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ABSTRACT

Lyapunov's direct method is a primary tool for designing Model Reference Adaptive Control (MRAC)
and robust MRAC schemes. In general, Lyapunov function candidates contain two categories of
quadratic terms. The first category includes the system tracking error quadratic terms or, in some cases,
consist of the system state quadratic terms. The second consists of the parameter estimation error
quadratic terms. To design MRAC and Robust MRAC systems, researchers have used a limited variety
for choosing quadratic terms. In this study, we consider a general form for the tracking error quadratic
terms. We consider a strictly increasing function that belongs to the class of c?, which is a function of
state tracking error quadratic terms. It yields a general structure for stable adaptive laws for updating
controller parameters. For the MRAC scheme, the global asymptotic stability of the closed-loop system
and stability and uniform bounded tracking of robust MRAC schemes are guaranteed. To evaluate the

Wing Rock

performance of the designed controllers, we consider the single DOF wing rock dynamics.

doi: 10.5829/ije.2020.33.11b.28

1. INTRODUCTION

Many combat aircraft may have to fly at a high angle of
attack to obtain air superiority. In this situation, the flight
occurs outside of the flight envelope in the nonlinear
regime. In this situation, airflow separation may occur. In
this situation, the boundary layer's speed relative to the
wing is reduced to zero because the boundary layer
moves against an adverse pressure gradient. When the
aircraft moves through the air, cause the fluid flow to
separate from the wing, and vortices are produced. The
Wing Rock phenomenon is one of the undesirable
motions which appears as limit cycle oscillations in the
aircraft roll angle, leading to lateral directional instability
and putting the flight in danger. Several experiments and
investigations performed on a highly slender forebody
and a highly swept delta wing. These studies confirmed
that the interaction between the forebody and the wing
vortices are the main cause of the wing rock motion [1-
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10]. The exact analytical expression of the rolling
moment coefficient is difficult to derive. Therefore, some
researchers proposed several approximate models. A
nonlinear aerodynamic model is proposed by Hsu and
Lan [11] to drive the limit cycle amplitude and frequency
of wing rock motion. based on the numerical simulation
of the wing rock motion, an analytic expression for the
roll moment coefficient is proposed by Nayfeh et al. [12].
The result was used to describe the phase plane analysis
of the nonlinear motion, includes determining the type of
equilibrium points and calculating domains of initial
conditions that lead to oscillatory motion or divergence.
A modified version of the wing rock model proposed by
Hsu and Lan [11] is developed by Elzebda et al. [13]. The
numerical values of the coefficients, in the roll moment
coefficient, are obtained by the curve fitting method.
Data are collected from simulation results. The
dynamical equations of motion of wing rock for aircraft,
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which have single, two, and three rotational degrees of
freedom, are proposed by Go [14].

The control of the wing rock is a significant research
area and a series of studies based on the control methods
presented in what follows. A neural-network
identification based control (NNIAC) scheme using the
L2 tracking technique is developed to reduce the effect of
the approximation error on the tracking performance
[15]. The proposed controller is applied to control a wing
rock limit cycle to show its effectiveness. It has been
reported in literature [16], a new reinforcement adaptive
fuzzy control system for tracking control a wing rock
motion in the presence of the uncertainty and unknown
Elzebda is proposed. A fuzzy approximator is applied to
identify the unknown nonlinear function. The
reinforcement adaptive law derived from the Lyapunov
stability theory. The proposed algorithm showed high
tracking performance and robustness in the presence of
uncertainty [17]. A simplified interval fuzzy sliding
control scheme is proposed for suppressing and tracking
the desired trajectories. The simulation results showed
that the proposed algorithm could make the wing rock
system reach the desired state without overshoots. A
supervisory recurrent fuzzy neural network control
(SRFNNC) system is proposed for the wing rock control
system [18]. An adaptive feedback linearizing controller
with the backstepping approach for the wing rock control
is proposed in literature [19]. A new control law based on
the variable structure model reference adaptive control is
presented [20]. The wing rock problem with unstructured
nonlinearity and disturbance input is considered.
Simulation results showed good transient performance
and disturbance rejection capability of the proposed
controller.

