composition methods in cloud environments assume that the involved
services came from one cloud, and this is unrealistic because other clouds may provide more relevant
services. The challenges in composition services distributed in multi-cloud environments include
increased cost and a reduction in its speed due to the increasing number of services, providers, and
clouds; so, in order to overcome these challenges, the number of providers and participating clouds must
be reduced. This study used the Skyline service algorithm to compose services in multi-cloud
environments, which examined all the clouds during the service composition process. The proposed
method can provide an applicable composition service to the user with the lowest communication cost
by considering the number of clouds and by using fewer providers. The Skyline algorithm involves two
steps. In the first one, the best composition in a cloud environment is selected among all the possible
providers by considering the number of providers and the communication time. In the second step, the
Skyline algorithm is used to create all the possible compositions in a multi-cloud environment.
Parameters such as fewer clouds and shorter communication times between the clouds are selected. The
results show that the proposed method can find the composition with the least number of clouds, the
lowest cost, and has the lowest calculation time. It can be said that the Skyline makes it possible to select
a suitable composition of user-requested services in a multi-cloud environment.

doi: 10.5829/ije.2021.34.01a.07

1. INTRODUCTION

for providing various types of resources as a service. To
meet the user’s needs, cloud-based systems [6-7] are

Web service is a modular and self-described application
that is published based on a set of standards such as
SOAP, WSDL, and UDDI [1-2]. When a web service is
limited to simple features, a set of separated web services
must be combined to create a value-added one [3-4].
Service composition problems can be resolved by
selecting a set of web services in such a way that their
combination meets the functional and non-functional
requirements of the user [5]. With the advent and rapid
development of cloud computing, more clouds can carry
out the existing tasks in the cloud with different
functions, and this cloud environment is a natural choice

*Corresponding Author Institutional Email: emadi@iauyazd.ac.ir (S.
Emadi)

usually designed by calling up several providers. The
service composition in cloud environments allows for the
integration of various cloud resources into a set of
integrated services for providing cloud-based solutions
that meet certain qualitative criteria [8]. Most of the
service composition methods that have been proposed for
cloud computing consider all the composite services in
one cloud, rather than searching services from the various
available clouds [9]. Organizations often distribute their
services using cloud providers to ensure the availability
and quality of the provided services, and also to reduce
the risk of data loss [10]. In addition, service composition

Please cite this article as: M. Heidari, S. Emadi, Services Composition in Multi-cloud Environments using the Skyline Service Algorithm ,
International Journal of Engineering, Transactions A: Basics Vol. 34, No. 01, (2021) 56-65

mailto:emadi@iauyazd.ac.ir

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 57

in multi-cloud environments poses many issues such as
the cost of communications within the cloud, increased
fiscal costs, and security issues. Hence, challenging tasks
include reducing the number of participating clouds and
the number of providers due to the limitations of the
services. Therefore, the current study seeks to find the
best possible service composition in cloud environments
using the Skyline service algorithm, which uses both a
smaller number of providers and clouds to reduce
financial costs.

The Skyline algorithm is based on the concept of
Pareto dominance [11]. It has been used to solve research
problems such as web service selection, query processing
over uncertain data [12-14], effective processing of
advanced queries [15], and indexing of time series data.
The use of the Skyline algorithm in the proposed method
creates all the possible compositions of the providers in a
multi-cloud environment. The best composition in a
cloud environment is selected by considering the number
of providers and the communication time. Parameters
such as fewer clouds and a shorter computation time
between the clouds are also considered in selecting the
most suitable cloud composition.

The innovation of this paper includes modeling the
multi-cloud environment using the Skyline in two steps.
First, the providers and services were modeled based on
user requests. Secondly, the clouds are modeled based on
the providers and services selected in the previous step.
Then, we introduce the algorithms for the extraction of
the candidate services, providers, and clouds based on the
Skyline rules.

The rest of this paper is organized as follows. In
Section 2, the works related to service composition will
be discussed using the Skyline service. In Section 3, the
algorithm and the concepts of the Skyline service are
expressed. Then the proposed method is outlined is
Section 4. Section 5 presents the results and evaluation,
and the last section is devoted to conclusion and
suggestions.

2. RELATED WORKS

Most of the existing approaches to service composition
in cloud environments consider all the services in the
composition from a single cloud. However, certain
algorithms have also been proposed to address this issue.
In Section 2.1, other methods will be examined, and in
Section 2.2, service composition using the Skyline
algorithm will be discussed.

2. 1. Methods Provided Using Multi-cloud
Algorithms Zou et al. used a tree structure to
model a multi-cloud environment (MCB). Then, with the
MCB tree search, the minimum request set was created.
Accordingly, they proposed three algorithms for

selecting the optimal cloud composition. In the first
algorithm, they considered all clouds as inputs and
evaluated all the possible solutions. This method
determined the sequence of the service composition at the
time of execution, but with the use of a large number of
clouds. The second algorithm recursively defined a
service composition in all the cloud compositions. The
last algorithm provided an optimal cloud computing
approach using an approximate method. However, it was
time-consuming and may not be a good cloud computing
approach because it used the composition of clouds that
utilize service spaces and could impose on some
compositions [16]. Gutierrez-Garcia et al. proposed an
agent-based multi-cloud service composition approach
by using a semi-recursive conventional protocol;
however, it has the limitations of agent-based distribution
[17]. Jatoth et al. proposed a quality of service (QoS)
cloud service composition based on both the modified
invasive weed optimization algorithm and an Adaptive
Genotype Evolution based Genetic Algorithm (AGEGA)
[18-19]. Gavala et al. proposed a QoS aware cloud
service composition based on an Eagle Strategy with
Whale Optimization Algorithm (ESWOA). However, in
these three approaches, they considered multiple QoS
parameters for service composition in only one cloud
[20]. Yu et al. presented a Greedy-WSC algorithm and an
ant colony optimization based algorithm, namely ACO-
WSC, to select the service composition in cloud
environments with a minimal number of clouds. The
Greedy-WSC algorithm selects clouds that offer more
services, and the ACO-WSC algorithm is used to
combine selected clouds. Their results showed that the
ant colony optimization method could efficiently find
effective cloud composition with the minimum number
of clouds. The disadvantage of this model was its lack of
considering semantic information in the composition of
web services, especially in a dynamic and distributed
environment [21]. Kurdy et al. suggested a composite
optimization (COMZ2) algorithm for cloud services that
ensures the selection of clouds with the maximum
number of services, which increases the likelihood of
completing a service request at a minimum cost. The
results of their experiments showed that COM2 was
successfully able to compete with previous algorithms in
the field of service composition, but it did not consider
the interconnecting costs of the clouds [22]. Mezni et al.
used formal concept analysis (FCA) and fuzzy formal
concept analysis (FFCA) for service composition in a
cloud-based environment. The FCA is based on the
concept of a network, a powerful tool for classifying
cloud information and services. Initially, a cloud
computing model was created as a set of formal concepts;
then, it extracted and combined the candidate clouds
from the formal concepts. Finally, the optimal cloud
composition was selected, and the multi-cloud service
composition (MCSC) became a classical service

58 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

composition problem. In addition to considering the
number of clouds in the composition, it also takes into
account the cost between the clouds. The tests showed
the effectiveness and ability of the FCA-based method to
find and group cloud compositions with a minimum
number of clouds, the lowest communication cost, and
the lowest time to service selection in the nearest cloud
or in the same cloud [23-24].

