
IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

Please cite this article as: M. Heidari, S. Emadi, Services Composition in Multi-cloud Environments using the Skyline Service Algorithm ,
International Journal of Engineering, Transactions A: Basics Vol. 34, No. 01, (2021) 56-65

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Services Composition in Multi-cloud Environments using the Skyline Service

Algorithm

M. Heidari, S. Emadi*

Department of Computer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

P A P E R I N F O

Paper history:
Received 08 June 2019
Received in revised form 22 September 2020
Accepted 20 November 2020

Keywords:
Skyline Service
Dominant Relationship
Web Service
Service Composition
Multi-cloud Environments

A B S T R A C T

The rapid growth of cloud environments has led to the expansion of resources that offer a variety of

services. The opertions of the services are usually very simple and may not satisfy the complex needs
of the user, hence there is a need for a combination of these services that can fulfill the user's

requirements. Most of the service composition methods in cloud environments assume that the involved

services came from one cloud, and this is unrealistic because other clouds may provide more relevant
services. The challenges in composition services distributed in multi-cloud environments include

increased cost and a reduction in its speed due to the increasing number of services, providers, and

clouds; so, in order to overcome these challenges, the number of providers and participating clouds must
be reduced. This study used the Skyline service algorithm to compose services in multi-cloud

environments, which examined all the clouds during the service composition process. The proposed

method can provide an applicable composition service to the user with the lowest communication cost
by considering the number of clouds and by using fewer providers. The Skyline algorithm involves two

steps. In the first one, the best composition in a cloud environment is selected among all the possible

providers by considering the number of providers and the communication time. In the second step, the
Skyline algorithm is used to create all the possible compositions in a multi-cloud environment.

Parameters such as fewer clouds and shorter communication times between the clouds are selected. The

results show that the proposed method can find the composition with the least number of clouds, the
lowest cost, and has the lowest calculation time. It can be said that the Skyline makes it possible to select

a suitable composition of user-requested services in a multi-cloud environment.

doi: 10.5829/ije.2021.34.01a.07

1. INTRODUCTION1

Web service is a modular and self-described application

that is published based on a set of standards such as

SOAP, WSDL, and UDDI [1-2]. When a web service is

limited to simple features, a set of separated web services

must be combined to create a value-added one [3-4].

Service composition problems can be resolved by

selecting a set of web services in such a way that their

combination meets the functional and non-functional

requirements of the user [5]. With the advent and rapid

development of cloud computing, more clouds can carry

out the existing tasks in the cloud with different

functions, and this cloud environment is a natural choice

*Corresponding Author Institutional Email: emadi@iauyazd.ac.ir (S.

Emadi)

for providing various types of resources as a service. To

meet the user’s needs, cloud-based systems [6-7] are

usually designed by calling up several providers. The

service composition in cloud environments allows for the

integration of various cloud resources into a set of

integrated services for providing cloud-based solutions

that meet certain qualitative criteria [8]. Most of the

service composition methods that have been proposed for

cloud computing consider all the composite services in

one cloud, rather than searching services from the various

available clouds [9]. Organizations often distribute their

services using cloud providers to ensure the availability

and quality of the provided services, and also to reduce

the risk of data loss [10]. In addition, service composition

mailto:emadi@iauyazd.ac.ir

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 57

in multi-cloud environments poses many issues such as

the cost of communications within the cloud, increased

fiscal costs, and security issues. Hence, challenging tasks

include reducing the number of participating clouds and

the number of providers due to the limitations of the

services. Therefore, the current study seeks to find the

best possible service composition in cloud environments

using the Skyline service algorithm, which uses both a

smaller number of providers and clouds to reduce

financial costs.

The Skyline algorithm is based on the concept of

Pareto dominance [11]. It has been used to solve research

problems such as web service selection, query processing

over uncertain data [12-14], effective processing of

advanced queries [15], and indexing of time series data.

The use of the Skyline algorithm in the proposed method

creates all the possible compositions of the providers in a

multi-cloud environment. The best composition in a

cloud environment is selected by considering the number

of providers and the communication time. Parameters

such as fewer clouds and a shorter computation time

between the clouds are also considered in selecting the

most suitable cloud composition.

The innovation of this paper includes modeling the

multi-cloud environment using the Skyline in two steps.

First, the providers and services were modeled based on

user requests. Secondly, the clouds are modeled based on

the providers and services selected in the previous step.

Then, we introduce the algorithms for the extraction of

the candidate services, providers, and clouds based on the

Skyline rules.

The rest of this paper is organized as follows. In

Section 2, the works related to service composition will

be discussed using the Skyline service. In Section 3, the

algorithm and the concepts of the Skyline service are

expressed. Then the proposed method is outlined is

Section 4. Section 5 presents the results and evaluation,

and the last section is devoted to conclusion and

suggestions.

2. RELATED WORKS

Most of the existing approaches to service composition

in cloud environments consider all the services in the

composition from a single cloud. However, certain

algorithms have also been proposed to address this issue.

In Section 2.1, other methods will be examined, and in

Section 2.2, service composition using the Skyline

algorithm will be discussed.

2. 1. Methods Provided Using Multi-cloud
Algorithms Zou et al. used a tree structure to

model a multi-cloud environment (MCB). Then, with the

MCB tree search, the minimum request set was created.

Accordingly, they proposed three algorithms for

selecting the optimal cloud composition. In the first

algorithm, they considered all clouds as inputs and

evaluated all the possible solutions. This method

determined the sequence of the service composition at the

time of execution, but with the use of a large number of

clouds. The second algorithm recursively defined a

service composition in all the cloud compositions. The

last algorithm provided an optimal cloud computing

approach using an approximate method. However, it was

time-consuming and may not be a good cloud computing

approach because it used the composition of clouds that

utilize service spaces and could impose on some

compositions [16]. Gutierrez-Garcia et al. proposed an

agent-based multi-cloud service composition approach

by using a semi-recursive conventional protocol;

however, it has the limitations of agent-based distribution

[17]. Jatoth et al. proposed a quality of service (QoS)

cloud service composition based on both the modified

invasive weed optimization algorithm and an Adaptive

Genotype Evolution based Genetic Algorithm (AGEGA)

[18-19]. Gavala et al. proposed a QoS aware cloud

service composition based on an Eagle Strategy with

Whale Optimization Algorithm (ESWOA). However, in

these three approaches, they considered multiple QoS

parameters for service composition in only one cloud

[20]. Yu et al. presented a Greedy-WSC algorithm and an

ant colony optimization based algorithm, namely ACO-

WSC, to select the service composition in cloud

environments with a minimal number of clouds. The

Greedy-WSC algorithm selects clouds that offer more

services, and the ACO-WSC algorithm is used to

combine selected clouds. Their results showed that the

ant colony optimization method could efficiently find

effective cloud composition with the minimum number

of clouds. The disadvantage of this model was its lack of

considering semantic information in the composition of

web services, especially in a dynamic and distributed

environment [21]. Kurdy et al. suggested a composite

optimization (COM2) algorithm for cloud services that

ensures the selection of clouds with the maximum

number of services, which increases the likelihood of

completing a service request at a minimum cost. The

results of their experiments showed that COM2 was

successfully able to compete with previous algorithms in

the field of service composition, but it did not consider

the interconnecting costs of the clouds [22]. Mezni et al.