The Lyapunov stability method, also known as the
Lyapunov's direct method, is widely used in the design of
adaptive algorithms for updating controller parameters or
designing adaptive observers. An SM rotor flux observer
has been developed to estimate rotor speed [21]. The
stability of this observer is guaranteed by the Lyapunov's
stability method. A new method for designing adaptive
fuzzy dynamic sliding mode control for the nonlinear
system is applied [22]. The process of deriving adaptive
switching gain is performed by Lyapunov's direct
method. A new adaptive control for direct-drive robot
manipulators driven by PMSM in tracking application
has been developed [23]. The control method has verified
by the Lyapunov stability method. A robust adaptive
controller is implemented to control a spacecraft
simulator [24]. The proposed controller is designed based
on nonlinear dynamics to overcome of model
uncertainty. The stability of the robust adaptive controller
is verified through Lyapunov's theorem. An observer-
based robust controller with an adaptive mechanism
designed by Lyapunov's method is proposed to control a
robotic system [25]. A fuzzy adaptive sliding mode

controller was derived for a class of multi-agent systems
[26]. The stability of the closed-loop system is verified
by Lyapunov's method. Quadratic Lyapunov functions
are widely applied in the analysis of linear and nonlinear
systems and the design of adaptive systems. One of the
methods of designing adaptive systems is based on
Lyapunov's stability method, which is widely used in
designing stable MRAC systems. By using a new non-
quadratic Lyapunov function (NQLF), new adaptive
Laws for the MRAC scheme presented in literature [27].
The author used e*instead of e?signal for the tracking
error, in the Lyapunov function and the new stable
adaptive laws which contain e3signal derived. By using
the same Lyapunov function, new adaptive law which
uses the cube of the same error signal for robust adaptive
scheme, dead zone modification, is presented [28]. A
control scheme for the robust adaptive tracking based on
MRAC via a switching non-quadratic Lyapunov function
is proposed [29]. In this study, we intend to design the
MRAC and Robust MRAC controller by considering a
general form for the Lyapunov function candidate. In
section (2), we introduce the mathematical model of the
wing rock proposed in literature [13]. In the section (3)
we design MRAC with Matched parameter uncertainty
with a general Lyapunov function candidate, In the
section (4) we design MRAC modifications known as
sigma modification and e-modification with the
Lyapunov function introduced in section (3) and in the
section (5) some simulations have done to evaluate the
performance of the MRAC and Robust MRAC designed
in the previous sections.

2. WING ROCK DYNAMICS AND PHASE PLANE
ANALYSIS

The wing rock phenomenon happens in the six DOF
space, but the dominant feature of this motion can be
demonstrated by a one DOF oscillation along the
longitudinal axis of aircraft. The mathematical models of
the wing rock presented in the literature were obtained by
the least-square fitting method in the data of the wind
tunnel test. In this section, we introduce the one DOF roll
moment coefficient, the modified Hsu and Lan model,
studied by Elzebda et al. [13]:

CL(d)(t)-fi)(t)) =a:6(t) + a, () +

az|d®IP(®) + as|d®[ D) +asd®(¥)
In Equation (1), ¢(t) is the roll angle, ¢(t) is the roll rate,
and q; are the roll moment coefficients obtained by
fitting this expression to the numerical simulation
gathered from wind tunnel test using the least square
criteria. The following equation of motion is considered
in literature [12-13]:

pU%Sb
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In Equation (2), p is the air density, S is the plan form
area, U, is the freestream speed, b is the chord, and I, is
the wing mass moment of inertia around the midspan
axis. The effect of bearing viscous damping presented by
the last term. Let:

__ pU%LSb
B e ®)
Substituting Equation (2) into Equation (1) yields:
6 (1) = Ea; b(t) + (Ea, + D)(t) + @

Eaz|p(D)|d(t) + Eas|d(0)|d(t) + Easd* (V)

The values of E and the viscous damping coefficient, D
is considered as [13]:

E = 0.354 )

D = 0.001 (6)

The values of the roll moment coefficients a;, in the
Equation (1) for different angles of attack are presented
in Table 1.

Considering the initial condition ¢(0) = 1 (deg),
$) =0 (d—ecg), and Angle of attack a = 22.5 deg the

se

uncontrolled motion of the wing rock phenomenon is
presented in the Figures 1 to 4.

