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A B S T R A C T  

 

This study proposed a novel method for system failure reasoning based on Bayesian networks to solve 

emergency airflow control system reliability problems. A system fault tree model was established to 

identify the logical relationship between the units, which was then transformed into a Bayesian network 
fault analysis model to determine network node states and the conditional probability table, as well as to 

carry out diagnostic reasoning on the system node branches. The reliability analysis of the model based 

on Netica Bayesian tool shows that the probability of system failure caused by substation communication 
node is the highest under normal conditions, and data monitoring and central station communication 

nodes have a greater impact on intelligent control. By predicting and diagnosing system faults, the 

optimization of system design is realized on the framework of Bayesian network to improve the 
reliability, and there by establishing a theoretical foundation for future disaster prevention research.  

doi: 10.5829/ije.2020.33.11b.32 
 

NOMENCLATURE 

CPT Conditional probability table FMEA Failure mode and effect analysis 

FTA Fault tree analysis BN Bayesian networks 

 
1. INTRODUCTION1 
 
The diffusion of smoke flow along the roadway after a 

mine fire is critical to ensure mine disaster prevention. 

By adjusting the damper switch in the disaster area, the 

air volume can be modulated to ensure the safety of 

underground personnel during disasters [1, 2]. This 

emergency control system has been greatly popularized 

and applied. It is of great significance to improve disaster 

relief efficiency and reduce system failure rate through 

reliability evaluation. 

Commonly used reliability analysis methods include 

failure mode and effect analysis (FMEA), fault tree 

analysis (FTA), and others. Lo and liou [3] proposed a 

new FMEA risk assessment method based on multi-

criteria decision making. Hyun et al. [4] used fault tree 

analysis (FTA) and analytic hierarchy processes (AHP) 

to conduct risk assessment during tunnel construction. 
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Peeters et al. [5] improved the efficiency of fault analysis 

by combining FTA and FMEA through recursion. 

However, these methods do not account for the 

connection between various failure modes and are not 

suitable to characterize uncertain casual relationships. 

Current equipment failure diagnosis strategies do not 

meet the requirements for failure diagnosis under 

complex catastrophe scenarios. Therefore, it is the 

direction of current scientific research to establish a 

judgment model through artificial intelligence for 

independent evaluation. Dynamic process fault detection 

and diagnosis based on a combined approach of hidden 

Markov and Bayesian network model [6]. It presents a 

novel technique using artificial neural network learning 

for automated diagnosis of localized faults in rolling 

element bearings [7]. Predictions of tool wear in hard 

turning of AISI4140 steel through artificial neural 

network, fuzzy logic and regression models，the results 
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reveal that the artificial neural network (ANN)provides 

better accuracy when compared to regression analysis 

[8]. A new hybrid decision tree (DT) technique based on 

two artificial neural networks (ANN), namely multilayer 

perceptron (MLP) and radial basis function (RBF), is 

proposed to predict sediment transport in clean pipes [9].  

Bayesian networks were developed to address 

uncertainty in artificial intelligence research, and have 

been widely used in artificial intelligence, pattern 

recognition, and other fields. In fact, learning structures 

of interval-based Bayesian networks in probabilistic 

generative model for human complex activity recognition 

is discussed in literature [10]. A new stability-based 

dynamic Bayesian network method for dynamic systems 

represented by their time series [11]. Given that Bayesian 

networks have a solid theoretical foundation, analysis 

ability, and a capacity to describe uncertainty, this 

approach has begun to be applied in recent years in 

medical diagnosis, risk and safety assessment, fault 

diagnosis, reliability analysis and assessment, among 

other fields. Comparison of automatic and guided 

learning for Bayesian networks to analyze pipe failures 

in the water distribution system [12]. A comparative 

study between discrete and continuous time Bayesian 

networks demonstrates clinical time series data with 

irregularity [13]. A novel scoring function based on 

family transfer entropy for Bayesian networks learning 

and its application to industrial alarm systems is 

discussed [14]. Copula-based Bayesian network model 

for process system risk assessment is discussed [15]. 

Bayesian networks are supported by mathematical theory 

and can be implemented through a variety of reasoning 

models and algorithms with good learning performance. 

The FMEA method has a comprehensive analysis of 

failure modes, but it has insufficient analysis of the 

causes of failures and cannot reflect the logical 

relationship between various factors. FTA analyzes the 

causes of failures comprehensively and can reflect simple 

logical relationships, but it is easy to miss failure modes. 