used formal concept analysis (FCA) and fuzzy formal

concept analysis (FFCA) for service composition in a

cloud-based environment. The FCA is based on the

concept of a network, a powerful tool for classifying

cloud information and services. Initially, a cloud

computing model was created as a set of formal concepts;

then, it extracted and combined the candidate clouds

from the formal concepts. Finally, the optimal cloud

composition was selected, and the multi-cloud service

composition (MCSC) became a classical service

58 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

composition problem. In addition to considering the

number of clouds in the composition, it also takes into

account the cost between the clouds. The tests showed

the effectiveness and ability of the FCA-based method to

find and group cloud compositions with a minimum

number of clouds, the lowest communication cost, and

the lowest time to service selection in the nearest cloud

or in the same cloud [23-24].

2. 2. Methods Provided Using the Skyline
Algorithm Yu and Bouguettaya suggested an

algorithm that used the dominant relationship between

service providers to find a set of the best possible service

composition for Skyline services [11]. Instead of

examining all the possible composition of services, this

algorithm significantly reduces the search space and

proposes a low-up computing framework that enables the

Skyline algorithm to scale well with a number of

services. In their research, three algorithms, namely

OPA, DPA and BUA, were developed to select a set of

the best possible composition services. The DPA used a

parent table and a broad network to achieve enhancement

and route ability. The BUA used a powerful low-up

computing framework with a linear composite strategy,

which improved the performance and the scalability.

Wu et al. provided an algorithm for the composition

of services based on service quality. In this way, when a

new service comes, the previous service is deleted, and

the quality of service is changed. This algorithm reduces

the number of selected services through Skyline and

chooses the best service using the service quality [25].

In another study, Zhang et al. used the Skyline

guaranteed query processing method to build mashup

cloud applications and employed similarity tests to

achieve an optimal Skyline. Cloud mashup is a

composition of several services with a shared data set and

integrated functions. This method was used to optimize

the composition of web services in large-scale cloud-

based mashup applications from the Map-Reduce. Since

the choice of Skyline service and hybrid processes were

very timely, especially when the data space of the

services was very large, a block-based blocking was

proposed to shorten the process. After testing 100,000

real websites worldwide in 10 dimensions, it was found

that the Map-Reduce based block-removal method was

3.25 times faster than the angular segmentation

algorithm, and 1.4 times faster than the network method

[26-27].

Liu et al. proposed a dynamic Skyline service

selection tool to reduce redundancy. In this method, the

process of choosing a service was divided into two

stages: the service selection stage and the implementation

phase of the selected services. The selection stage used

the offline method to calculate the Skyline, and was

responsible for updating the Skyline service. Therefore,

the offline process never affected the performance of the

phases of the service selection. The implementation

phase was responsible for selecting the optimal

composition of the services, which matched the QoS user

limitations. The results showed that this method selected

the most appropriate services [28].

Moradi and Emadi presented an algorithm for service

composition using the Skyline service in parallel. In this

way, the choice of services was based on the quality of

service; the use of parallelization techniques had a

significant impact on reducing the response time and

increasing the speed of the composition of services, as

well as reducing the computations [29].

However, most traditional service composition

methods regard service composition in a single cloud and

consider a balance between the QoS parameters. In this

paper, we present an algorithm based on Skyline service,

which focuses on reducing the number of clouds and

providers.

3. THE SKYLINE SERVICE ALGORITHM

The existing approaches in multi-cloud service

composition only reduce the number of clouds. This

research, like [23], considers modeling the relationship

between the providers and the clouds in the selection of

optimal clouds, as well as the composition of services by

the Skyline service algorithm. The Skyline service

algorithm has been used to extract the optimal

composition of the providers and clouds. Also, combined

services can have sequential, parallel, loop, or

conditional structures. In this research, only the

sequential structure for combining services and their

implementation is considered.

Definition 1: A multi-cloud environment is a set in

which C= {C1,C2,...,CN} where Ci is a cloud and

P={P1,P2,…,PN} where Pi is a provider that is hosted by

the clouds. A provider also offers a set of services. Every

provider may belong to more than one cloud, and every

service also may belong to more than one provider.

The multi-cloud service composition problem is

given a set of clouds that hosts the services offered by a

number of providers. The Skyline service algorithm is

designed to select the minimal sub-set of clouds and

providers, while reducing the cost of communication

between the providers and clouds.

Skyline was originally introduced in the database

domain [30]. Given a set of S points in a D-dimensional

space, the points in the Skyline are not dominated by any

other place in the search space [31].

Definition 2 (Dominance Service and Skyline

service): In service composition, dominance services are

better in all parameters of service quality compared to

other services. For example, SA= {S1, S2, S5} is a set of

services that provides task A with QoS= {3, 4, 2}in time

and SB= {S2, S4} that provides task B with QoS= {4, 5}

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 59

in time. The Skyline service for SA= S5 and for SB=S2

are not dominated by other services, and it is the best

candidate service [28, 32- 33].

The Skyline was introduced for the first time to create

a web service and to evaluate its effectiveness [30]. In the

service composition, the dominant service is the services

that are better than others in all aspects of service quality.

To this end, some researchers have proposed different

methods for determining the dominant relationship to

determine the Skyline service [34-35].

Therefore, if a service is part of Skyline, it is expected

to offer better parameters than other services [36]. In the

above example for SA and SB, the composition of

Skyline services is {S5, S2}, in which a set of services

are dominated by none of the services in the other

composition [11] as {S1, S2}, {S1, S4}, {S2, S2}, {S2, S4},

{S5, S2}, and {S5, S4}.

One of the algorithms offered by the Skyline service,

which is used in this investigation, is a dual progressive

algorithm [11] for making composition possible. The

root, that is, the parent node, is constructed first, and then

the next nodes are constructed. The rule to create each

node is that the selected services available in composition

are different only in one service with its child nodes. For

example, the root node in Figure 1 is a1, b1, c1, and its

child nodes include (a1, b2, c1), (a1, b1, c2), and (a2, b1, c1).

The lattice expansion determines only the sequence of

counts between the nodes, and proves that each node is

considered after its ancestors, but for nodes that do not

have parent-child relationships, an appropriate order

must be guaranteed. Since it may have a score of (a1, b2,

c1) less than (a1, b1, c3), it should be counted in advance.