2. 2. Methods Provided Using the Skyline
Algorithm Yu and Bouguettaya suggested an
algorithm that used the dominant relationship between
service providers to find a set of the best possible service
composition for Skyline services [11]. Instead of
examining all the possible composition of services, this
algorithm significantly reduces the search space and
proposes a low-up computing framework that enables the
Skyline algorithm to scale well with a number of
services. In their research, three algorithms, namely
OPA, DPA and BUA, were developed to select a set of
the best possible composition services. The DPA used a
parent table and a broad network to achieve enhancement
and route ability. The BUA used a powerful low-up
computing framework with a linear composite strategy,
which improved the performance and the scalability.

Wou et al. provided an algorithm for the composition
of services based on service quality. In this way, when a
new service comes, the previous service is deleted, and
the quality of service is changed. This algorithm reduces
the number of selected services through Skyline and
chooses the best service using the service quality [25].

In another study, Zhang et al. used the Skyline
guaranteed query processing method to build mashup
cloud applications and employed similarity tests to
achieve an optimal Skyline. Cloud mashup is a
composition of several services with a shared data set and
integrated functions. This method was used to optimize
the composition of web services in large-scale cloud-
based mashup applications from the Map-Reduce. Since
the choice of Skyline service and hybrid processes were
very timely, especially when the data space of the
services was very large, a block-based blocking was
proposed to shorten the process. After testing 100,000
real websites worldwide in 10 dimensions, it was found
that the Map-Reduce based block-removal method was
3.25 times faster than the angular segmentation
algorithm, and 1.4 times faster than the network method
[26-27].

Liu et al. proposed a dynamic Skyline service
selection tool to reduce redundancy. In this method, the
process of choosing a service was divided into two
stages: the service selection stage and the implementation
phase of the selected services. The selection stage used
the offline method to calculate the Skyline, and was
responsible for updating the Skyline service. Therefore,
the offline process never affected the performance of the

phases of the service selection. The implementation
phase was responsible for selecting the optimal
composition of the services, which matched the QoS user
limitations. The results showed that this method selected
the most appropriate services [28].

Moradi and Emadi presented an algorithm for service
composition using the Skyline service in parallel. In this
way, the choice of services was based on the quality of
service; the use of parallelization techniques had a
significant impact on reducing the response time and
increasing the speed of the composition of services, as
well as reducing the computations [29].

However, most traditional service composition
methods regard service composition in a single cloud and
consider a balance between the QoS parameters. In this
paper, we present an algorithm based on Skyline service,
which focuses on reducing the number of clouds and
providers.

3. THE SKYLINE SERVICE ALGORITHM

The existing approaches in multi-cloud service
composition only reduce the number of clouds. This
research, like [23], considers modeling the relationship
between the providers and the clouds in the selection of
optimal clouds, as well as the composition of services by
the Skyline service algorithm. The Skyline service
algorithm has been used to extract the optimal
composition of the providers and clouds. Also, combined
services can have sequential, parallel, loop, or
conditional structures. In this research, only the
sequential structure for combining services and their
implementation is considered.

Definition 1: A multi-cloud environment is a set in
which C= {C;,Cy,...,Cn} where C; is a cloud and
P={P1,P,...,Pn} Where P; is a provider that is hosted by
the clouds. A provider also offers a set of services. Every
provider may belong to more than one cloud, and every
service also may belong to more than one provider.

The multi-cloud service composition problem is
given a set of clouds that hosts the services offered by a
number of providers. The Skyline service algorithm is
designed to select the minimal sub-set of clouds and
providers, while reducing the cost of communication
between the providers and clouds.

Skyline was originally introduced in the database
domain [30]. Given a set of S points in a D-dimensional
space, the points in the Skyline are not dominated by any
other place in the search space [31].

Definition 2 (Dominance Service and Skyline
service): In service composition, dominance services are
better in all parameters of service quality compared to
other services. For example, SA= {S1, Sz, Ss} is a set of
services that provides task A with QoS= {3, 4, 2}in time
and SB= {S;, S} that provides task B with QoS= {4, 5}

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 59

in time. The Skyline service for SA= Ss and for SB=S;
are not dominated by other services, and it is the best
candidate service [28, 32- 33].

The Skyline was introduced for the first time to create
aweb service and to evaluate its effectiveness [30]. In the
service composition, the dominant service is the services
that are better than others in all aspects of service quality.
To this end, some researchers have proposed different
methods for determining the dominant relationship to
determine the Skyline service [34-35].

Therefore, if a service is part of Skyline, it is expected
to offer better parameters than other services [36]. In the
above example for SA and SB, the composition of
Skyline services is {S5, S2}, in which a set of services
are dominated by none of the services in the other
composition [11] as {S1, Sz}, {S1, Sa}, {S2, S2}, {S2, Sa},
{Ss, Sz}, and {Ss, 54}.

One of the algorithms offered by the Skyline service,
which is used in this investigation, is a dual progressive
algorithm [11] for making composition possible. The
root, that is, the parent node, is constructed first, and then
the next nodes are constructed. The rule to create each
node is that the selected services available in composition
are different only in one service with its child nodes. For
example, the root node in Figure 1 is ai, by, 1, and its
child nodes include (a, b, ¢1), (a1, b1, €2), and (az, by, c1).
The lattice expansion determines only the sequence of
counts between the nodes, and proves that each node is
considered after its ancestors, but for nodes that do not
have parent-child relationships, an appropriate order
must be guaranteed. Since it may have a score of (ai, by,
c1) less than (as, b1, ¢3), it should be counted in advance.
In order to achieve the progressive counting of the base,
the lattice expansion (T) with a heap (H) is used. The
lattice expansion ensures that the parent node is counted
before the child node. On the other hand, the heap
determines the counting of the nodes that do not have a
parent-child relationship. The commencement of the
manufacturing process starts from the first level. At each
step of the count, the lattice expansion is extracted from
the heap with the lowest cost and is compared with the
existing Skyline. Ultimately, the considered composition
is placed in Skyline if it is not lost or eliminated. The
progressive algorithm of a node can be generated several
times from generating other parent nodes, which creates
a replication problem. As shown in Figure 1, the top
number of each node shows its parent number. For
example, the node (as, by, ¢) is placed three times in the
heap because it has three parents, and each time they
develop (as, b, c2), they are generated and placed in H.
The multiplication of the node has many computational
problems since many nodes are processed several times.
The same node can be located in Skyline more than once,
which causes a false Skyline [9].

The parent table [11] provides a suitable solution for
solving a node problem with the least computation.