It can be seen that these two methods have a certain 

degree of complementarity. Bayesian networks can 

reflect the characteristics of complex systems such as 

polymorphism, failure correlation, and uncertainty in 

logical relations. It has the ability to deal with 

uncertainties that FMEA and FTA do not have, and it can 

conduct bidirectional analysis, which is stronger 

reasoning and analysis ability. However, the 

disadvantage of Bayesian networks is that modeling is 

difficult. Especially when there is a lack of data, it is 

difficult to build Bayesian networks using data learning 

methods. Therefore, it is an effective method to use the 

information provided by FMEA and FTA to build a 

Bayesian network model to solve the problem of lack of 

data. 

Aiming at the reliability problem of disaster airflow 

emergency control system, the reliability model of 

Bayesian network is constructed by integrating the 

reliability related information of FMEA and FTA. 

Determine the fault nodes of the entire control system, 

apply the fault data to the autonomous learning of the 

Bayesian network, and propose a reliability evaluation 

method for the disaster airflow emergency control system 

based on the Bayesian network. Carry out precise 

reasoning on the cause and result of the failure, determine 

the main failure factors, and provide reliability guidance 

for the disaster airflow emergency control system. 

To address emergency control system reliability 

problems, Bayesian networks can be employed in 

conjunction with fault diagnosis models to determine the 

fault node of the entire control system, after which the 

fault data can be used for Bayesian network autonomous 

learning, thereby determining the main failure factors for 

disaster emergency control. 

 
 
2. MODEL 

 
2. 1. Bayesian Network          Bayesian networks, also 

known as directed acyclic graphs (DAG), were first 

proposed by Pearl in 1986. Bayesian networks are 

composed of individual nodes, and the conditional 

probability between each node constitutes the conditional 

probability table (CPT) of the Bayesian network, which 

connects the whole network for reasoning diagnosis 

through the causal relationship between nodes and 

conditional dependence. 

The reasoning of Bayesian network is to use the 

Bayesian network structure and its conditional 

probability table to calculate the posterior probability 

distribution of some non-evidence nodes under the value 

state of the set of known evidence nodes. Bayesian 

network reasoning algorithms are divided into exact 

reasoning and approximate reasoning, both of which are 

NP-hardness [16]. 

Bayesian networks can be represented as B=<G, 

P>=<<V, E>, P>, which includes two parts: G=<V, E> 

represents the directed acyclic graph (DAG), where the 

elements in node set V represent variables, the directed 

edge E between nodes represents the association between 

variables, and P represents the conditional probability 

table (CPT). An example of a Bayesian network is shown 

in Figure 1. Node A is the parent of node B, and the prior 

probabilities of nodes B and C depend on the distribution 

probability of A. 

According to Bayes theorem, the conditional 

probability formula is obtained as Equation (1): 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
  (1) 

Suppose a directed acyclic graph of a Bayesian 

network G=<V, E>, where the elements in node set V 

represents variables  X1, X2, X3..., Xn, the directed edge E  
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Figure 1. Basic framework of a Bayesian network 

 

 

between nodes represents the correlation between 

variables, and the multiplication of conditional 

distributions of each node is the joint probability 

distribution such as Equation (2): 

𝑃(𝑋1, 𝑋2, . . . , 𝑋𝑖) = ∏ 𝑃(𝑋𝑖|𝑋𝜋(𝑖))
𝑛
𝑖=1   (2) 

When performing system reliability analysis, a Bayesian 

network model can be established. Suppose the model 

has n nodes X0, X1,..., Xn-1. X0 represents a system failure 

node, X1-Xn-1 represents other failure causes and failure 

mode nodes. The actual state value of node Xi (0≤ i ≤n-1) 

is represented by xi, which can take two state values of 0 

and 1. 0 means no occurrence, and 1 means occurrence. 