In order to achieve the progressive counting of the base,

the lattice expansion (T) with a heap (H) is used. The

lattice expansion ensures that the parent node is counted

before the child node. On the other hand, the heap

determines the counting of the nodes that do not have a

parent-child relationship. The commencement of the

manufacturing process starts from the first level. At each

step of the count, the lattice expansion is extracted from

the heap with the lowest cost and is compared with the

existing Skyline. Ultimately, the considered composition

is placed in Skyline if it is not lost or eliminated. The

progressive algorithm of a node can be generated several

times from generating other parent nodes, which creates

a replication problem. As shown in Figure 1, the top

number of each node shows its parent number. For

example, the node (a3, b2, c2) is placed three times in the

heap because it has three parents, and each time they

develop (a3, b2, c2), they are generated and placed in H.

The multiplication of the node has many computational

problems since many nodes are processed several times.

The same node can be located in Skyline more than once,

which causes a false Skyline [9].

The parent table [11] provides a suitable solution for

solving a node problem with the least computation.

Instead of considering all the ancestors, the parent table

only stores information about the number of parents for a

given node. The basic rule is that a node can be put in a

heap only when all its parents are already processed. The

parent table stores the number of parents in each node.

Each time the node is compared to another node, the

number of parents is reduced by one unit, and the table is

updated with new values; eventually, every node in its

value reaches zero in the heap. This operation ensures

that all the nodes of the child are placed in the heap before

the parent nodes [11].

In the next step, the best service in the lattice should

be selected taking into account the dominant relationship.

Then, the Button-Up Algorithm [11] strategy is to use

linear compositions while doing comparisons to select

the best composition. A linear composition is to compare

the results of the two nodes with the next node, and

achieving the best possible composition [11, 29]. Button-

Up Algorithm carries out optimization and QoS

calculations with positive traits inherited from dual

progressive algorithm.

4. DETECTING A MULTI-CLOUD ENVIRONMENT
USING THE SKYLINE SERVICE ALGORITHM

In this research, the Magnetic Cluster Expansion (MCE)

is modeled as a set of lattice expansion, as shown in

Figure 2. Each cloud is described as a lattice expansion

created to group the providers based on the services they

provide, and another lattice expansion has been created

to express the relationships between the desirable

providers and their hosting clouds.

Since a provider may belong to more than one cloud,

so with respect to the given N clouds, the information

about the services and their providers is modeled in the

N lattice expansion, where each one represents the

environment of a cloud. First, a number of the preferred

composition of the providers are selected as equal to the

Figure 1. Lattice Expansion

60 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

Figure 2. The proposed method

number of the available clouds. After comparing and

choosing the most suitable composition, a multi-cloud

spreading lattice expansion is built, and the optimal

composition of the clouds is selected from this lattice

expansion.

An example of a multi-cloud environment is shown

in Table 1. Thirty services with various QoS functions

and capabilities are provided by five providers on three

clouds. For example, Cloud C1 hosts three providers,

which altogether provide 13 services. Some providers

may deploy their services in multiple clouds (e.g., P2, P5).

Based on the example above that shows a cloud

environment with three clouds, a lattice is expanded for

each cloud, and for a multi-cloud environment, a

distributed lattice is modeled. Table 2 describes the

relationships between the providers and their host clouds,

and Table 3 describes the relationships between the

providers and their services in Cloud 1.

This research seeks to find a composition of clouds

and providers that hosts the best service and to reduce the

TABLE 1. An example of multi-cloud environment

Clouds C1 C2 C3

Providers P1 P2 P3 P4 P5 P1 P5 P2

Services 5 4 4 2 3 5 4 3

TABLE 2. An example of relationships between the clouds and

providers in a multi-cloud environment

MCE C1 C2 C3 C4 C5

P1 0 0 1 0 1

P2 0 1 1 0 0

P3 0 0 1 1 0

P4 1 1 0 0 0

TABLE 3. An example of relationships between the providers

and their services in Cloud 1

Cloud1 P1 P2 P3 P4

S1 0 5 7 9

S2 5 0 4 6

S3 7 4 0 3

S4 9 6 3 0

cost of communication between the services that come

from different clouds. For this purpose, two algorithms

are proposed to select a multi-cloud composition that

uses the minimum number of providers and clouds. The

steps are briefly summarized below:

Step 1- Extracting the optimal composition of

providers: In this step, the best composition of providers

is extracted in each of the clouds. By comparing the

compositions obtained from all the clouds, the optimal

composition that meets the user’s request is selected and

then used as input to determine the optimal cloud

composition.

Step 2 - Extracting the optimal composition of the

cloud: At this point, the lattice expansion, which shows

the relationship between the providers and their host

clouds, is used to obtain the optimal composition of

clouds according to the providers selected in Step 1. The

random composition of the clouds, which hosts the

optimal composition of the providers, is selected as the

root of the lattice expansion; the lattice expansion is thus

complete and is selected based on the dominant

relationship of the optimal composition of the clouds.

The following sections give more details about each

of the above steps.

4. 1. Extracting the Optimal Composition of
Providers This step uses the Skyline service

algorithm to extract the optimal composition of providers

in each cloud. In selecting the optimal composition, none

of the existing approaches take into account the number

of providers and the cost of communication between the

providers. To determine the cost of communication

between two providers, each cloud environment uses the

information shown in Table 4. In this study, the matrix

values are simple, representing the time of

communication between two providers (in milliseconds).

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 61

TABLE 4. Matrix of communication cost between providers in

cloud1

 P1 P2 P3 P4

P1 0 5 7 9

P2 5 0 4 6

P3 7 4 0 3

P4 9 6 3 0

Figure 3. An example of lattice expansion of providers

This algorithm considers the user requested services

to determine the appropriate composition; Sr is

considered as an input to create a lattice expansion in

each cloud. For creating a lattice expansion in each cloud

(Algorithm 3), the root node is created based on a

possible composition of providers (line 4 in Algorithm

1), which satisfies the user’s requested services. For

example, if a user requests S1, S2 services (Figure 3), the

above algorithm will be considered as the root in Cloud

1 of the P1, P1 composition that delivers the services that

are being provided; then, the child nodes are constructed.

Rule 1: The child node is a node that differs in

the composition of providers with the parent node only in

one provider.

So, the child nodes of the above example will be (P3,

P1) and (P1, P2); after determining each node, the cost of

each node is calculated according to Equation (1).

𝑆𝑖 ≔ 𝛼 ∗ 𝑁𝑖 + 𝛽 ∑ 𝑐𝑜𝑠𝑡 𝑗
|𝐸|
𝑗=1 (1)

where E is the set of edges that show the communication

between the providers in a composition, cost j denotes the

cost of communication between the providers Px and Py

in the j relationship link, and Ni is the number of existing

providers in the i-th composition. Also, α and β are

numeric values representing the number of providers and

the communication costs of the providers, respectively.

To avoid the presence of providers in dispersed areas and

encourage the lowest cost of communication between

providers as the most important goal, the amount of α

should be smaller than β. Having created the lattice

expansion starting from the root node, the root node first

appears in the heap and is selected as the Skyline. After

removing the root node, its children are added to the heap

if all their fathers are examined, and so the cost of each

composition is compared with the cost of the composition

in the Skyline; then, if the composition is found to be

optimal, the Skyline is updated. Hence, the best

composition is selected by comparing the cost of the

composition. Thereafter, the second cloud’s lattice

expansion will be created and the optimal composition

will be compared with that of the first cloud, and the best

composition will be selected. The output of this

algorithm is the optimal composition of providers.