Instead of considering all the ancestors, the parent table
only stores information about the number of parents for a
given node. The basic rule is that a node can be put in a
heap only when all its parents are already processed. The
parent table stores the number of parents in each node.
Each time the node is compared to another node, the
number of parents is reduced by one unit, and the table is
updated with new values; eventually, every node in its
value reaches zero in the heap. This operation ensures
that all the nodes of the child are placed in the heap before
the parent nodes [11].

In the next step, the best service in the lattice should
be selected taking into account the dominant relationship.
Then, the Button-Up Algorithm [11] strategy is to use
linear compositions while doing comparisons to select
the best composition. A linear composition is to compare
the results of the two nodes with the next node, and
achieving the best possible composition [11, 29]. Button-
Up Algorithm carries out optimization and QoS
calculations with positive traits inherited from dual
progressive algorithm.

4. DETECTING A MULTI-CLOUD ENVIRONMENT
USING THE SKYLINE SERVICE ALGORITHM

In this research, the Magnetic Cluster Expansion (MCE)
is modeled as a set of lattice expansion, as shown in
Figure 2. Each cloud is described as a lattice expansion
created to group the providers based on the services they
provide, and another lattice expansion has been created
to express the relationships between the desirable
providers and their hosting clouds.

Since a provider may belong to more than one cloud,
so with respect to the given N clouds, the information
about the services and their providers is modeled in the
N lattice expansion, where each one represents the
environment of a cloud. First, a number of the preferred
composition of the providers are selected as equal to the

atbic]
albict | dible2
a1b2c,1/

/ 7
a/:ih1c1 azb2cl a2bic2 atbded afh2¢2 @ibic3

atb2cl adblcZ ashaci” Eob2cd” abicd Eiblc2 aiblcl

}3!:361 %3b2¢2” Bsbicy azb3c?” azb2cd a1h3c{

a3b3c2 adb2c3 aZbicd
\'
adbdcd

Figure 1. Lattice Expansion

60 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

~

€

I User request
Cloud 1

~%

Optimal service compasiticn

Best providers

,_/f_'\‘) 5 composition in

cloudl

Best compasiticn in

/—\\ multicloud
P NI o iy Best providers
(P l\'\ """ ** composition in
w e - cloud 1 and
: cloud 2

Cloud 2

Cloud N

/ b, ok i a. Best providers
(. n 3 - 3 — - [L'an:L"-l:l[?r n

T
Cloud M

“cloud 1to cloud N

Figure 2. The proposed method

number of the available clouds. After comparing and
choosing the most suitable composition, a multi-cloud
spreading lattice expansion is built, and the optimal
composition of the clouds is selected from this lattice
expansion.

An example of a multi-cloud environment is shown
in Table 1. Thirty services with various QoS functions
and capabilities are provided by five providers on three
clouds. For example, Cloud C; hosts three providers,
which altogether provide 13 services. Some providers
may deploy their services in multiple clouds (e.g., P2, Ps).

Based on the example above that shows a cloud
environment with three clouds, a lattice is expanded for
each cloud, and for a multi-cloud environment, a
distributed lattice is modeled. Table 2 describes the
relationships between the providers and their host clouds,
and Table 3 describes the relationships between the
providers and their services in Cloud 1.

This research seeks to find a composition of clouds
and providers that hosts the best service and to reduce the

TABLE 1. An example of multi-cloud environment
Clouds C, Cx Cs

Providers P, P, Ps P+ Ps P Ps P
Services 5 4 4 2 3 5 4 3

TABLE 2. An example of relationships between the clouds and
providers in a multi-cloud environment

MCE Cy C, Cs C, Cs
P1 0 0 1 0 1
P, 0 1 1 0 0
Ps 0 0 1 1 0
P, 1 1 0 0 0

TABLE 3. An example of relationships between the providers
and their services in Cloud 1

Cloud, P1 P, Ps P4
S 0 5 7 9
Sz 5 0 4 6
Ss 7 4 0 3
Ss 9 6 3 0

cost of communication between the services that come
from different clouds. For this purpose, two algorithms
are proposed to select a multi-cloud composition that
uses the minimum number of providers and clouds. The
steps are briefly summarized below:

Step 1- Extracting the optimal composition of
providers: In this step, the best composition of providers
is extracted in each of the clouds. By comparing the
compositions obtained from all the clouds, the optimal
composition that meets the user’s request is selected and
then used as input to determine the optimal cloud
composition.

Step 2 - Extracting the optimal composition of the
cloud: At this point, the lattice expansion, which shows
the relationship between the providers and their host
clouds, is used to obtain the optimal composition of
clouds according to the providers selected in Step 1. The
random composition of the clouds, which hosts the
optimal composition of the providers, is selected as the
root of the lattice expansion; the lattice expansion is thus
complete and is selected based on the dominant
relationship of the optimal composition of the clouds.

The following sections give more details about each
of the above steps.

4. 1. Extracting the Optimal Composition of
Providers This step uses the Skyline service
algorithm to extract the optimal composition of providers
in each cloud. In selecting the optimal composition, none
of the existing approaches take into account the number
of providers and the cost of communication between the
providers. To determine the cost of communication
between two providers, each cloud environment uses the
information shown in Table 4. In this study, the matrix
values are simple, representing the time of
communication between two providers (in milliseconds).

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 61

TABLE 4. Matrix of communication cost between providers in
cloudl

Py P, Ps Py
Py 0 5 7 9
P, 5 0 4 6
P, 7 4 0 3
Py 9 6 3 0

51,52

P1,P1

e

PS,P1 P3,P2 x

—~
- \

X P5,P2 x
Figure 3. An example of lattice expansion of providers

This algorithm considers the user requested services
to determine the appropriate composition; Sr s
considered as an input to create a lattice expansion in
each cloud. For creating a lattice expansion in each cloud
(Algorithm 3), the root node is created based on a
possible composition of providers (line 4 in Algorithm
1), which satisfies the user’s requested services. For
example, if a user requests Si, S services (Figure 3), the
above algorithm will be considered as the root in Cloud
1 of the P41, P; composition that delivers the services that
are being provided; then, the child nodes are constructed.
Rule 1: The child node is a node that differs in
the composition of providers with the parent node only in
one provider.
So, the child nodes of the above example will be (Ps,
P1) and (P1, P2); after determining each node, the cost of
each node is calculated according to Equation (1).

Si = a*Ni+ﬁZ|jEzllcostj @

where E is the set of edges that show the communication
between the providers in a composition, cost j denotes the
cost of communication between the providers Px and Py
in the j relationship link, and Ni is the number of existing
providers in the i-th composition. Also, o and B are
numeric values representing the number of providers and
the communication costs of the providers, respectively.
To avoid the presence of providers in dispersed areas and
encourage the lowest cost of communication between
providers as the most important goal, the amount of a
should be smaller than B. Having created the lattice
expansion starting from the root node, the root node first

appears in the heap and is selected as the Skyline. After
removing the root node, its children are added to the heap
if all their fathers are examined, and so the cost of each
composition is compared with the cost of the composition
in the Skyline; then, if the composition is found to be
optimal, the Skyline is updated. Hence, the best
composition is selected by comparing the cost of the
composition. Thereafter, the second cloud’s lattice
expansion will be created and the optimal composition
will be compared with that of the first cloud, and the best
composition will be selected. The output of this
algorithm is the optimal composition of providers.