According to Figures 1 to 4, it is clear that although
the initial condition is small, the roll angle develops into
the limit cycle, which means that a small disturbance is
sufficient to cause the wing rock oscillation. The
mathematical control model for a single DOF wing rock
phenomenon is considered as follows:

TABLE 1. Coefficients of Equation (1) [13]

a(deg) a, a, as a, as
15 -0.010259 -0.02143  0.05711 -0.0619 -0.146
215 -0.04177  0.01461  -0.06732  0.0841 0.046
22.5 -0.04569  0.02351  -0.09944  0.0689 0.0531
25 -0.05256  0.04568 -0.1765 0.0269 0.0606
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Figure 1. Roll Angle Limit Cycle build up o = 22.5 deg
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Figure 4.Wing Rock Phase Plane a = 22.5 deg

¢ =EC + D + dou (7

In Equation (7), d, is the control effectiveness, and u is

the control signal. Let x, = ¢ , x, = ¢. The state-space
representation of Equation (2) becomes:

X1 = Xp
%, = Ea;x; + (Eay + D)x, + Eazlxq[|x; + ®)
Ea,|x,|x, + Easx;3 + dyu

Equation (8) can be written in the matrix form as follows:
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HOI_[0 1 Jx®], (0
[Xz(t) - [Eal Ea, + D] [XZ (t)] + [1] do(u + ©
Tl + Tl + T )

3. MRAC DESIGN FOR MIMO SYSTEMS WITH
MATCHED UNCERTAINTY

In this section, we design an MRAC controller with
general stable adaptive laws for a class of nonlinear
systems with parametric uncertainty. We consider a
MIMO system in the form of Equation (10):

X(t) = Ax(t) + BA(u(t) + M(x(t))) (10)

where in Equation (10), x(t) € R® is the system state
vector, A € R™" js supposed to be constant and unknown,
, Be R™™ js constant and known, A € R™™ s an
unknown constant matrix, and it is supposed to be
diagonal with strictly positive elements, u(t) € R™ is the
control input, we assume that the pair (A,BA) is
controllable. In general, M(x(t)): R® —» R™ is an unknown
vector function which its components are functions of x(t), it
is supposed that M(x(t)) could be written in the form of
Equation (11) :

M(x(t)) = 8T (r(x(H) (1)

In Equation (11), 8(t) € RN*™ is an unknown matrix with
constant coefficients, and u(x(t)) eRNis an N-
dimensional regressor vector:

px@®) = .
(s (X (D). 2 (X(D). p3(X(D). ... (X(D))

Equation (11) represents the matched parametric
uncertainty of the system. We consider the following
reference model:

Xm(t) = ApXp (D) + er(t) (13)

(12)

In Equation (13), A,is a model reference Hurwitz
matrix, and r(t) is a bounded reference command. We
consider the following definition:

(1) = x(t) —xm (D) (14)

Without having parametric uncertainty which means that
A and A are known, we use the following ideal fixed gain
control law:

u(t) = KIx(t) + KTr(t) — 0Tp(x(v) (15)
Using Equations (15) and (10), yields:

x(t) = Ax(t) + BA[KTx(t) + KTr(t)] = (A +

BAKDx(t) + BAKTr(t) (16)

Assumption: Given matrices A and B and an unknown
matrix A, there must exist unknown matrices K, and
K, must satisfy Equation (17):

A, = A+ BAKY, B, = BAKT 17)
Now control input is chosen as follows:
u(t) = KF(Ox(®) + KF (Or(®) — 8T (Hp(x(®) (18)
Using Equations (18), (10), and (11) yields:
x(t) = (A + BAR;E(t)) x(t) + BAKRT (Or(t) —
(@1 — 0) u(x(®)
Subtracting Equation (13) from Equation (19), yields:
% = (A + BAK](t))x() + BART(Or(t) —

(19)

" 20

(8() - 8) 1(X(D) — ApXpn (1) — Bur(®) 20)
Using Equation (17), Equation (20) becomes:

£(t) = An%(t) + BA[(Ry (D) — Ky) 'x(0) + e

(R —K,) 'r(®) — (8(t) — 0) " n(x(1))]
The parameter estimation errors are defined as follows:
o) =0(t)—0
{Rx(t) = Rx(t) - Kx (22)
Ihzr(t) = I’Zr(t) -K;