4. 2. Extracting the Optimal Composition of Clouds
The composition obtained from the algorithm in the

previous section is the input of this algorithm. The goal

of this stage in a cloud-based environment is to classify

the clouds that together provide the equired services. By

evaluating all possible compositions, the optimal cloud

composition is determined, from which the appropriate

services are delivered to the user. Here, to determine the

cost of the relationship between the two clouds, the

matrix values in Table 5 are simple values that represent

the time between the clouds (in milliseconds).

To determine the optimal composition of clouds, the

optimal composition of providers from the previous step

is considered as input to determine the root of the lattice

expansion, and thus the lattice expansion is completed

(Algorithm 3). When constructing cloud compositions,

the cost of each compound is calculated in accordance

with Equation (1). The only difference is that E is the

number of edges representing the connections between

the clouds in the composition, and j shows the cost of

communication between the two clouds, Cx and Cy, on

the jth communication link. Ni is the number of clouds in

the ith composition. The total cost of the composition is

calculated by taking into account the total

communication costs in the cloud composition according

to Equation (1). In this algorithm, α and β are also

numerical values representing important factors such as

the number of clouds and the cost of cloud

communications, respectively. Thus, α should be smaller

than β to avoid the presence of clouds in dispersed areas

and to encourage the lowest cost of communication

between the clouds, which is considered as the most

important goal. For example, if the optimal composition

obtained from the previous step of composition (P3, P1)

is used, the algorithm takes into account in the multi-

cloud environment of (C3, C3) compound that hosts the

providers in the optimal composition; then, the child

nodes are constructed, which are shown in Figure 4.

Rule 2: In creating each child node, the composition

is different from that of the provider only with the parent

node. So the child nodes of the above example will be

(C4, C3) and (C3, C5).

62 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

5. EXPERIMENTAL RESULTS

This section provides details of the experiments

conducted to evaluate the performance of the proposed

method. The Java programming language has been used

in this approach, and the development environment is

NetBeans IDE 8.2.

In this study, Java classes have been used to randomly

generate some experimental data sets, including a set of

services and relationships between the clouds, providers,

and services provided by each provider, as well as α, 0.3,

and β, 0.7.

The experiments are conducted in environments with

a number of different clouds (between 5 and 100) and

services ranging from 1 to 20; since the creation of a

multi-cloud environment is a coincidence, the test of each

environment is repeated 50 times. The user’s request in

all the test cases consists of three services.

5. 1. Estimating the Computation Time In

these experiments, as in similar methods, a concept called

density has been considered to determine the impact on

the total execution time when the providers are hosted in

several clouds; the total execution time is between 20 and

40%, and the number of clouds is between 5 and 100. The

composition time results are shown in Figure 5.

TABLE 5. Matrix of communication cost between clouds

 C1 C2 C3 C4

C1 0 6 8 10

C2 6 0 9 12

C3 8 9 0 4

C4 10 12 4 0

Figure 4. Example lattice expansion of clouds

Algorithm 1: Extracting optimal composition of providers

Input: A user request Sr
Output: Best provider composition

1: Begin

2: Best provider composition=0;

3: for each cloud Ci do

4: Creating expansion lattice based on Sr (Algorithm 3)

5: Best=RootNode; H=RootNode;

6: While(! H.isEmpty())
7: Remove the top node from H;

8: if n is dominated by Best

9: Best=n;
10: end if

11: CN=expand(n,T);

12: for all node ni in CN
13: P(ni) --;

14: if(P(ni)==0)

15: H.add(ni);
16: end if

17: end for
18: end while

19: if Best is dominated by Best provider composition

20: Best provider composition=Best;
21: end for

22: return Best provider composition;

23: End
Algorithm 2: Extracting optimal composition of clouds

Input: Best provider composition

Output: Best cloud composition
1: Begin

2: Creating expansion lattice based on

 Best provider composition(Algorithm 3)
3: Best=RootNode; H=RootNode;

4: While(! H.isEmpty())

5: Remove the top node from H;
6: if n is dominated by Best

7: Best=n;

8: end if
9: CN=expand(n,T);

10: for all node ni in CN

11: P(ni) --;
12: if(P(ni)==0)

13: H.add(ni);

14: end if
15: end for

16: end while

17: return Best cloud composition;

18: End

Algorithm 3: Creating Expansion Lattice for providers (or

clouds)

Input: A provider(cloud) composition that provide user

request (or Best provider composition)

Output: Expansion Lattice

1: Begin

2: for each a provider(cloud) composition

3: int num=number of user request (or Best provider

composition)

4: While (num!=0)

5: change node that number is num based provider(cloud)

that is provide same service(provider)

6: num--;

7: end while

8: end each

9: return Expansion Lattice;

10: End

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 63

Figure 5. Results of the computation time

According to this figure, the computation time at a

density of 40 is lower than the other two densities, and

especially with a higher number of clouds, this difference

is more evident. In general, this algorithm has a low

computational time for the cloud environment with a

different number of clouds. Also, the execution time is

slightly high when a provider is not hosted on several

clouds.

5. 2. Estimating the Cost and Number of Clouds in
the Selected Composition Figure 6 shows that

the size of the optimal composition and composition

costs are not affected by the changes in density and the

number of clouds. The experimental results show that the

Skyline-based approach always produces a favorable

cloud composition even in a large-scale cloud-based

environment, and even when each provider is hosting a

small number of clouds.

5. 3. Comparison of Cloud Communication Costs
In this section, the performance and quality of the

proposed solution are compared with the Mezni method

[23]. These two methods are compared in a multi-

cloudenvironment with 100 clouds and three user-

requested services. MCE1 is a cloud environment with a

density of 20, MCE2 has a density of 30, and MCE3 is

40.

The overall cost for each cloud compilation generated

by the FCA and the Skyline was calculated using defined

equation. The results for the FCA are shown in Figure 7,

but the value of the Skyline is fixed to be 0.3. It is clear

from Figure 7 that for all the MCE settings, the best cost

was obtained by Skyline. It also shows that the proposed

method always achieves the best cloud composition with

the lowest cost.

5. 4. Comparisons of Run-time Given the time

required to find the optimal cloud composition, the run

times in Figure 8 show that Skyline is better than FCA

for the three MCE experiments. That is, by changing the

density, the proposed algorithm is faster in terms of

computational time. This is explained by the dual

progressive algorithm, Heap memory and parent table in

Skyline algorithm. Also, using a bottom-up algorithm

and the linear composition strategy, we can find the

optimal combination in the lattice, without needing to run

through the whole multi-cloud lattice.