4. 2. Extracting the Optimal Composition of Clouds
The composition obtained from the algorithm in the
previous section is the input of this algorithm. The goal
of this stage in a cloud-based environment is to classify
the clouds that together provide the equired services. By
evaluating all possible compositions, the optimal cloud
composition is determined, from which the appropriate
services are delivered to the user. Here, to determine the
cost of the relationship between the two clouds, the
matrix values in Table 5 are simple values that represent
the time between the clouds (in milliseconds).

To determine the optimal composition of clouds, the
optimal composition of providers from the previous step
is considered as input to determine the root of the lattice
expansion, and thus the lattice expansion is completed
(Algorithm 3). When constructing cloud compositions,
the cost of each compound is calculated in accordance
with Equation (1). The only difference is that E is the
number of edges representing the connections between
the clouds in the composition, and j shows the cost of
communication between the two clouds, Cx and Cy, on
the js communication link. Ni is the number of clouds in
the im composition. The total cost of the composition is
calculated by taking into account the total
communication costs in the cloud composition according
to Equation (1). In this algorithm, a and f are also
numerical values representing important factors such as
the number of clouds and the cost of cloud
communications, respectively. Thus, a should be smaller
than B to avoid the presence of clouds in dispersed areas
and to encourage the lowest cost of communication
between the clouds, which is considered as the most
important goal. For example, if the optimal composition
obtained from the previous step of composition (P3, P1)
is used, the algorithm takes into account in the multi-
cloud environment of (Cs, C3) compound that hosts the
providers in the optimal composition; then, the child
nodes are constructed, which are shown in Figure 4.

Rule 2: In creating each child node, the composition
is different from that of the provider only with the parent
node. So the child nodes of the above example will be
(C4, Cs) and (Cs, Cs).

62 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

5. EXPERIMENTAL RESULTS

This section provides details of the experiments
conducted to evaluate the performance of the proposed
method. The Java programming language has been used
in this approach, and the development environment is
NetBeans IDE 8.2.

In this study, Java classes have been used to randomly
generate some experimental data sets, including a set of
services and relationships between the clouds, providers,
and services provided by each provider, as well as a, 0.3,
and B, 0.7.

The experiments are conducted in environments with
a number of different clouds (between 5 and 100) and
services ranging from 1 to 20; since the creation of a
multi-cloud environment is a coincidence, the test of each
environment is repeated 50 times. The user’s request in
all the test cases consists of three services.

5. 1. Estimating the Computation Time In
these experiments, as in similar methods, a concept called
density has been considered to determine the impact on
the total execution time when the providers are hosted in
several clouds; the total execution time is between 20 and
40%, and the number of clouds is between 5 and 100. The
composition time results are shown in Figure 5.

TABLE 5. Matrix of communication cost between clouds

C: C, Cs (oA
C; 0 6 8 10
C, 6 0 9 12
Cs 8 9 0 4
C, 10 12 4 0
P3,P1
C3,C3
e - \\‘&
C4,03 C3,C5
i ”/."\‘“m i e \‘\,‘
X C4,C5 X

Figure 4. Example lattice expansion of clouds

Algorithm 1: Extracting optimal composition of providers

Input: A user request Sr

Output: Best provider composition

1: Begin

2: Best provider composition=0;

3: for each cloud Ci do

4: Creating expansion lattice based on Sr (Algorithm 3)

5: Best=RootNode; H=RootNode;

6: While(! H.isEmpty())

7: Remove the top node from H;

8: if n is dominated by Best

9: Best=n;

10: end if

11: CN=expand(n,T);

12: for all node ni in CN

13: P(ni) --;

14: if(P(ni)==0)

15: H.add(ni);

16: end if

17: end for

18: end while

19: if Best is dominated by Best provider composition
20: Best provider composition=Best;

21: end for

22: return Best provider composition;

23: End

Algorithm 2: Extracting optimal composition of clouds

Input: Best provider composition
Output: Best cloud composition

1: Begin

2: Creating expansion lattice based on
Best provider composition(Algorithm 3)
3: Best=RootNode; H=RootNode;
4: While(! H.isEmpty())

5: Remove the top node from H;

6: if n is dominated by Best

7: Best=n;

8:end if

9: CN=expand(n,T);

10: for all node ni in CN

11: P(ni) --;

12: if(P(ni)==0)

13: H.add(ni);

14: end if

15: end for

16: end while

17: return Best cloud composition;
18: End

Algorithm 3: Creating Expansion Lattice for providers (or
clouds)

Input: A provider(cloud) composition that provide user
request (or Best provider composition)

Output: Expansion Lattice

1: Begin

2: for each a provider(cloud) composition

3: int num=number of user request (or Best provider
composition)

4: While (num!=0)

5: change node that number is num based provider(cloud)
that is provide same service(provider)

6: num--;

7: end while

8: end each

9: return Expansion Lattice;

10: End

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 63

o
5
35
.
5
.
15
10
; I

h

I
clouds=40 IE—

I
clouds=50 IE—

1

1

n
clouds=20

clouds=10 W

clouds=30

clouds=G0 I—
clouds=70 —
clouds=R0 I—

clouds=a0

clouds=5
clouds=100

Edensty=20 ®densty=30 density=40

Figure 5. Results of the computation time

According to this figure, the computation time at a
density of 40 is lower than the other two densities, and
especially with a higher number of clouds, this difference
is more evident. In general, this algorithm has a low
computational time for the cloud environment with a
different number of clouds. Also, the execution time is
slightly high when a provider is not hosted on several
clouds.

5. 2. Estimating the Cost and Number of Clouds in
the Selected Composition Figure 6 shows that
the size of the optimal composition and composition
costs are not affected by the changes in density and the
number of clouds. The experimental results show that the
Skyline-based approach always produces a favorable
cloud composition even in a large-scale cloud-based
environment, and even when each provider is hosting a
small number of clouds.

5. 3. Comparison of Cloud Communication Costs
In this section, the performance and quality of the
proposed solution are compared with the Mezni method
[23]. These two methods are compared in a multi-
cloudenvironment with 100 clouds and three user-
requested services. MCEL is a cloud environment with a
density of 20, MCE2 has a density of 30, and MCE3 is
40.

The overall cost for each cloud compilation generated
by the FCA and the Skyline was calculated using defined
equation. The results for the FCA are shown in Figure 7,
but the value of the Skyline is fixed to be 0.3. It is clear
from Figure 7 that for all the MCE settings, the best cost
was obtained by Skyline. It also shows that the proposed
method always achieves the best cloud composition with
the lowest cost.