Substituting Equation (22) into Equation (21) yields the
tracking error dynamics:
(1) = AmX(D) + BAKI(Dx(1) + K (Or(H) —
CHOIEG))

We consider a general quadratic Lyapunov function
candidate in the form of Equation (24):

(23)

V = f&ET(OPX() + tr([KT (O 1K, (D) +

KT (O K () + 8T (DT 0(0]A) (24)

In Equation (24), f is a scalar function, which is strictly
increasing f’ > 0 with f(0)=0, and it is supposed to be
continuously differentiable (fe C'). Ty, I, and Ty are
symmetric positive definite matrices denote the rates of
adaptation. P is the symmetric positive definite matrix
which is the unique solution of the algebraic Lyapunov
equation with symmetric positive definite matrix Q:

ATP+PA, =-Q (25)

The first time derivative of the Lyapunov function
becomes:

- dfET(OPR(D) = s
V=T +~2tr([K',£Sc)I'X 1Ry (0) + -
RIOK () + 8T (O3 16()]| A)

Using the chain rule for simplifying the time derivative
yields:

. df(xTOPx®) d(xTOP®)
T dEFT(OPR®) dt +
2tr ([Rl(t)l‘;lﬁx(t) + KT (O K (0 +

CHOWSCIGINY

(@7)
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The first term of Equation (27) can be written as follows:

. . N - - dfET()PR(D)
V= (XT®PX(t) + XxT(OPX(D)) m
2tr([ﬁ§(t)r,;1kx(t) +RIOLK (0 + (28)

CHO) rRIONRY

Evaluating Equation (28) along the trajectory of the error
dynamics Equation (23) yields:
S o ) AT OPx(®)
V== (X (t)Qx(t)) d(XT(OPX(D)) +
ot o df(XT®PK(®)
2X (t)PBAKx (t)X(t)m
df(xT(OPR())
dETOPX(M) (29)
df(XT(OPX(D))
. d(iT(t)Pi(t.))
2tr ([REOT R, (1) + REOT K () +

8T (O 6w |A)

28T () PBAKT (H)r

28T (H)PBABT (pu(x(D)

Applying the vector-trace identity:
wTz = tr(zwT) (30)

Yields:
~ T X
%T(t)PBAKT ()x(t) %m =
df(xT()PK(L))
dxT (t)P)"((t)))
dfXT(OPR(D) _
dET(OPX(D)

=T T dfET()PR(L)) 31
(R OrOXTOPBAG 5020 (31)

tr(KT ()x(H)xT () PBA

£T(OPBAKT (Hr(t)

ST =T dfET(OPR(L) _
%" (t)PBAO (t)u(x(t)) AT OPRE) —

=T T df(&T(H)PR(D)
tr (9 OR(x()RT(OPBA T O (t)Pﬁ(t)))

Using Equations (29) and (31) and Collecting similar
terms gives:

Y ST ooy AFETOPK()
V= -2 (OO T orao)

7 &T A& OP(D)
2tr (Kx OxOX(HPBA d(XT(D)PK(1)
RI(ONR(DA) +

=T ST dfET(OPR(D)
2tr (Kr OrOKT(OPBA T + (32)

+

KI(OF 'K (DA) +
2tr (87 () p(x()x" ()PBA
871 1B(HA)

AfET(OPK()
dET()PR(D)

Choosing the following MRAC adaptive laws:

Rx(t) = Rx(t) - Kx T= Rx(t) =
_ =T df(x" (H)PX(t))
Ix(H)X" (v)PB TETOPRD).
. . o (33)
Kr(t) = Kr(t) - Kr = Kr(t) =

_ T df(xT(t)PL(t))
I,r(H)X" (vyPB TETOPRD).