Afterward, the probability of failure of the whole system 

can be directly calculated by using the joint probability 

distribution such as Equation (3): 

𝑃(𝑋0 = 1) = ∑ 𝑃(𝑋0 = 1, 𝑋1 = 𝑥1, . . . 𝑋𝑛−1 =𝑥1...𝑥𝑛−1

𝑥𝑛−1)  
(3) 

Taking the failure cause event as the root node, the failure 

mode event as the intermediate node, and the failure 

impact event of the entire system failure as the leaf node, 

a Bayesian network model is constructed. Suppose that 

after the occurrence of a node Xj, the previous probability 

of other events can be expressed as Equation (4): 

𝑃(𝑋𝑖 = 1|𝑋𝑗 = 1) =
𝑃(𝑋𝑗=1|𝑋𝑖=1)𝑃(𝑋𝑖=1)

𝑃(𝑋𝑗=1)
  (4) 

2. 2. Reliability Model              In the event of system 

data imperfections, the study of system failure effect 

analysis can effectively determine system failure mode 

and failure cause, after which failure effect analysis of the 

fault tree structure can determine the logical relationship 

between various influencing factors. Finally, the fault 

tree can be converted into Bayesian networks, and the 

uncertainty of using Bayesian network problems to 

handle  capacity  reliability  of  the  system  can  be 

analyzed. The block diagram of this method is shown in 

Figure 2. 
First, make the system definition. Clarify the working 

principle of the system, analyze the function of the 

system, and determine the content and scope of the 

research object. 

The second step starts with the basic unit of the 

system, analyzes the possible causes of the failure of each 

unit, the failure mode and the influence of the failure 

mode on the unit, and compiles the FMEA table. 

The third step is to convert the FMEA form into FTA. 

Taking the fault effect of the basic unit as the top event, 

the fault mode as the middle event, and the fault cause as 

the basic event, the logical relationship between each 

event is analyzed, and the fault subtree is formed by 

connecting logic gates. Connect the fault subtree 

corresponding  to  each  basic  unit  to  the  upper  level 

system with appropriate logic gates to form a complete 

FTA. 

The fourth step is to transform FTA into Bayesian 

network. Take the top event of the fault tree as the root 

node of the Bayesian network, the intermediate event of 

the fault tree as the intermediate node of the Bayesian 

network, and the basic event of the fault tree as the leaf 

node of the Bayesian network. Convert the logical 

relationship of the fault tree into the corresponding 

conditional probability table, and use statistical data or 

expert opinions to obtain the basic probability 

information of the root node.  

Finally, reliability analysis is carried out. The 

reliability analysis work such as fault diagnosis reasoning 

is carried out by using the bidirectional analysis ability of 

Bayesian network. 
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Figure 2. Reliability analysis block diagram 



J. Zhang  et al. / IJE TRANSACTIONS B: Applications  Vol. 33, No. 11, (November 2020)   2416-2424                                    2419 

 

 

3. BAYESIAN NETWORK DETERMINATION 
 
3. 1. Disaster Wind Emergency Control System       
According to the characteristics of the mine ventilation 

system and the law of smoke flow after a fire, a multi-

channel electronically controlled pneumatic disaster 

relief damper was preset in each ventilation connection 

lane and its switching state was remotely controlled from 

the ground monitoring center, forming the disaster 

emergency rescue system. After a fire occurs in a mine, 

emergency control of remote airflow is carried out to 

adjust the air volume by adjusting the damper switch in 

the disaster area so that the polluted airflow enters the 

return air lane and is discharged, while fresh airflow is 

maintained in the densely populated area. The flow chart 

of a disaster airflow emergency control system is shown 

in Figure 3. 

 

3. 2. System Failure Impact Analysis       According 

to the definition of a disaster airflow emergency control 

system, failure mode influence analysis was carried out 

from three perspectives: fault cause, fault mode, and fault 

influence. The results are summarized in Table 1. 
 

3. 3 System Fault Tree Analysis       According to 

failure impact analyses, the system fault tree diagram was 

drawn with the catastrophic control fault as the top event  
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Figure 3. Flow chart of a disaster airflow emergency control 

system 

TABLE 1. System failure impact analysis 

Unit (U) Failure cause (C) 
Failure model 

(M) 

Fault 

effect (E) 

Upper 

machine 

C1 data 

troubleshooting 

failure 

C2 disaster 

monitoring failure 

M1 upper 
computer 

software 

control failure 
E1 

intelligent 

control 

fault Ground 
central 

base 

station 

C3 communication 

system failure 

C4 control system 

failure 

M2 center 
station 

hardware 

control failure 

Controller 

station 

C5 control system 

failure 

C6 communication 

system failure 

C7 data acquisition 

failure 

M3 controller 

substation 

failure 
E2 

remote 

control 

failure 

Damper 

C8 starter failure 

C9 power system 

failure 

C10 mechanical 

system failure 

M4 damper 

failure 

 