5. 4. Comparisons of Run-time Given the time
required to find the optimal cloud compaosition, the run

times in Figure 8 show that Skyline is better than FCA
for the three MCE experiments. That is, by changing the
density, the proposed algorithm is faster in terms of
computational time. This is explained by the dual
progressive algorithm, Heap memory and parent table in
Skyline algorithm. Also, using a bottom-up algorithm
and the linear composition strategy, we can find the
optimal combination in the lattice, without needing to run
through the whole multi-cloud lattice.

1

:g | | |
05
03
FA A Y Y
A A A S

3

time

i

&

2 P

)

A ~

S
& & &
5 3 $ &
& T & & & F EE L\s-‘k’

number of cloud
mnumber of cloud in compostion W cost of composition

Figure 6. Estimating the cost and number of clouds in
composition

100 B FCA ®SKYLINE
80
L 60
w
S
40
20
0

MCE1 MCE2 MCE3

Figure 7. Estimating the cost and number of clouds for FCA
and Skyline

100
20
u &0
; a0
20 .
FCA SKYLINE
mMCE1 mMCE2 mMCE3

Figure 8. Run time in FCA and Skyline

64 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

6. CONCLUSIONS

With the advent of virtual resource sharing, cloud
platforms have created a new paradigm that provides
more efficient and convenient services. As stated
previously, most of the service composition methods in
cloud environments assume that the involved services
come from one cloud. This study investigated the use of
the Skyline service algorithm to compose services in
multi-cloud environments, which examines all the clouds
during the service compilation process. Since this
algorithm provides the creation of all the possible
combinations, the proposed method allows the selection
of the optimal composition of user-requested services in
a cloud-based environment. In the proposed method, the
criteria for choosing the best composition in a cloud
environment are fewer providers and a shorter
communication time between the providers. Hence, the
best composition in a cloud environment is the one that
includes these criteria. Overall, the following results have
been obtained:

1. The use of the Skyline algorithm makes it possible
to review all the possible composition of services offered
by providers in a cloud-based environment.

2. The proposed Skyline algorithm always finds the
optimal cloud compositions.

3. The proposed algorithm improves the accuracy of
the optimal composition and reduces the time of
computation.

Also, this study focuses on the sequential structure of
a service composition. This is why the total cost of
communication between the clouds is calculated based
on the order of the services executed as the sum of the
communication costs of the provider’s composition and
the cloud. The sequential structure is one of the four main
structures of a service composition in the YAWL model
[4], and it is a topic of interest for future studies on other
structures.

7. REFERENCES

1. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., &
Weerawarana, S., “Unraveling the Web Services Web: an
Introduction to SOAP, WSDL, and UDDI”, IEEE Internet
Computing, Vol. 6, No. 2, (2002), 86-93. DOI:
10.1109/4236.991449

2. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D.,
“Interacting with the SOA-based Internet of Things: Discovery,
Query, Selection, and on-demand Provisioning of Web Services”,
IEEE Transactions on Services Computing, Vol. 3, No. 3,
(2010), 223-235. DOI: 10.1109/TSC.2010.3

3. Du,Y., Hu, H, Song, W., Ding, J., & Lii, J., “Efficient Computing
Composite Service Skyline with QoS Correlations”, In 2015 IEEE
International Conference on Services Computing, (2015), 41-48.
DOI: 10.1109/SCC.2015.16

4. Gabrel, V., Manouvrier, M., & Murat, C., “Web Services
Composition: Complexity and Models”, Discrete Applied

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Mathematics, Vol. 196, 100-114. DOLl:

10.1016/j.dam.2014.10.020

Cui, L., Kumara, S., & Lee, D., “Scenario Analysis of Web
Service Composition based on Multi- Criteria Mathematical Goal
Programming”, Service Science, Vol. 3, No. 4, (2011), 280-303.
DOI: 10.1287/serv.3.4.280

Bypour, H., Farhadi, M., & Mortazavi, R., “An Efficient Secret
Sharing-based Storage System for Cloud-based Internet of
Things”, International Journal of Engineering, Vol. 32, No. 8,
(2019), 1117-1125. DOI: 10.5829/ije.2019.32.08b.07

Jeyanthi, N., Shabeeb, H., Durai, M. S., & Thandeeswaran, R.,
“Reputation based Service for Cloud User Environment”,
International Journal of Engineering, Transactions B:
Applications, Vol. 27, No. 8, (2014), 1179-1184. DOI:
10.5829/idosi.ije.2014.27.08b.03

Jula, A., Sundararajan, E., & Othman, Z., “Cloud Computing
Service Composition: A Systematic Literature Review”, Expert
Systems with Applications, Vol. 41, No. 8, (2014), 3809-3824.
DOI: 10.1016/j.eswa.2013.12.017

Microsoft Communication & Media Industries, "Multi-Cloud
Service Delivery end-to-end Management,” Ref.architecture,
2013. https://cloudblogs.microsoft.c om/industry-
blog/industry/uncategorized/multi-cloud- service-delivery-and-
end-to-end-management-reference- architecture/

Venkat, M., 2016. Enterprise cloud strategy: Governance IBM.
https://www.ibm.com/blogs/cloud-
computing/2016/11/03/enterprise-governance-multi-cloud/

Yu, Q. & Bouguettaya, A., “Efficient Service Skyline
Computation for Composite Service Selection”, IEEE
Transactions on Knowledge and Data Engineering, Vol. 5, No.
4, (2013), 776-789. DOI: 10.1109/TKDE.2011.268

Belkasmi, D., Hadjali, A., & Azzoune, H., “On Fuzzy Approaches
for Enlarging Skyline Query Results”, Applied Soft
Computing, Vol. 74, (2019), 51-65. DOl:
10.1016/j.as0c.2018.10.013

Elmi, S., & Min, J. K., “Spatial Skyline Queries over Incomplete
Data for Smart Cities”, Journal of Systems Architecture, Vol.
90, (2018), 1-14. DOI: 10.1016/j.sysarc.2018.08.005

Lim, J., Li, H., Bok, K., & Yoo, J., “A Continuous Reverse
Skyline Query Processing Method in Moving Objects
Environments”, Data & Knowledge Engineering, Vol. 104,
(2016), 45-58. DOI: 10.1016/j.datak.2015.05.003

Yang, Z., Li, K., Zhou, X., Mei, J., & Gao, Y., “Top k
Probabilistic ~ Skyline Queries on Uncertain Data”,
Neurocomputing, Vol. 317, (2018), 1-14. DOL:
10.1016/j.neucom.2018.03.052

Zou, G., Chen, Y., Yang, Y., Huang, R., & Xu,Y., “Al Planning
and Combinatorial Optimization for Web Service Composition in
Cloud Computing”, In Proccedding of the International
Conference on Cloud Computing and Virtualization, (2010), 1-8.
DOI: 10.5176/978-981-08-5837-7_166

Gutierrez-Garcia, J. O., & Sim, K. M., “Agent-based Cloud
Service Composition”, Applied Intelligence, Vol. 38, No. 3,
(2013), 436-464. DOI: 10.1007/s10489-012-0380-x