W =0-0=00 =

T dfxT()P%(t))
Ty u(x(t))x (t)PB T OPD)
Yields:

df T (H)PK(t))
dET(O)PR(Y) —

V = —xT(H)QX(t) (34)

Equation (34) Proves uniform ultimate boundedness of
£(6). Kx(0) .K, (1).9 (t). Since r is a bounded command
and A, is a Hurwitz matrix, then x,,, is bounded. Using
Equation (14) x =%+ x,, we can conclude that xis a
bounded signal. We know that the ideal control gains
K, K..0 are constant, therefore using the fact that
K, (t) .K, (t).8 (t) are bounded, then using Equation (22)
implies that Ky (t).K.(t).8(t) are bounded. Calculating
the second time derivative of the Lyapunov function
yields:

V= -[xT()(ALQ + QAR)X(D) +
25T ()PBAKT ()x(t) + 28T () PBAKT (H)r(t) —

. ~ df (xT(H)P%
25T OPBATT O(x(O) ST 0D - -

T (OQR([X" (1) (ALP + PAR)X(Y) +

28T (PBAKT (D)x(t) + 2&%T () PBAKT ())r(t) —

22T (OPBABT(OR(X()] (s mace

We know that every continuously differentiable function
(feC') on a compact set is Lipschitz which has a bounded
derivative (Appendix A). 1-Lipschitz condition yields 2-
Lipschitz which guarantees the boundedness of the
second time derivative (Appendix B). we can conclude
that the second time derivative of the Lyapunov function
is bounded:

V<o (36)

Equations (34) and (36) indicate that V is uniformly
continuous of time. Since V is lower bounded and V < 0
and V is uniformly continuous then using Barbalat's
lemma [30], yields:

df&T OPR®)

lim V = lim [—%T () Q%(t =0 37
lim V= lim [-X" (D) QX(1) d(xT(t)PX(t))] 37
df(xT ())P(L)) .
We know that ——=—"=" o) > O therefore:

lim —%T(HQX(D) = 0 ~ lim[Ix()) — xm (DIl = 0 (38)

We prove that the tracking error globally uniformly
asymptotically tends to zero. The general adaptive law
Equation (33) can be considered as an simple adaptive

. . . . ; _ dfETOPR(Y)
law with variable adaptation gains, I’ = rid(ﬂ(t)rx(t))
which yields:

R, (t) = —I/x(OXT () PB

R.(t) = —T.'r(®%"(t)PB (39)

8(0) = T n(x())X"(OPB
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4. ROBUST MRAC SCHEMES

4. 1. 0 — Modification We consider a class of
MIMO uncertain systems with matched parametric
uncertainty subjected to a bounded external disturbance
as follows:

x(t) = Ax(t) + BA[u(t) + 0Tux)] + ¢(v) (40)

In Equation (40), x(t) € R" is the state vector of the
system, A € R™" is a known matrix, B € R™™ is a
known control matrix we assume that the pair (A.BA) is
controllable, u(t) € R™ is the control signal, @ € RP*™
is a matrix of unknown parameters, p(x) € RP is the
known regressor vector, which is a continuous Lipschitz
function of x(t), and {(t) € R" is a bounded external
disturbance. We consider the following reference model:

Xm ® = AnXm ®+ B,r(t) (41)

In Equation (41), A, € R™" is a known Hurwitz matrix,
B, € R™T s assumed to be known, and r(t) € R" is a
bounded time-varying reference command.
Assumption: given matrices A and B, there exist
matrices K, and K, such that Equation (42) be satisfied.

A = A+ BAKT

B,, = BAKT (42)
We use the control input u(t) as follows:
u=Kx+Kr-0Tp®x) (43)

Subtracting Equation (41) from Equation (40) yields:

x(t) — X, (1) = Ax(t) + BA[u(®) + 0Tpx)] +
((t) - Ame (t) - er(t)
Substituting Equation (43) in Equation (44) and using
Equation (42) gives:

(44)

X(t) — X () = Apx(t) — BA(OT — 8T)u(x) +

3O — ApXn (D “3)
Simplifying Equation (45) yields the tracking error
dynamics:

%= An% —BAOTU(X) + (0 (46)
The o — Modification to the MRAC adaptive law is:

0= F(p(x)iTPBM - 60) (47)

d(xT(OPx(D)
In Equation (47), o > 0 is the modification parameter.
Now we consider the following radially unbounded
Lyapunov function candidate:

V(%.0) = fET(OPX(D) + tr(8TT~10A) (48)
The first time derivative of the Lyapunov function
candidates becomes:

dfET () PR(L))

V(%.8) = (X"Px + X"PX) dET(OPID) (49)

2tr (éTr—léA)