Figure 6. Estimating the cost and number of clouds in

composition

Figure 7. Estimating the cost and number of clouds for FCA

and Skyline

Figure 8. Run time in FCA and Skyline

0

20

40

60

80

100

MCE1 MCE2 MCE3

C
O
ST

FCA SKYLINE

64 M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65

6. CONCLUSIONS

With the advent of virtual resource sharing, cloud

platforms have created a new paradigm that provides

more efficient and convenient services. As stated

previously, most of the service composition methods in

cloud environments assume that the involved services

come from one cloud. This study investigated the use of

the Skyline service algorithm to compose services in

multi-cloud environments, which examines all the clouds

during the service compilation process. Since this

algorithm provides the creation of all the possible

combinations, the proposed method allows the selection

of the optimal composition of user-requested services in

a cloud-based environment. In the proposed method, the

criteria for choosing the best composition in a cloud

environment are fewer providers and a shorter

communication time between the providers. Hence, the

best composition in a cloud environment is the one that

includes these criteria. Overall, the following results have

been obtained:

1. The use of the Skyline algorithm makes it possible

to review all the possible composition of services offered

by providers in a cloud-based environment.

2. The proposed Skyline algorithm always finds the

optimal cloud compositions.

3. The proposed algorithm improves the accuracy of

the optimal composition and reduces the time of

computation.

Also, this study focuses on the sequential structure of

a service composition. This is why the total cost of

communication between the clouds is calculated based

on the order of the services executed as the sum of the

communication costs of the provider’s composition and

the cloud. The sequential structure is one of the four main

structures of a service composition in the YAWL model

[4], and it is a topic of interest for future studies on other

structures.

7. REFERENCES

1. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., &

Weerawarana, S., “Unraveling the Web Services Web: an

Introduction to SOAP, WSDL, and UDDI”, IEEE Internet

Computing, Vol. 6, No. 2, (2002), 86-93. DOI:

10.1109/4236.991449

2. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D.,
“Interacting with the SOA-based Internet of Things: Discovery,

Query, Selection, and on-demand Provisioning of Web Services”,

IEEE Transactions on Services Computing, Vol. 3, No. 3,
(2010), 223-235. DOI: 10.1109/TSC.2010.3

3. Du, Y., Hu, H., Song, W., Ding, J., & Lü, J., “Efficient Computing

Composite Service Skyline with QoS Correlations”, In 2015 IEEE
International Conference on Services Computing, (2015), 41-48.

DOI: 10.1109/SCC.2015.16
4. Gabrel, V., Manouvrier, M., & Murat, C., “Web Services

Composition: Complexity and Models”, Discrete Applied

Mathematics, Vol. 196, (2015), 100-114. DOI:

10.1016/j.dam.2014.10.020
5. Cui, L., Kumara, S., & Lee, D., “Scenario Analysis of Web

Service Composition based on Multi- Criteria Mathematical Goal

Programming”, Service Science, Vol. 3, No. 4, (2011), 280-303.
DOI: 10.1287/serv.3.4.280

6. Bypour, H., Farhadi, M., & Mortazavi, R., “An Efficient Secret

Sharing-based Storage System for Cloud-based Internet of
Things”, International Journal of Engineering, Vol. 32, No. 8,

(2019), 1117-1125. DOI: 10.5829/ije.2019.32.08b.07

7. Jeyanthi, N., Shabeeb, H., Durai, M. S., & Thandeeswaran, R.,
“Reputation based Service for Cloud User Environment”,

International Journal of Engineering, Transactions B:
Applications, Vol. 27, No. 8, (2014), 1179-1184. DOI:

10.5829/idosi.ije.2014.27.08b.03

8. Jula, A., Sundararajan, E., & Othman, Z., “Cloud Computing
Service Composition: A Systematic Literature Review”, Expert

Systems with Applications, Vol. 41, No. 8, (2014), 3809-3824.

DOI: 10.1016/j.eswa.2013.12.017
9. Microsoft Communication & Media Industries, "Multi-Cloud

Service Delivery end-to-end Management," Ref.architecture,

2013. https://cloudblogs.microsoft.c om/industry-
blog/industry/uncategorized/multi-cloud- service-delivery-and-

end-to-end-management-reference- architecture/

10. Venkat, M., 2016. Enterprise cloud strategy: Governance IBM.
https://www.ibm.com/blogs/cloud-

computing/2016/11/03/enterprise-governance-multi-cloud/

11. Yu, Q., & Bouguettaya, A., “Efficient Service Skyline
Computation for Composite Service Selection”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 5, No.

4, (2013), 776-789. DOI: 10.1109/TKDE.2011.268
12. Belkasmi, D., Hadjali, A., & Azzoune, H., “On Fuzzy Approaches

for Enlarging Skyline Query Results”, Applied Soft

Computing, Vol. 74, (2019), 51-65. DOI:
10.1016/j.asoc.2018.10.013

13. Elmi, S., & Min, J. K., “Spatial Skyline Queries over Incomplete

Data for Smart Cities”, Journal of Systems Architecture, Vol.
90, (2018), 1-14. DOI: 10.1016/j.sysarc.2018.08.005

14. Lim, J., Li, H., Bok, K., & Yoo, J., “A Continuous Reverse

Skyline Query Processing Method in Moving Objects
Environments”, Data & Knowledge Engineering, Vol. 104,

(2016), 45-58. DOI: 10.1016/j.datak.2015.05.003

15. Yang, Z., Li, K., Zhou, X., Mei, J., & Gao, Y., “Top k
Probabilistic Skyline Queries on Uncertain Data”,

Neurocomputing, Vol. 317, (2018), 1-14. DOI:

10.1016/j.neucom.2018.03.052

16. Zou, G., Chen, Y., Yang, Y., Huang, R., & Xu,Y., “AI Planning

and Combinatorial Optimization for Web Service Composition in

Cloud Computing”, In Proccedding of the International
Conference on Cloud Computing and Virtualization, (2010), 1-8.