Jatoth, C., Gangadharan, G.R., & Buyya, R., “Optimal Fitness
Aware Cloud Service Composition using an Adaptive Genotypes
Evolution based Genetic Algorithm”, Future Generation
Computer Systems, Vol. 94, (2019), 185-198. DOI:
10.1016/j.future.2018.11.022

Jatoth, C., Gangadharan, G. R., & Fiore, U., “Optimal Fitness
Aware Cloud Service Composition using Modified Invasive
Weed Optimization”, Swarm and Evolutionary Computation,
Vol. 44, (2019), 1073-1091. DOI:
10.1016/j.swevo.2018.11.001

(2015),

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2F4236.991449?_sg%5B0%5D=JiLnMJHCtEkqGZAc1WLlnVUgG3XczHK3QX98kv8SCkDeX6Nd-FlnD0rhbFWut7j5FYdby74rJX-w4F5gEyiAkrLnKg.aaZOGWcyqctGEtrklJKsuMyvqNaaGMPMN1D7l2TgOGuib6x0-f3rMeM2b0ZGlES5cm0UMgEaDkt8CcCdXHuUrw
https://doi.org/10.1109/TSC.2010.3
https://doi.org/10.1109/SCC.2015.16
https://doi.org/10.1016/j.dam.2014.10.020
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1287%2Fserv.3.4.280?_sg%5B0%5D=nBrvcknqpXywL8_8nxDpznb23QHU3ALFLPBqk82B1GIZ4BLSjRaCkVn6fO9AfSDdxCujx4qzfUVHhcBuZ4_UcS-jVA.8BJ399Dw495x9RLhSda2SXwlyfOZy9wQmPlWLcRJsDJld2Cv2zd0kqxvwBMuzjSiMthAea1m4S1oomfPWZmbAg
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5829%2Fije.2019.32.08b.07?_sg%5B0%5D=k8z6e5iM7jsvwwAgvfd6--cia-TWhrsGBhRjPAxFz5xm-tOeeqMr4hN3vilqaxivhVQPt1m4H-5RnNuRuOE7VKKCJA.PjqPh3K7jHteAGeovkNvmnLDJ-qJLFF_hJiour57t0SMxR4EXPJO4VUUm_tmF1Bv82qus1DsCi4NKVctvrvBEw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5829%2Fidosi.ije.2014.27.08b.03?_sg%5B0%5D=vm8nDkG-X7Cx7K_ZvLb_PZs3l6EP7YuEG7fFTRs4sstmHY_P3xK_Q0ywQNrsHcCOPyErxW1TB_dUysptJ2msuKwfnw.7XBeDZVOg9K79ufd2PZbWC84WWvjnaW1ncM5yJg8mpPOhQ8PMZ4Ntgsk8OtbNzy2npe331SzSCVL0NBDZJvTjQ
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.eswa.2013.12.017?_sg%5B0%5D=yemd6sq_i3vvUShk0XY1EpH0zTBf5g_pt5fXC1E2dK8ZX_t_aZOwJgHmCvrAZjm-FSAIiruNIwLdoLc7R6vOSDdBcw.zlhsdy1se9DQmo9DTjwyi2yShej5IpINys3vbhpS8Z6UWBf4-Wu-x1sIRASfiTEh8zf9__foVkmSY4PQJQKPwA
http://www.ibm.com/blogs/cloud-com
http://www.ibm.com/blogs/cloud-com
http://www.ibm.com/blogs/cloud-com
https://doi.org/10.1109/TKDE.2011.268
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.asoc.2018.10.013?_sg%5B0%5D=M9OlJ2ihd11b3dXQLg7t0WbXjw_-OhQnu25XXjUsMiymKiSsEIN9JXdkc4LpaT8LRSsOJFFPuRjSG-d40epmePKEpA.DbP3isf-TIVlriJdfL3MaXHRb65c7aiMu-1kXX3YORMJJzK9UpYKmimqtbOUjlChQMeJQbthIgK0NzZlJXGUgw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.sysarc.2018.08.005?_sg%5B0%5D=60cLfkCiw9y4IpHmj1zOZHcEbwkJF2yQNVmcNbjgYlvfnlcCpXhHYBVk0j9MSqbRXT83Getmi96TmkjQiq1oeI58vA.O6EoJ6qh9SaRZaLcDbZVVkrUzR_Ppc4i-tPFiCY_E9XRl9F6JWGMWXL0azOhgfFv0NnhBUUR3khLQbMEVFPc0w
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.datak.2015.05.003?_sg%5B0%5D=1NFaUOIfNf0fGS-kW5SGH5QO7QpLbn8dsMBagHXBD1ZhLvp6dkZEzwMzxRjKrsjv0GmqwebreKGSmzFo5YLOgjbyHw.5E-t58eNTLgJIoJXeelUOtHeZQITkc6gXaTQYEExkrTQgX3Orh5eFMWvErwSk2C-83RvehWlJoW_qbMZoSS-tA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.neucom.2018.03.052?_sg%5B0%5D=PNBXpQw_ZpMrhTrxdqVfTXEHXW3rGrGhMXacTNRniqRDDcKeluJLGLyJHEvHyy0TWogxtdqs37g8638nYKDfjNC-ww.i51hQ2FCOGX24EkVQVWj6Q1ruh53jTWW49HEmplgZ1bOmbEN5ahaDfHSpuNnk3avCNqdUlx1_wmXEKHmRxMQyw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5176%2F978-981-08-5837-7_166?_sg%5B0%5D=KxgKEko6i6FT0lrcdieJI3qhlc7BmpaURuE3bXGro79K1hclsvO31dHpZ3RhyXC_4CAinYKJKPw8VeiCo-heIyvCnw.vqGIQg5vAh9Okapqj4IJopVrHiUSNRJLB1EoCgPpTt-FIauXHSdjbn_jKrF7SC6m8t_iE2eRI0A_trQMReMt7g
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10489-012-0380-x?_sg%5B0%5D=zkCwy5ZWVV_8oVatYRUEyawzQS2LMMSwnEpKLXg3MrjkxTCOe4zBbTEzZuO3NzOWbcVKviGtXIemkRSJE6Wr1SptSQ.JLnIGvhgJFSanlIb7ivTm4JfOZZ_oLHKfl6iytp-DlI5Fk_yC2dhXyZgdYjeoAcLL2-KK_UzfT_wtPSjcRyfCg
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.future.2018.11.022?_sg%5B0%5D=n_6EZhJSZ09yjkMrtZlrvNV6gIymEIxNxnYfQT_rxLI9oQmyWpQagLQ_MvaZJIgaRRS-TxHV02DeeMKRRgnqg5oqBQ.G_CkhmUPGo2HUth9bo7c_m6y3hn5UOhGlYh-j5jC3VtOCrCxKhH4WALipdU8qUa6tCGMjmV4Evi6-aQIrdv-VA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.swevo.2018.11.001?_sg%5B0%5D=JZ5ZUdgV_Vh8IlWs-AfJQaVDbO032aiX51eLOdardGE9vXdXsesgG_lXjTA_OWIUMQ4SLWO59lJQVCbewhEjyQW2YA.8uII0iH59mBpcmVTQ0I5M_e_BfNu6IkXdCfbk9kjR7kc-AbY9bRIk4b3sLayaOTdmxjpnz5rYJze6FVbixXmQw