Using Equations (46) and (49) yields:
V(%.0) = [(TAL, — nT(x)0ABT + {T)Px +
df(XT(HPX())
d(xT(OPR(D) (50)

2tr[0Tr1 (F [(u(X)f(TPB % - GG)D Al

XTP(ApX — BABTp(x) + 7)]

Simplifying Equation (50) yields:

V(%.8) = XTIARP + PA, |k o OO

2%TPQ %

—2%TPBAO u(x) % "
26r[6T()XTPBA % —0870A]

Using the vector- trace identity Equation (30) and the
algebraic Lyapunov equation:

ATP+PA, =-Q (52)
Equation (51) becomes:
e = T o dfxT ©Px®)
V(%.0) = (-&T 28TP)) ————2 —
(%8) = (=x"Qx + 2%PY) d&" OPRW®) (53)
20tr[070A]
Using:
0=0+60 (54)
Yields:
P T o dfx" ©OP®)
V(%8) = (—xTQx + 2%TPY) ——— 2 —
(.0) = (—xTQx + 22"PQ) ) (55)

20tr[0TOA] — 20tr[6T6A]

We use the Frobenius norm definition, and the Cauchy
Schwarz inequality (51) presented as follows:

tr[878A] = TN, 24 83 Ay > [[8]|"Ain
(56)
|er@Ton)| < [|870|| llAllr < [[8]] lIBlllIAlF

The upper bound of the external disturbance and
unknown parameters are considered as follows:

Go = max|[T]|
(57)
8o = 18]l

Using Equations (56), and (57), Equation (55) can be
written as follows:

V(%.0) < [~ Amin(QIII* +

S df(xT(t)Px(t))

2 ||X!7\max Pl T orzm)
20| 18]| lI8llEllAllF

- 20”5”12:Amin + (58)

We use the following inequality:
2ab < a? + b? (59)

Equation (58) becomes:
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V(i 6) (_}\min(Q)”illz +

®PK®
2/I%/Amax (P)To) W

s([18]1% + el Al

2

20]8]];

Amin +

(60)
= (_)\min(Q)”XHZ
A(ZTOPRO) 2
2||X||7\max(P)§o)m o||8]| ;(2Amin +
IAllE) + ollBliZIAllF
If we choose:
~ 2 ~
mm(Q)”x” + 2”X||)\max(P)(0 < 0 (61)

—o|8][F @A + lAllp) + sllelF][AllF <
Or:

max( ) It
= {(x98): Izl < (‘;)(0 Allel, <

[181IZ]IAllF } (62)
\ 2ZAmin+lIAllF

Then we have V < 0 outside of the compact set @, and
V > 0 inside it. We prove that all signals in the closed-
loop system are uniformly, ultimately bounded.

4. 2. e-Modification By definition, the e —
Modification to the MRAC adaptive law that estimates
o(t) is:
& di(xTOPRO)
d(xT()Px(D))
In Equation (63), « > 0 is the modification parameter. We
consider the following radially unbounded Lyapunov
function:

(r()X"PB — «||X"PB||0) (63)

V(.0) = fET(OPX(D) + tr(8TT~10A) (64)
The first time derivative of the Equation (64) becomes:

T T df(xT()PR(D))

V(x 9) (x PX + X' PX )711 EOPRD) (65)
2tr (877164

Using the tracking error dynamics Equation (46) yields:

V(x.0) = [(xTAL, — pT(x)éABT +TNPx +
(x"®Px(®)
d(xT(OPx(D))

af(x" PV 7 (66)
A(TorD) MEOXPB —

XKTP(ApnX — BABTp(x) + ()]
2tr[0Tr 1 (r

a||iTPB||§)A)]
Simplifying Equation (66) gives:

- df &T(OPX(t

V(%.8) = XTIALP + PAL IR S e

df(xT(t)Px(t))

d&T(OPX(D)

Af(x"(OPK(®)) (67)

d(xT(OPx(D))

2%TP

2%TPBAB  n(x)

df(XT(OPK())

d(xT(OPx(D) tr[(éTu(X)iTPB - O‘ll’N‘TPBHG)A]

Same as the previous section using the vector- trace
identity Equation (30) and the algebraic Lyapunov
Equation (52) yields:

e ) — (_oTO ST AfETOPR()
V(%.0) =( % ({x + 2% PO opxy (68)
2a||xTPB||tr[670A]
Using® =0 +6:
AfETOPR()