 

of the fault tree. Afterward, each fault subtree was 

connected, and the logical relationship between each 

event was determined, as shown in Figure 4. Any failure 

of the remote control and intelligent control will result in 

the failure of the top catastrophic control event, the 

failure of upper computer software control and center 

station hardware control will affect intelligent control 

fault, and any failure of the controller sub-station and 

damper will result in remote control fault. The control of 

upper computer software is affected by data solution and 

disaster monitoring; the control of central station 

hardware is affected by the communication system and 

control system of the central station; the fault of the 

controller sub-station is affected by the control system, 

communication system, and data acquisition of the sub-

station; the failure of the damper is affected by the 

damper start-up device, power system, and mechanical 

system. 

 

3. 4. Bayesian Network Construction 
3. 4. 1. Bayesian Node Determination         According 

to the system fault tree model, 17 Bayesian network 

nodes were determined to represent the fault of the 

remote control system from cause to effect. The 

classification of all nodes and states was described as 

follows: 

Data solution (state: normal/abnormal): this node 

indicates that the upper computer software reads the 

disaster information of each sub-station underground, 

studies and analyzes the ventilation parameters and 

environmental parameters during the disaster period, and 
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Figure 4. System fault tree analysis 

 
 

generates the intelligent control scheme during the 

disaster period. 

Disaster monitoring (status: normal/abnormal): this 

node represents the real-time acquisition of monitoring 

data of each sensor in the controller sub-station by the 

host computer and the ground central station. 

Communication system of ground central station 

(state: normal/abnormal): this node represents the 

communication equipment between the ground center 

station and the host computer and the controller sub-

station, which is composed of optical fiber and a 

communication interface. 

Ground central station control system (state: 

normal/abnormal): this node indicates that the ground 

central station receives the instructions from the host 

computer or the autonomic control instructions and 

performs intelligent control of underground sub-stations 

through a programmable logic controller (PLC). 

Communication system of the controller sub-station 

(state: normal/abnormal): this node represents the 

communication equipment between each sub-station and 

the central station and is composed of optical fiber and a 

communication interface. 

Controller sub-station control system (state: 

normal/abnormal): this node represents that each branch 

station receives control instructions from the central 

station or directly reads control instructions from the 

upper computer and conducts intelligent control of the 

damper through a PLC. 

Data collection of controller station (state: 

normal/abnormal): this node represents the real-time 

acquisition of downhole disaster monitoring data by each 

sub-station and the feedback to the upper computer and 

the ground central station. 

Damper start device (state: normal/abnormal): this 

node represents the start switch of the damper power 

system after the damper receives the sub-station control 

command. 

Damper power system (state: normal/abnormal): this 

node represents the high-pressure gas transported from 

the ground to the underground and the standby high-

pressure gas cylinder as the power source of the damper, 

driving the cylinder to drive the active door. 

Damper mechanical system (state: normal/abnormal): 

this node represents the mechanical structure of the 

damper; a steel wire rope is used to bypass the pulley to 

connect the driven door so that the two doors can be 

opened synchronously. 

Control failure of upper computer software (state: 

normal/abnormal): the failure of any node in data 

calculation and disaster monitoring can cause the control 

failure of upper computer software. 

Center station hardware control failure (state: 

normal/abnormal): the failure of any disaster monitoring 

node in the central station control system and 

communication system causes the failure of central 

station hardware control. 

Control fault of the controller sub-station (state: 

normal/abnormal): any sub-station control system node 

failure of the communication system and data acquisition 

will cause control failure of the controller sub-station. 

Damper failure (state: normal/abnormal): damper 

failure occurs at any node of the damper starter, power 

system, and mechanical system. 

Intelligent control fault (state: normal/abnormal): the 

upper computer software control and the center station 

hardware control implement double insurance intelligent 

control, and accept the underground sub-station to collect 

the information for intelligent solutions. When both of 

them fail at the same time, an intelligent control fault will 

occur. 

Remote control fault (state: normal/abnormal): 

remote control failure occurs when the downhole 

controller sub-station and damper malfunction, and the 

sub-station starts the automatic induction disaster relief 

mode. 

Catastrophic control fault (state: intelligent 

fault/Remote fault) Catastrophic control faults include 

intelligent control faults and remote control faults. 