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 65

Gawvala, S. K., Jatoth, C., Gangadharan, G. R., & Buyya, R,
“QoS-Aware Cloud Service Composition using Eagle Strategy”,
Future Generation Computer Systems, Vol. 90, (2019), 273-
290. DOI: 10.1016/j.future.2018.07.062

Yu, Q., Chen, L., & Li, B., “Ant Colony Optimization Applied to
Web Service Compositions in Cloud Computing”, Computers &
Electrical Engineering, Vol. 41, (2015), 18-27. DOI:
10.1016/j.compeleceng.2014.12.004

Kurdi, H., Al-Anazi, A., Campbell, C., & Al Faries, A., “A
Combinatorial Optimization Algorithm for Multiple Cloud
Service Composition”, Computers & Electrical Engineering,
Vol. 42, (2015), 107-113. DOL:
10.1016/j.compeleceng.2014.11.002

Mezni, H., & Sellami, M., “Multi-Cloud Service Composition
using Formal Concept Analysis”, Journal of Systems and
Software, Vol. 134, (2017), 138-152. DOI:
10.1016/j.jss.2017.08.016

Mezni, H., & Abdeljaoued, T., “A Cloud Services
Recommendation System based on Fuzzy Formal Concept
Analysis”, Data & Knowledge Engineering, Vol. 116, (2018),
100-123. DOI: 10.1016/j.datak.2018.05.008

Wu, J., Chen, L., & Liang, T., “Selecting Dynamic Skyline
Services for QoS-based Service Composition”, Applied
Mathematics & Information Sciences, Vol. 8, No. 5, (2014),
2579. DOI: DOI: 10.1145/1772690.1772693

Zhang, F., Hwang, K., Khan, S., & Malluhi, Q., “Skyline
Discovery and Composition of Inter-Cloud Mashup Services”,
IEEE Transactions on Services Computing, Vol. 9, No. 1,
(2016), 72-83. DOI: 10.1109/TSC.2015.2449302

Zhang, J., Jiang, X., Ku, W. S., & Qin, X., “Efficient Parallel
Skyline Evaluation using Mapreduce”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 27, No. 7, (2016),
1996-2009. DOI: 10.1109/TPDS.2015.2472016

Liu, Y., Yang, R., & Zhang, S., “Service Selection Method based
on Skyline in Cloud Environment”, International Journal of

29.

30.

31.

32.

33.

34.

35.

36.

Performability Engineering, Vol. 13, No. 7, (2017). DOI:
10.23940/ijpe.17.07.p5.10391047

Moradi, M., & Emadi, S., “Reducing the Calculations of Quality-
Aware Web Services Composition Based on Parallel Skyline
Service”, International Journal of Advanced Computer Science
and Applications, Vol. 7, No. 7, (2016). DOI:
10.14569/1JACSA.2016.070744

Borzsony, S., Kossmann, D., & Stocker, K., “The skyline
Operator”, In Proceedings 17th IEEE International Conference on
Data Engineering, (2001), 421- 430. DOl:
10.1109/ICDE.2001.914855

Papadias, D., Tao, Y., Fu, G., & Seeger, B., “Progressive skyline
Computation in Database Systems”, ACM Transactions on
Database Systems, Vol. 30, No. 1, (2005), 41-82. DOI:
10.1145/1061318.1061320

Wang, Y., Song, Y., & Liang, M., “A Skyline-based Efficient
Web Service Selection Method Supporting Frequent Requests”,
In 2016 IEEE 20th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), (2016), 328-
333.DOI: 10.1109/CSCWD.2016.7566009

Fariss, M., Asaidi, H., & Bellouki, M., “Comparative Study of
Skyline Algorithms for Selecting Web Services based on QoS”,
Procedia Computer Science 127, (2018), 408-415.
DOI: 10.1016/j.procs.2018.01.138

Alrifai, M., Skoutas, D., & Risse, T., “Selecting Skyline Services
for QoS-based Web Service Composition”, In Proceedings of the
19th International Conference on World Wide Web, (2010), 11-
20. DOI: 10.1145/1772690.1772693

Benouaret, K., Benslimane, D., & Hadjali, A., “Ws-Sky: An
Efficient and Flexible Framework for QoS-aware Web Service
Selection”, In IEEE Ninth International Conference on Services
Computing, (2012), 146-153. DOI: 10.1109/SCC.2012.83

Fekih, H., Mtibaa, S., & Bouamama, S., “Local-Consistency
Web Services Composition Approach based on Harmony
Search”, Procedia Computer Science 112, (2017), 1102-1111.
DOI: 10.1016/j.procs.2017.08.135

Persian Abstract

RS

et

03l oy Ysmne oy S 3 ot 48 0T 51 il 0k Jamn (il 53 i Ol 2 il il i) S01,) o sn (6 1 (Sladammn 1 (55 e e e
Lo 53 s S 5 Sl ey ol ($5555 AL 0Ll Gl Lol 530 oS Ly s cnl S5 4 3 e S (Sodkamn 5L (S5l 5
Sl K3 Gl ol Sas 15 Sl Bl b 38055 ool 45 dien ol G35 S5 03 eSS 1 Gla e S S S5 Gl L b
5 OBl sl JEals b Jlo slaay s il Sos 51, 8l S8 sl tix gladase 53 0l w55 Glams i S5 53 s S (6 Sl

Sy %‘)))Qﬂl)}%}ﬂdgmrﬁl}ﬂ.}aﬁ.LlL!J:Jla.d.ll8)LS‘J.!.QM»\L&ﬂ\}QKMJM‘b‘w@&u)‘éﬁﬁﬁgjéﬁjénwdﬁéuﬂ\

on s S 5 Ml p sl s B S e eslinad (gl A gladases 53 W e S S &' » Skyline Service PESSPN S 2 S IRV A

p-:-:))f-” .sﬁfdajl'z]): Ll s edasalyl slaas g S O gman gla il &S S &1 I8 (Gl eslinal LB oS 5 G G NS o o3lein Sy, XS
5 OBS oal 3 slass o S s b 0SS sl s plas Ole 31l S U3 s iS5 O e ol Al e 3 35 e ealizal - e 5 s SKyline Service

A3l e ol el 58 e aslind (5) dor o 53 See DUS 5 ple3 bl (sl SKYIINE SEIVICe o, Sl e ss o o 53 350 oo Sl bl Obej

S 5 dapn (p S s ol sl Bl b (oS 5 NI e s3letn SRy 4 s (o DL bt o pd e Jlesl ado e ol 3 el ST (B Ol 5 a8
LS e sl gt Lo G) Szl g5 53 (lgaa s e 5l conlie S 5 G SKYlINE Service 8 S olg e colg ss S g | Sl oles