7(% 0) = (—sTO% <T

V(%8) = ( x~(ix+2x PQ) AETOPR) (69)
2a/|x"PB||tr[670A] — 2a||X"PB||tr[6T0A]
Using the Frobenius norm and the Cauchy Schwartz
inequality (56) and the upper bound of the external

disturbance and unknown parameters Equation (57), we
have the following inequality:

V(%98) <
£T(OPK()
[ mmm)nquz||x||xmaX(P)<o]%

2| XPB 82 Amin + 20|57 3] 0Nl

(70)

Using Equation (59) gives:
V(ii 6) (_}\min(Q)”)‘Z”2 +

(OPK®
2|l Amax (P)To) W

20‘II>~<TPBIIIIGIIFAmn +a|[<™PB| 8], +
IBUDIIANlE = (—Amin (@ I1%II2 + (71)

df £T(H)PR(t)
2||X||7\max(P)§o)pr(t)))

a||iTPB||||9||F(2Amin + [IAllg) +
|| XTPBY|lI8lIZIIAllr

If we choose:

~Amin(QIII? + 2[I%]Anay (P) < 0

~T ~
—a|lx PBII||9I|2(2Amm + [allp + (72)
olx"pBl[lelI}llAll; <

Or:

meax(P)Z iy
= (% 8): %) < 222 7|5 <

’ lI8lZ Al ) (73)
2Amin+”A“F

Same as the previous section, we have V < 0 outside of
the compact set @, and V > 0 inside it, and all signals in
the closed-loop system are uniformly ultimately
bounded.

5. SIMULATIONS

5.1. MRAC Scheme In this section, the validity of
the proposed general MRAC adaptive law is verified by
considering an arbitrary Lyapunov function candidate.
The value of the control effectiveness (uncertainty) is
chosen as:
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do=1 (74)
Considering The following initial conditions for the
system states:

o =5 deg Py = 0(“E); o = 3.75 deg P, =
d d
0(%F)ibo = ~375 deg Ry =0 (Dido = (79)

—5 deg. Py =0 (X8

S

The reference roll dynamics can be considered in the
state-space form:

N [ P

We use the following parameters for damping and natural
frequency and adaptation gains:

0, =-1. p=07

1 0 0
Fr=1-Fx=[(1) 2].&,:[0 1 0] 77
0 0 1
Considering the scalar function:
fW=1+wHW -1 . u>0 (78)

The first derivative of this function becomes:

f'(w) = (1 + w) W [(u+1) + 2(u + 1)Ln(u +
1] (79)

It is clear that:
f(0)=0and Vu=0. f'(u) >0 (80)

Given the fact that every quadratic term is equal or
greater than zero, we use the following Lyapunov
function candidate:

V = (1 + XT(OPK(D)) A+ OPK®)* _ 1 4
tr([REOL IR (1) + RIOF R () + (81)
RG] rRCIGINY)

According to Equation (33), we have the following
adaptive laws:

Kx(D) = —Tx(OXT(OPB[(1 +

)(1+XT(t)Pi(t))2 y (

£T(OPX(Y)
T (OPK(D)) (1 +2Ln(1+ f(T(t)Pi(t)))]

1+

. (82)
K. (®) = —Tr(®OX"(OPB(1+

1+)~¢T(t)l>f¢(t))2 (
X

iT(t)Pi(t))( 1+

LT (HOPK(D)) (1 +2Ln(1+ iT(t)Pi(t)))]

(b =

£T(OPX(t)

reu(x(t))xT(t)PB[(1 +

)(1+XT(t)PX(t))Z y (1

+

O 20)) (1 +2Ln(1+ f(T(t)Pi(t)))]

Simulati

on results presented in Figures 5 to 8:

6
4
2
=)
go f L
=
-2
_4LU
-6
0 20 40 60 80 100 120 140
Time (sec)
Figure 5. Roll Angle Tracking Performance
5
=) \
g o—
= \
5 XS

2379

0 2 4 6 8 10
Time (sec)
Figure 6. Zoomed Plot from Fig.1(different initial
conditions)
3
| l
, b