DOI: 10.5176/978-981-08-5837-7_166

17. Gutierrez-Garcia, J. O., & Sim, K. M., “Agent-based Cloud
Service Composition”, Applied Intelligence, Vol. 38, No. 3,

(2013), 436-464. DOI: 10.1007/s10489-012-0380-x
18. Jatoth, C., Gangadharan, G.R., & Buyya, R., “Optimal Fitness

Aware Cloud Service Composition using an Adaptive Genotypes

Evolution based Genetic Algorithm”, Future Generation

Computer Systems, Vol. 94, (2019), 185-198. DOI:
10.1016/j.future.2018.11.022

19. Jatoth, C., Gangadharan, G. R., & Fiore, U., “Optimal Fitness

Aware Cloud Service Composition using Modified Invasive
Weed Optimization”, Swarm and Evolutionary Computation,

Vol. 44, (2019), 1073-1091. DOI:

10.1016/j.swevo.2018.11.001

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2F4236.991449?_sg%5B0%5D=JiLnMJHCtEkqGZAc1WLlnVUgG3XczHK3QX98kv8SCkDeX6Nd-FlnD0rhbFWut7j5FYdby74rJX-w4F5gEyiAkrLnKg.aaZOGWcyqctGEtrklJKsuMyvqNaaGMPMN1D7l2TgOGuib6x0-f3rMeM2b0ZGlES5cm0UMgEaDkt8CcCdXHuUrw
https://doi.org/10.1109/TSC.2010.3
https://doi.org/10.1109/SCC.2015.16
https://doi.org/10.1016/j.dam.2014.10.020
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1287%2Fserv.3.4.280?_sg%5B0%5D=nBrvcknqpXywL8_8nxDpznb23QHU3ALFLPBqk82B1GIZ4BLSjRaCkVn6fO9AfSDdxCujx4qzfUVHhcBuZ4_UcS-jVA.8BJ399Dw495x9RLhSda2SXwlyfOZy9wQmPlWLcRJsDJld2Cv2zd0kqxvwBMuzjSiMthAea1m4S1oomfPWZmbAg
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5829%2Fije.2019.32.08b.07?_sg%5B0%5D=k8z6e5iM7jsvwwAgvfd6--cia-TWhrsGBhRjPAxFz5xm-tOeeqMr4hN3vilqaxivhVQPt1m4H-5RnNuRuOE7VKKCJA.PjqPh3K7jHteAGeovkNvmnLDJ-qJLFF_hJiour57t0SMxR4EXPJO4VUUm_tmF1Bv82qus1DsCi4NKVctvrvBEw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5829%2Fidosi.ije.2014.27.08b.03?_sg%5B0%5D=vm8nDkG-X7Cx7K_ZvLb_PZs3l6EP7YuEG7fFTRs4sstmHY_P3xK_Q0ywQNrsHcCOPyErxW1TB_dUysptJ2msuKwfnw.7XBeDZVOg9K79ufd2PZbWC84WWvjnaW1ncM5yJg8mpPOhQ8PMZ4Ntgsk8OtbNzy2npe331SzSCVL0NBDZJvTjQ
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.eswa.2013.12.017?_sg%5B0%5D=yemd6sq_i3vvUShk0XY1EpH0zTBf5g_pt5fXC1E2dK8ZX_t_aZOwJgHmCvrAZjm-FSAIiruNIwLdoLc7R6vOSDdBcw.zlhsdy1se9DQmo9DTjwyi2yShej5IpINys3vbhpS8Z6UWBf4-Wu-x1sIRASfiTEh8zf9__foVkmSY4PQJQKPwA
http://www.ibm.com/blogs/cloud-com
http://www.ibm.com/blogs/cloud-com
http://www.ibm.com/blogs/cloud-com
https://doi.org/10.1109/TKDE.2011.268
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.asoc.2018.10.013?_sg%5B0%5D=M9OlJ2ihd11b3dXQLg7t0WbXjw_-OhQnu25XXjUsMiymKiSsEIN9JXdkc4LpaT8LRSsOJFFPuRjSG-d40epmePKEpA.DbP3isf-TIVlriJdfL3MaXHRb65c7aiMu-1kXX3YORMJJzK9UpYKmimqtbOUjlChQMeJQbthIgK0NzZlJXGUgw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.sysarc.2018.08.005?_sg%5B0%5D=60cLfkCiw9y4IpHmj1zOZHcEbwkJF2yQNVmcNbjgYlvfnlcCpXhHYBVk0j9MSqbRXT83Getmi96TmkjQiq1oeI58vA.O6EoJ6qh9SaRZaLcDbZVVkrUzR_Ppc4i-tPFiCY_E9XRl9F6JWGMWXL0azOhgfFv0NnhBUUR3khLQbMEVFPc0w
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.datak.2015.05.003?_sg%5B0%5D=1NFaUOIfNf0fGS-kW5SGH5QO7QpLbn8dsMBagHXBD1ZhLvp6dkZEzwMzxRjKrsjv0GmqwebreKGSmzFo5YLOgjbyHw.5E-t58eNTLgJIoJXeelUOtHeZQITkc6gXaTQYEExkrTQgX3Orh5eFMWvErwSk2C-83RvehWlJoW_qbMZoSS-tA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.neucom.2018.03.052?_sg%5B0%5D=PNBXpQw_ZpMrhTrxdqVfTXEHXW3rGrGhMXacTNRniqRDDcKeluJLGLyJHEvHyy0TWogxtdqs37g8638nYKDfjNC-ww.i51hQ2FCOGX24EkVQVWj6Q1ruh53jTWW49HEmplgZ1bOmbEN5ahaDfHSpuNnk3avCNqdUlx1_wmXEKHmRxMQyw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5176%2F978-981-08-5837-7_166?_sg%5B0%5D=KxgKEko6i6FT0lrcdieJI3qhlc7BmpaURuE3bXGro79K1hclsvO31dHpZ3RhyXC_4CAinYKJKPw8VeiCo-heIyvCnw.vqGIQg5vAh9Okapqj4IJopVrHiUSNRJLB1EoCgPpTt-FIauXHSdjbn_jKrF7SC6m8t_iE2eRI0A_trQMReMt7g
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10489-012-0380-x?_sg%5B0%5D=zkCwy5ZWVV_8oVatYRUEyawzQS2LMMSwnEpKLXg3MrjkxTCOe4zBbTEzZuO3NzOWbcVKviGtXIemkRSJE6Wr1SptSQ.JLnIGvhgJFSanlIb7ivTm4JfOZZ_oLHKfl6iytp-DlI5Fk_yC2dhXyZgdYjeoAcLL2-KK_UzfT_wtPSjcRyfCg
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.future.2018.11.022?_sg%5B0%5D=n_6EZhJSZ09yjkMrtZlrvNV6gIymEIxNxnYfQT_rxLI9oQmyWpQagLQ_MvaZJIgaRRS-TxHV02DeeMKRRgnqg5oqBQ.G_CkhmUPGo2HUth9bo7c_m6y3hn5UOhGlYh-j5jC3VtOCrCxKhH4WALipdU8qUa6tCGMjmV4Evi6-aQIrdv-VA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.swevo.2018.11.001?_sg%5B0%5D=JZ5ZUdgV_Vh8IlWs-AfJQaVDbO032aiX51eLOdardGE9vXdXsesgG_lXjTA_OWIUMQ4SLWO59lJQVCbewhEjyQW2YA.8uII0iH59mBpcmVTQ0I5M_e_BfNu6IkXdCfbk9kjR7kc-AbY9bRIk4b3sLayaOTdmxjpnz5rYJze6FVbixXmQw

M. Heidari and S. Emadi / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 56-65 65

20. Gavvala, S. K., Jatoth, C., Gangadharan, G. R., & Buyya, R.,

“QoS-Aware Cloud Service Composition using Eagle Strategy”,
Future Generation Computer Systems, Vol. 90, (2019), 273-