 
3. 4. 2. Conditional Probability Table for Bayesian 
Nodes            Historical data is typically used in Bayesian 

network learning algorithms as the prior probability of 

each node, and some comprehensive decision-making 

methods, such as the Delphi method [17] and fuzzy 

analytic hierarchy process [18] are adopted to consult 

expert opinions. The prior probability table and 

conditional probability table of the Bayesian network can 

be determined through systematic test statistics and 

expert advice, providing data support for Bayesian 

network process learning. Due to the subjectivity of 

human decision making, multiple groups of learning 

should be carried out based on debugging sample data to 

minimize error. The conditional probability table (CPT) 
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is the core foundation of Bayesian reasoning, which can 

be obtained through parametric learning of historical 

records and statistics, as well as the experience of 

industry experts themselves. In this section, Bayesian 

network reasoning is performed for the "controller station 

fault" node branch. The fault tree bottom events 

"substation control system failure," "substation 

communication system failure," and "Data acquisition 

failure” root nodes are converted into the Bayesian 

network C5 "substation control system," C6 "substation 

communication system," C7 "data acquisition," and the 

top event "controller substation fault" leaf node is 

converted into the Bayesian network M3 "controller 

substation." Figure 5 shows the branches of the Bayesian 

network corresponding to the nodes of the "controller 

substation failure." 

According to Table 1, if the controller station node 

M3 fails, the probability of failure caused by C5 node is 

P(C5=1 ∣ M3=1)=11.4%, the probability of failure 

caused by C6 node is P(C6=1∣M3=1)=68.2%, and the 

probability of failure caused by C7 is P(C7=1 ∣
M3=1)=22.7%. The failure rate of C6 after calculating 

node M3 is P(C6=1∣M3=1, C5=0)=76.1.6%. Similarly, 

P(C5=1∣M3=1,C6=0)=33.6%. 

 
3. 4. 3. Emergency Control System Bayesian 
Network       Based on the equipment downhole test 

statistics and fault information in the accident database, 

the root node historical information is obtained, as shown 

in Table 2. 

The probabilistic inference was based on the Netica 

Bayesian network analysis tools. Each node of the system 

includes two states, "Y" means normal and "N" means 

failure. Through the prior probability of the root node and 

 

 

 
(a) Bayesian network branch 

C5 P(M3)

0 0

C6 C7

0 0

1 10 0

0 10 1

0 11 0

1 10 1

1 11 0

0 11 1

1 11 1
 

(b) Conditional probability table 
Figure 5. Bayesian network analysis 

TABLE 2. Prior information of the root node 

Node name Node state 
Transcendental 

probability 

data decoding 
normal 0.99 

failure 0.01 

disaster monitoring 
normal 0.95 

failure 0.05 

Central station 

communication 

normal 0.92 

failure 0.08 

Central station 

control 

normal 0.98 

failure 0.02 

Substation 

communication 

normal 0.99 

failure 0.01 

Substation control 
normal 0.94 

failure 0.06 

data collection 
normal 0.98 

failure 0.02 

start device 
normal 0.99 

failure 0.01 

Power system 
normal 0.96 

failure 0.04 

Mechanical systems 
normal 0.95 

failure 0.05 

 

 

the conditional probability of each node, the initial 

Bayesian network of the disaster airflow emergency 

control system was established, as shown in Figure 6. 

 

 

4. RELIABILITY ASSESSMENT 
 
Air volume adjustment has a vital role in normal system 

operation during emergencies and disaster periods, the 

regulation process and control system structure are 

complex, especially the unit logical relationships.  

 

 

 
Figure 6. Bayesian network of a disaster airflow emergency 

control system 
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Regulation failure mechanisms can often be unclear, 

however, through the construction of a Bayesian network, 

reliable system evaluation can be performed based on the 

causal relationship between all nodes, allowing for the 

use of causal reasoning mechanisms to determine the 

system failure probability via the collaborative 

relationship between the units of the system. All of this 

in conjunction provides a theoretical basis for system 

reliability assessment. 