P(deg/sec)

i i

p—

4
0 20 40 60 8 100 120 140

Time (sec)
Figure 7. Roll Rate Tracking Performance



2380 J. Roshanian and E. Rahimzadeh / IJE TRANSACTIONS B: Applications Vol. 33, No. 11, (November 2020) 2372-2383

02

0.15 ‘

01

p— ‘

u(t)

-0.05

-0.1

-0.15

025
0 20 40 60 80 100 120 140
Time (sec)

Figure 8. Control Signal (Maximum deflection (20 deg))

5. 2. Robust Mrac Schemes In this section, the
performance of the robust MRAC controllers with
general adaptive law by considering an arbitrary
Lyapunov function is evaluated. We use the values of the
parameters corresponding to a = 22.5 deg (Table 1) and
considering the following matrices Q .T and modification
parameter as follows:

100 0 0
Q=|; 2].r=[0 100 o]
0

0 100 (83)

o =0.01,a =0.01
The external disturbance g(t) is modeled as a random

process noise, uniformly distributed on the interval

%[—2 2]. We consider the following radially

unbounded Lyapunov function as follows:

V(z.8) = (1 + £ (OPR(D) T OB’ _ 1 4

tr(8Tr-10A) 64

Consequently, from Equation (47), we have the following
adaptation law for ¢ — modification scheme:
0 = r(u™PB((1 +

)(1+)'(T(t)P)'((t))z (

£T(H)PX(D)

2Ln (1 + )”(T(t)Pf((t))) — 58))

1+ iT(t)Pi(t)) (1 + (85)

According to Equation (63), we have the following
adaptation law for e — modification:

0=T (1 + 5T (HPR(D)
£T(OPX(D)) (1 +2in(1+ (86)

)(1+XT(t)Pi(t))2 (1 s

)"(T(t)P)"((t))) (L(XXTPB — o|XTPB]|6)

Simulation results presented in Figures 9 to 16:

T
Q

¢ (deg)

r
i
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0 20 40 60 80 100 120 140
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Figure 9. Roll Rate Tracking (o-modification)
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Figure 10. Roll Angle Tracking error
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Figure 11. Roll Rate Tracking Performance
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6. CONCLUSION

1M e

In this study, we proposed a general adaptive laws for
MRAC and Robust MRAC schemes. In the simple
MRAC structure, the adaptive laws derived from these
type of Lyapunov function could be considered as an
adaptive law which derived from common quadratic
Lyapunov function with variable adaptation gains. This
4 method can be applied to design Dead-zone modification

W and projection-based MRAC systems. The proposed
B0 a0 60 8 100 120 140 Lyapunov function can be applied to design adaptive

Time (sec) controllers designed by the Lyapunov’s direct method.

Figure 13. Roll Angle Tracking (e-modification)

¢ (deg)
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8. APPENDIX

8.1. Appendix A Let ¢ = M c R™ be an open set,
Let & # N c M be a compact and convex set and let f €
C'(M.R) be a function. We prove that f is Lipschitz on
N, in other words there exists a > 0 such that

IfC) -t <allx—yll .vxy€N (A1)
By definition:
p(®:[0.1] > N (A.2)

p is the line segment between x.y. so we have:

p(0) =x (A3)
p(D) =y (A4)
P =0-x% (A5)

Since N is convex so p(t) lies entirely in N, hence in M.
For x.y € N we have:

IFy) — £Goll = || fy X2 ae]| - || v(p()p' Dt]| <

LIviCe®)e' @[l dt < [ [Ivi(e®)]| o' @ llde

Since N is compact and VfeC"0 (M.R) so VfeC™0
(N.R),IVfl is bounded by some o on N so:

(A6)

L) e’ ®llde < [ allp’®©llde (A7)
Using (A.5) yields:

Jy adlp’@lldt = [ all(y = 0)lldt = ol (y = )l (A8)
Using (A.6),(A.7),and (A.8) yields:

IEy) — £l < aliy = )| (A9)

8. 2. Appendix B

By definition:

[a.b] = = B.1)
Using mean-value theorem yields:

1€ (a.b) > f'(1) = [a.b] (B.2)
For a<b<c we have:

[a.b] = [b.c]| = If'(t,) — f'(x)] < Lla—c| (B.3)

Which proves boundedness of second-time derivative or
2-Lipschitz continuity of the function f.
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