290. DOI: 10.1016/j.future.2018.07.062

21. Yu, Q., Chen, L., & Li, B., “Ant Colony Optimization Applied to
Web Service Compositions in Cloud Computing”, Computers &

Electrical Engineering, Vol. 41, (2015), 18-27. DOI:

10.1016/j.compeleceng.2014.12.004

22. Kurdi, H., Al-Anazi, A., Campbell, C., & Al Faries, A., “A

Combinatorial Optimization Algorithm for Multiple Cloud

Service Composition”, Computers & Electrical Engineering,
Vol. 42, (2015), 107-113. DOI:

10.1016/j.compeleceng.2014.11.002

23. Mezni, H., & Sellami, M., “Multi-Cloud Service Composition

using Formal Concept Analysis”, Journal of Systems and

Software, Vol. 134, (2017), 138-152. DOI:
10.1016/j.jss.2017.08.016

24. Mezni, H., & Abdeljaoued, T., “A Cloud Services

Recommendation System based on Fuzzy Formal Concept
Analysis”, Data & Knowledge Engineering, Vol. 116, (2018),

100-123. DOI: 10.1016/j.datak.2018.05.008
25. Wu, J., Chen, L., & Liang, T., “Selecting Dynamic Skyline

Services for QoS-based Service Composition”, Applied

Mathematics & Information Sciences, Vol. 8, No. 5, (2014),

2579. DOI: DOI: 10.1145/1772690.1772693
26. Zhang, F., Hwang, K., Khan, S., & Malluhi, Q., “Skyline

Discovery and Composition of Inter-Cloud Mashup Services”,

IEEE Transactions on Services Computing, Vol. 9, No. 1,
(2016), 72-83. DOI: 10.1109/TSC.2015.2449302

27. Zhang, J., Jiang, X., Ku, W. S., & Qin, X., “Efficient Parallel

Skyline Evaluation using Mapreduce”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 27, No. 7, (2016),

1996-2009. DOI: 10.1109/TPDS.2015.2472016
28. Liu, Y., Yang, R., & Zhang, S., “Service Selection Method based

on Skyline in Cloud Environment”, International Journal of

Performability Engineering, Vol. 13, No. 7, (2017). DOI:

10.23940/ijpe.17.07.p5.10391047
29. Moradi, M., & Emadi, S., “Reducing the Calculations of Quality-

Aware Web Services Composition Based on Parallel Skyline

Service”, International Journal of Advanced Computer Science

and Applications, Vol. 7, No. 7, (2016). DOI:

10.14569/IJACSA.2016.070744
30. Borzsony, S., Kossmann, D., & Stocker, K., “The skyline

Operator”, In Proceedings 17th IEEE International Conference on

Data Engineering, (2001), 421- 430. DOI:

10.1109/ICDE.2001.914855
31. Papadias, D., Tao, Y., Fu, G., & Seeger, B., “Progressive skyline

Computation in Database Systems”, ACM Transactions on

Database Systems, Vol. 30, No. 1, (2005), 41-82. DOI:

10.1145/1061318.1061320
32. Wang, Y., Song, Y., & Liang, M., “A Skyline-based Efficient

Web Service Selection Method Supporting Frequent Requests”,

In 2016 IEEE 20th International Conference on Computer

Supported Cooperative Work in Design (CSCWD), (2016), 328-
333. DOI: 10.1109/CSCWD.2016.7566009

33. Fariss, M., Asaidi, H., & Bellouki, M., “Comparative Study of

Skyline Algorithms for Selecting Web Services based on QoS”,
Procedia Computer Science 127, (2018), 408-415.

DOI: 10.1016/j.procs.2018.01.138
34. Alrifai, M., Skoutas, D., & Risse, T., “Selecting Skyline Services

for QoS-based Web Service Composition”, In Proceedings of the

19th International Conference on World Wide Web, (2010), 11-

20. DOI: 10.1145/1772690.1772693
35. Benouaret, K., Benslimane, D., & Hadjali, A., “Ws-Sky: An

Efficient and Flexible Framework for QoS-aware Web Service

Selection”, In IEEE Ninth International Conference on Services
Computing, (2012), 146-153. DOI: 10.1109/SCC.2012.83

36. Fekih, H., Mtibaa, S., & Bouamama, S., “Local-Consistency

Web Services Composition Approach based on Harmony
Search”, Procedia Computer Science 112, (2017), 1102-1111.

DOI: 10.1016/j.procs.2017.08.135

Persian Abstract

 چکیده
جا که عملکرد یک سرویس معمولاً بسیار ساده از آن .شده است سرویس در این محیطی انواع مختلف منابع به عنوان ارائه موجبهای ابری برداری از محیطرشد سریع بهره

در محیط ضروری است. بیشتر روشهای ترکیب سرویسی کاربر نیست، نیاز به ترکیب این سرویسها که قادر به ارضا نیازهای کاربران باشد، است و پاسخگوی نیاز پیچیده

 هایسرویس دیگراین رویکرد غیر واقعی است زیرا ممکن است ابرهای در یک ابر هستند کهکننده در ترکیب های شرکتسرویسهای چند ابری فرض می کنند که

 دهندگان وهای مالی با کاهش تعداد ارائهبرانگیز دیگر کاهش هزینهچالش کار یک ،ابری های چندمحیط در شده توزیع هایسرویس در ترکیب تری را ارائه دهند.مناسب

دهندگان و ابرها است. برای رفع این چالش باید تعداد فراهم کنندگان سرویسها در ابرها در فرایند ترکیب ی ارتباطات بین ارائهدر ترکیب و کاهش هزینه کنندهشرکت ابرهای

استفاده می کند تا تمام ابرها در فرایند ترکیب سرویس بررسی چند ابری های در محیط هاترکیب سرویسبرای Skyline Serviceاز الگوریتم کاهش یابد. این تحقیق

را درنظر می گیرد. الگوریتم دهنده و ابریی همچون کمترین تعداد ارائههامترراپا روش پیشنهادی می تواند یک سرویس ترکیبی قابل استفاده برای کاربر ارائه کند که شوند.