 
4. 1. Emergency Control Fault Analysis       The 

reliability analysis was conducted according to the initial 

emergency control system Bayesian network. If the 

system failed, node T was assumed to be 100% in the N 

state, as shown in Figure 7(a). The intelligent control of 

node E1 failure probability was 3.6%, the remote control 

node E2 failure probability was 97%, the visible 

intelligent control in double insurance was under the 

action of high reliability; therefore, the analysis of the 

remote control node E2 to the next level node, as shown 

 

 

 
(a) Node T fault reasoning 

 
(b) Node E2 fault reasoning 

 
(c) Node M3 fault reasoning 

Figure 7. Node M3 fault reasoning 

in Figure 7(b), determined that the controller sub-station 

node M3 failure rate was 55.3% and the damper node M4 

failure rate was 49.1%. After comparison, the lower level 

analysis of the controller substation node M3 was 

conducted, as shown in Figure 7(c), and the 

communication node C6 failure rate of the sub-station 

was 68.2%, the control node C7 failure rate of the sub-

station was 11.4%, and the data acquisition node C5 

failure rate was 22.7%. The analysis shows that the 

probability of fault caused by sub-station communication 

was the highest under normal fault condition. 

 

4. 2. Intelligent Control Fault Analysis       The 

emergency control system of catastrophic wind flow 

obtains the airflow control parameters of each branch 

through intelligent calculation of underground data 

collection, thus realizing intelligent control of fire smoke 

flow, which is the key of the emergency control system. 

The intelligent control system examined herein was made 

up of upper machine and ground centers in parallel, 

which could simultaneously read intelligent control 

commands sent to relief sub-station data information and 

conduct intelligent double insurance control. When the 

emergency air control system fails, assuming that the 

remote control node E2 is in a normal state, the intelligent 

control node E1 will fail, so as to conduct reliability 

reasoning on each cause node. 
At this point, as shown in Figure 8, both the upper 

computer node M1 and the ground central station node 

M2 fail simultaneously. The failure rate of node C1 is 

16.8%, the failure rate of node C2 is 84%, the failure rate 

of node C3 is 81.3%, and the failure rate of node C4 is 

20.3%. Analysis shows that the data monitoring node C2 

and the communication node C3 of the central station are 

more likely to cause intelligent control faults, so as to 

conduct troubleshooting. 

 

 

 
Figure 8. Fault analysis of intelligent control 

 
 
5. CONCLUSION 
 
Given the lack of perfect system data, a reliability 

evaluation model from failure impact analysis and fault 

impact analysis to Bayesian network was established to 
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analyze the reliability of the system by using the 

uncertainty processing ability of Bayesian networks. 

The structural process of the emergency control 

system was analyzed, the system reliability analysis 

model was established, and 17 Bayesian network nodes 

and states were determined. Based on the prior 

probability of the root node and the conditional 

probability of each node, the initial Bayesian network of 

a disaster airflow emergency control system was 

established. 

Based on the Netica Bayesian learning software, the 

reliable diagnosis of the disaster airflow emergency 

control system was carried out, and the diagnosis results 

showed that the probability of failure caused by sub-

station communication node was the highest under 

normal circumstances. Through the analysis of the 

intelligent control of the system, it was concluded that the 

data monitoring node and the central station 

communication node have a greater impact on the 

intelligent control and are prone to failure. Predict and 

diagnose system failures, analyze the weak links of the 

system, guide operation and maintenance, and realize the 

optimization of system design. 
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Persian Abstract 

 چکیده 
های بیزی برای حل مشکلات قابلیت اطمینان سیستم کنترل جریان هوای اضطراری ارائه داده است.  این مطالعه یک روش جدید برای استدلال خرابی سیستم مبتنی بر شبکه 

های گره شبکه و  درخت خطای سیستم برای شناسایی رابطه منطقی بین واحدها ایجاد شد که سپس به مدل تجزیه و تحلیل خطای شبکه بیزی برای تعیین حالت یک مدل  

 Netica Bayesianبر ابزار  گره سیستم تبدیل شد. تجزیه و تحلیل قابلیت اطمینان مدل مبتنیهای شاخههای تشخیصی در جدول احتمال شرطی و همچنین انجام استدلال

های ارتباطی ایستگاه مرکزی تأثیر بیشتری در کنترل  دهد که احتمال خرابی سیستم ناشی از گره ارتباطی پست در شرایط عادی بیشترین است و نظارت بر داده و گره نشان می 

رچوب شبکه بیزی برای بهبود قابلیت اطمینان و در آنجا با ایجاد یک بنیان نظری  سازی طراحی سیستم در چا بینی و تشخیص خطاهای سیستم، بهینههوشمند دارند. با پیش

 یابد.برای تحقیقات پیشگیری از بلایای آتی تحقق می
 