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.future.2018.07.062?_sg%5B0%5D=WBIkVswaEBEK5-7XcchYGJjO5C6IYaKiUwSQqb9kD5jqQ5V2LUlvpawQmiicQPAgAHKgQuFjT0f_RmZqx9-zlI2FLw.QBs-cqdYWUcNYWY42_22gzej1VoC26E4r7CUF0HMeUazvapsmu3LfMj0gu8GAFC_20aO9E40iDpzfqy_p5_LOA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.compeleceng.2014.12.004?_sg%5B0%5D=C3IFvmh6NNgaqOUHu-vBRZ-OaNu8Og89aVh3t9k4Lb4c2wtfXrmkftpI5Smm1hVM5moZ4MoDoi2x1O26SuFHWUYoMw.w0D2SaZIloWAFxbm-H0KOvxf3twsApNP7sP-e7Ke9aDiCORn0hEHyI1fsmAJ_mR_PtUSXe3UOu8vWg1WmUg6_A
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.compeleceng.2014.11.002?_sg%5B0%5D=7ZJsNIMWg1g5pNAd1SoTv8XWyUFprjRzvJ5Xhnt5usv72QgMhCCfEljRTRNMxmove95KGsTYmae06zFEtStK3g7D8Q.bWeGHbDmHWud_GsdiwF08fLIjkEiOKNKHK4o5x1HkeZVvzyk6fUHJlbAZEKmm0oHOdVtV7m7-ZhWVh6wWFobfA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jss.2017.08.016?_sg%5B0%5D=NMFA8PjUwymudzbpXpWUN67ExuETC4ztGxl1FTJRpTNSCdP08AzqZGrpTX_Bz-6wcyhEuarB4DV8HxrFOdw862axyQ.M1ZDxttEtsSBQRquSoy-vZycHEQQ_L33VFQ0af1q9o7EkerG5QEuDEkCkD9s_7mUrY3AC0JQ1-cuD3HUjJZ6FQ
https://doi.org/10.1016/j.datak.2018.05.008
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F1772690.1772693?_sg%5B0%5D=THtmnNMXGqhD4VmZsqF_67oPu_U50RDcXLjwN7Hx0NluEpmaI0Eies4tv5TkyGTXIwNZYocqp-Cay1js_CM9XGQN2g.zuHlJwUdUHp9uXq4r3AzUxI9qpOLbRHdzqY5OM5bXmouDKFvr9UL9ji3puZAakzbjHU8N-aYGh1PKkPoV5ER8Q
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FTSC.2015.2449302?_sg%5B0%5D=ZVWhlos-Cz4jA6sCIsvcd1PQHRkZiDYFqi3xmaNyBnZuDuVwnnL4WfOeOfX7JPkRj9m1TYw_pz9c-aV_SVdmB-KCVw.cJpKOGxlHQE7Esg-euwPighHZO5_wWiSJS3EsOa9SyfHqpqOf-MDquJP6FpiUG7Pn0xeTt6d06-RqeTmI_F7bA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FTPDS.2015.2472016?_sg%5B0%5D=SKIpEZr1utea3z-KKRruNldxGNmsk3xPvhSatbMOLSBDFMuYJ3h_zBbwDoeZHsLglydvVveZWLgHHKMKg6Ze4gWq1Q.vwrKhEBBATe6eeSSwCPUihYfA7-MzBRCE_G0npoU4UBu8WXeoI3IulWoMBcgTyQYNIEywijJHHphEvb5skzP1g
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.23940%2Fijpe.17.07.p5.10391047?_sg%5B0%5D=9IuiNNIumCy00M9x-s_kerSl8zp7dHbvJUqZZPIOXnUTIOZimwd5Osadk2h5cvFSGMFk49e5vC0uMfo9r1jp0xM0sA.8CPYaseA3uYPmnfQIal5OLSEMkmgfjbwsPVt8FxxDuWOFjnCzomV8Yf-Qz6rUCh0ihyBcTkwTf6QQ6iCUEdsdw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.14569%2FIJACSA.2016.070744?_sg%5B0%5D=i_EkppuJnrCbYb2OzHl6q9EkYVE0SFNn_jD8EYcF23uVV1ikVcJ_RscZKFkp0yKtQeViq6QtjgYGwesXClOJ7z1hww.SjpmraHj6tXkdOC986E-7gsb5V78nJvZZuiN62uKb1C_chvUqeRjd60LHNNoD7CrqrCxzv-dfyGzFuTzwwe4uw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FICDE.2001.914855?_sg%5B0%5D=g4ULY_oPfAmJ0F6PpPkrFQmO19RKkjK959UZgKjsOFWrLx0wfbxHkHzRrcQ_oiLNdrttErUqM37n4ZcxgoCehns_lg.ewYEiFomqfW0A-2ZgR673sf66eaa2-X526sDcXXv8othQQD4P9M9sIubbw5s1co9mTO3ozMcLUK8Am28Y20hTQ
https://doi.org/10.1145/1061318.1061320
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FCSCWD.2016.7566009?_sg%5B0%5D=P5DI2c6N-PurILI1sCe7WZjk8xyS-7fC-xlOUcmkKuQMJZoSPoZCAufWH6q88Gc6O5QkD6UrgneO1HNS2ZtTLVPclA.eUjyrpvZN0NAk_IN6rZ5cR3GocJxGN5ABy_RtL_b8jjT5crYLEqFrGje98VWGmYFsvAUW1McPwAZL6tMxU1NiQ
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.procs.2018.01.138?_sg%5B0%5D=83-iN501gb-YssFEuCzbDbC0F588EGjN2ONW-y8c3uWbCWNdUlexun5Tq8OCV3_ynMDtWe-CQCOBE4oMBDTM3o5crw.S709pK5EgbsgOWRCZRdQmaa3LSDjSTNvXIKW1KkoOMDUiMLY66ESg1s6MKj_ZzfSSmjtHpTk5VUPhk5mZdjeOg
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F1772690.1772693?_sg%5B0%5D=N42xVi4nD6yRAHBnyd2f7JMPktWV02ooOEy_VJZ7HJrgltPYVc0D95PmDNPgpSvTllZuo2wSrP66mH3S_KgbR4vZ6A.Gv0HV3hPX4sIkQAqdzcCC3Vd_fALRM8W4gZweSamerII8D0afS0yzT3l2Hrjp7oZwkB4q5N7ew-2MgoJ1hrmBA
https://doi.org/10.1109/SCC.2012.83
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.procs.2017.08.135?_sg%5B0%5D=66JGTpqsVlM2cz9B_H8FRhVflaWBij68gdDSxLsFZHVJvYI7fSU6FZXDuKHY-JL4fJuFGIFocWqjztGiWi94WvhKlg.EDUrGhh6gEaVza1FI2_BaFP3OH0QA0xMg5SQsVoMQJQpAIvv7UWtSpOuR65seaaWKBaNGp4-2tD_2EJljJV6nw