Skyline Service دگان و نندر دو مرحله استفاده می شود. در مرحله اول، بهترین ترکیب سرویس در یک ابر از میان تمام فراهم کنندگان با درنظرگرفتن تعداد فراهم ک

مام ترکیبات ممکن در محیط چند ابری استفاده می شود. پارامترهایی مثل تعداد ابر برای ایجاد ت Skyline Serviceزمان ارتباطی انتخاب می شود. در مرحله دوم، الگوریتم

مترین د ابرها، کمترین هزینه و ککمتر و زمان ارتباطی کمتر بین ابرها در این مرحله اعمال می شود. نتایج نشان می دهد که روش پیشنهادی می تواند ترکیبی با حداقل تعدا

 یک ترکیب مناسب از سرویسهای درخواستی کاربر را در یک محیط چند ابری انتخاب می کند. Skyline Serviceد. در نهایت می توان گفت که زمان محاسباتی را پیدا کن

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.future.2018.07.062?_sg%5B0%5D=WBIkVswaEBEK5-7XcchYGJjO5C6IYaKiUwSQqb9kD5jqQ5V2LUlvpawQmiicQPAgAHKgQuFjT0f_RmZqx9-zlI2FLw.QBs-cqdYWUcNYWY42_22gzej1VoC26E4r7CUF0HMeUazvapsmu3LfMj0gu8GAFC_20aO9E40iDpzfqy_p5_LOA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.compeleceng.2014.12.004?_sg%5B0%5D=C3IFvmh6NNgaqOUHu-vBRZ-OaNu8Og89aVh3t9k4Lb4c2wtfXrmkftpI5Smm1hVM5moZ4MoDoi2x1O26SuFHWUYoMw.w0D2SaZIloWAFxbm-H0KOvxf3twsApNP7sP-e7Ke9aDiCORn0hEHyI1fsmAJ_mR_PtUSXe3UOu8vWg1WmUg6_A
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.compeleceng.2014.11.002?_sg%5B0%5D=7ZJsNIMWg1g5pNAd1SoTv8XWyUFprjRzvJ5Xhnt5usv72QgMhCCfEljRTRNMxmove95KGsTYmae06zFEtStK3g7D8Q.bWeGHbDmHWud_GsdiwF08fLIjkEiOKNKHK4o5x1HkeZVvzyk6fUHJlbAZEKmm0oHOdVtV7m7-ZhWVh6wWFobfA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jss.2017.08.016?_sg%5B0%5D=NMFA8PjUwymudzbpXpWUN67ExuETC4ztGxl1FTJRpTNSCdP08AzqZGrpTX_Bz-6wcyhEuarB4DV8HxrFOdw862axyQ.M1ZDxttEtsSBQRquSoy-vZycHEQQ_L33VFQ0af1q9o7EkerG5QEuDEkCkD9s_7mUrY3AC0JQ1-cuD3HUjJZ6FQ
https://doi.org/10.1016/j.datak.2018.05.008
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F1772690.1772693?_sg%5B0%5D=THtmnNMXGqhD4VmZsqF_67oPu_U50RDcXLjwN7Hx0NluEpmaI0Eies4tv5TkyGTXIwNZYocqp-Cay1js_CM9XGQN2g.zuHlJwUdUHp9uXq4r3AzUxI9qpOLbRHdzqY5OM5bXmouDKFvr9UL9ji3puZAakzbjHU8N-aYGh1PKkPoV5ER8Q
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FTSC.2015.2449302?_sg%5B0%5D=ZVWhlos-Cz4jA6sCIsvcd1PQHRkZiDYFqi3xmaNyBnZuDuVwnnL4WfOeOfX7JPkRj9m1TYw_pz9c-aV_SVdmB-KCVw.cJpKOGxlHQE7Esg-euwPighHZO5_wWiSJS3EsOa9SyfHqpqOf-MDquJP6FpiUG7Pn0xeTt6d06-RqeTmI_F7bA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FTPDS.2015.2472016?_sg%5B0%5D=SKIpEZr1utea3z-KKRruNldxGNmsk3xPvhSatbMOLSBDFMuYJ3h_zBbwDoeZHsLglydvVveZWLgHHKMKg6Ze4gWq1Q.vwrKhEBBATe6eeSSwCPUihYfA7-MzBRCE_G0npoU4UBu8WXeoI3IulWoMBcgTyQYNIEywijJHHphEvb5skzP1g
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.23940%2Fijpe.17.07.p5.10391047?_sg%5B0%5D=9IuiNNIumCy00M9x-s_kerSl8zp7dHbvJUqZZPIOXnUTIOZimwd5Osadk2h5cvFSGMFk49e5vC0uMfo9r1jp0xM0sA.8CPYaseA3uYPmnfQIal5OLSEMkmgfjbwsPVt8FxxDuWOFjnCzomV8Yf-Qz6rUCh0ihyBcTkwTf6QQ6iCUEdsdw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.14569%2FIJACSA.2016.070744?_sg%5B0%5D=i_EkppuJnrCbYb2OzHl6q9EkYVE0SFNn_jD8EYcF23uVV1ikVcJ_RscZKFkp0yKtQeViq6QtjgYGwesXClOJ7z1hww.SjpmraHj6tXkdOC986E-7gsb5V78nJvZZuiN62uKb1C_chvUqeRjd60LHNNoD7CrqrCxzv-dfyGzFuTzwwe4uw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FICDE.2001.914855?_sg%5B0%5D=g4ULY_oPfAmJ0F6PpPkrFQmO19RKkjK959UZgKjsOFWrLx0wfbxHkHzRrcQ_oiLNdrttErUqM37n4ZcxgoCehns_lg.ewYEiFomqfW0A-2ZgR673sf66eaa2-X526sDcXXv8othQQD4P9M9sIubbw5s1co9mTO3ozMcLUK8Am28Y20hTQ
https://doi.org/10.1145/1061318.1061320
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FCSCWD.2016.7566009?_sg%5B0%5D=P5DI2c6N-PurILI1sCe7WZjk8xyS-7fC-xlOUcmkKuQMJZoSPoZCAufWH6q88Gc6O5QkD6UrgneO1HNS2ZtTLVPclA.eUjyrpvZN0NAk_IN6rZ5cR3GocJxGN5ABy_RtL_b8jjT5crYLEqFrGje98VWGmYFsvAUW1McPwAZL6tMxU1NiQ
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.procs.2018.01.138?_sg%5B0%5D=83-iN501gb-YssFEuCzbDbC0F588EGjN2ONW-y8c3uWbCWNdUlexun5Tq8OCV3_ynMDtWe-CQCOBE4oMBDTM3o5crw.S709pK5EgbsgOWRCZRdQmaa3LSDjSTNvXIKW1KkoOMDUiMLY66ESg1s6MKj_ZzfSSmjtHpTk5VUPhk5mZdjeOg
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F1772690.1772693?_sg%5B0%5D=N42xVi4nD6yRAHBnyd2f7JMPktWV02ooOEy_VJZ7HJrgltPYVc0D95PmDNPgpSvTllZuo2wSrP66mH3S_KgbR4vZ6A.Gv0HV3hPX4sIkQAqdzcCC3Vd_fALRM8W4gZweSamerII8D0afS0yzT3l2Hrjp7oZwkB4q5N7ew-2MgoJ1hrmBA
https://doi.org/10.1109/SCC.2012.83
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.procs.2017.08.135?_sg%5B0%5D=66JGTpqsVlM2cz9B_H8FRhVflaWBij68gdDSxLsFZHVJvYI7fSU6FZXDuKHY-JL4fJuFGIFocWqjztGiWi94WvhKlg.EDUrGhh6gEaVza1FI2_BaFP3OH0QA0xMg5SQsVoMQJQpAIvv7UWtSpOuR65seaaWKBaNGp4-2tD_2EJljJV6nw

