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A B S T R A C T  

 

This paper proposes a new variable frequency zero voltage switching (ZVS) control method for boost 

converter operating in boundary conduction mode (BCM). The intended method keeps the converter in 

BCM despide of the  load and input voltage variations. This is done by changing switching frequency in 
a certain specified range. The proposed method can guarantee circuit performance in BCM via zero-

crossing detection of the inductor current and changing the switching frequency. In addition, with a slight 

modification in control structure, it is possible to achieve a fully ZVS in all cases. This converter control 
is carried out in analog form without using microprocessors which, compared with the digital one, has 

less noise, cost and processing challenges in high frequency applications. Simulation results obtained 

from applying the proposed method on a GaN-based synchronous boost converter in two different 
switching frequency ranges (100KHz and 1MHz) are indicative of the proposed strategy advantages. 
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NOMENCLATURE 

𝐿  Inductor 𝑄𝑅  Charge for switch capacitor 

𝐷  Duty Cycle 𝐼𝐿  Inductor current 

𝑉𝑖  Input Voltage 𝐼𝑒  Extended current  

𝑉𝑜𝑢𝑡  Output Voltage 𝐼𝑒𝑚  Negative maximum of  inductor current 

𝑓𝑠𝑤  Switching Frequency 𝑇𝑅  Resonance time 

𝐶𝑜𝑠𝑠  Switch capacitor   

 
1. INTRODUCTION1 
 
DC-DC boost converters are particularly significant due 

to their high voltage gain, input current continuity, and 

power factor correction. As it is known, different Pulse 

Width Modulation (PWM) methods are the well-known 

control strategies for these converters. Conventionally, in 

these methods, the voltage on the switch or its current is 

unexpectedly switched off and on, known as hard 
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switching. Switching losses, high stresses, limitations in 

higher frequencies, noise amplification, and 

electromagnetic interferences are among the important 

shortcomings of hard switching. In general, to minimize 

the size and volume of the power electronic converters, 

switching frequency should be increased which, in turn, 

increases switching losses and Electromagnetic 

Interferences (EMI). To solve these issues, soft switching 

methods are widely employed [1, 2]. 
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Soft switching techniques include Zero Current 

Switching (ZCS) and Zero Voltage Switching (ZVS). 

Using soft switching causes switching losses reduction, 

high efficiency, better temperature control of switches in 

power electronic converters [3–7]. 

Resonant converters are the first category of the soft 

switching converters. Resonance circuits are used for 

creating soft switching conditions in these converters. 

One drawback of the resonant converters is the change in 

structure of the converter topology where the application 

of passive elements in the system leads to volume and 

cost increment [8]. One desirable method for the 

realization of soft switching in DC-DC converters is 

converter operation in Boundary Conduction Mode 

(BCM); so that, unlike resonant converters, this is 

conducted without the slightest change in the structure of 

the power electronic converter. Designing in BCM mode 

causes reduction of the input inductor size, loss reduction 

of switch turn-on time and reduction of some issues 

regarding reverse recovery compared with design in 

Continuous Conduction Mode (CCM). In addition, by 

slightly modifying the controller, the ZVS or near ZVS 

(also called valley switching) can be easily achieved. 

Boost Power Factor Correction (PFC) converters are 

widely used since the switching loss of the power switch 

can be minimized by ZVS or valley switching [9–11]. 

Over the past decades, due to space limitations and 

issues related to weight and cost reduction, the evolution 

of power electronic systems tended toward systems with 

high energy density, leading to an efficiency increase 

[12–15]. High frequency Silicon switch circuits have 

unacceptable switching loss.  Therefore, in order to 

obtain the appropriate voltage and current ripples, large 

passive elements are required. The capacitors and 

inductors mainly comprise a large amount of volume and 

area. Due to the usage of large capacitors, problems such 

as reduced converter efficiency and inappropriate ripple 

have arisen.  Nevertheless, designing the converter in 

BCM generates more current stress, which increases 

switch conductive losses and size of the input filter. 

Wide-bandgap (WBG) switches such as SiC (Silicon 

carbide) and GaN (Gallium nitride) are used to solve this 

problem due to the low gate charge and the input and 

output capacitors that operate at a higher switching 

frequency [16–19].   

Regarding properties of GaN transistors, BCM with 

valley switching in a boost converter was exposed as an 

ideal application of newly emerged GaN products. This 

is because the parasitic elements of the devices can be 

best accommodated at high frequencies i.e. losses of the 

devices can be minimized [20]. 

One of the highly significant considerations in 

designing circuit operation in BCM is the zero-crossing 

detection of the inductor current. Various methods are 

proposed for zero-crossing detection of the inductor 

current and converter operation in BCM. An inductor 

was used for current monitoring in [21]. Inverse current 

detection by a freewheeling switch was investigated and 

implemented in [22]. An RC filter for zero current 

detection was used in [23] by a series resistance in 

predictive online digital control method. Some sensors 

are employed for measuring inductor current, which are 

not appropriate in high frequency applications due to 

limitations in bandwidth, price and inaccurate current 

measurement. Therefore, current mirror technique, which 

is known as SenseFet in power electronic applications, 

are used for current monitoring. This technique is a 

simple and low-cost method with high efficiency [24, 

25]. In this method, a GaN switch is used as SenseFet and 

the voltage drop of the sensor resistor is proportionate 

with switch current. Bandwidth is not limited in this 

method and measures current with high accuracy [26]. 

The BCM performance in DC-DC converters can be 

guaranteed by controlling the switching frequency. 

Regarding this matter, Variable on-time (VOT) control, 

which is a variable frequency technique, has been 

described in [27]. In this method, input voltage [28] or 

peak switch current [29] sampling is used to define the 

slope of the ramp signal, which is compared with the 

error amplifier output. Another method is the hysteresis 

control strategy in which the inductor current is limited 

between upper and lower bands. If the current crosses 

either bands, the switch control signal will be changed 

and the converter will remain in BCM [30]. 

A new method to implement ZVS in BCM with 5 

MHz switching frequency is proposed in [31] which 

increases efficiency up to η=98%. As presented in [32, 

33], having a MHz switching frequency greatly reduces 

size of the inductor and converter input filter that 

significantly affects power density of the system. 

Nonetheless, conditions for a fully ZVS requires input 

and output voltages to be within a certain range. A ZVS 

extension method for BCM synchronous converter is 

presented in [34], such that synchronous rectifier ON-

time is increased in bidirectional converter; therefore, a 

negative inductor current, capable of discharging 

capacitor of the main switch, is generated. A control 

method for achieving ZVS is implemented in [35] by 

eliminating dependency to input and output ratio in a 

MHz BCM boost based power factor correction circuit. 

To obtain the negative inductor current needed for 

achieving ZVS, sampling of the converter input and 

output voltages is required [36]. 

All the above methods were performed assuming that 

the circuit remains in BCM despite the changes in input 

and output parameters. However, any research that 

covers both BCM guarantee and circuit performance in 

fully ZVS has not been conducted yet. 

A new high frequency method for controlling boost 

converter in BCM is proposed in this paper. The 

proposed method keeps boost converter in BCM despide 

of load and input voltage variations by changing 
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switching frequency in a certain specified range. After 

determining the desired frequency at which the converter 

returns to BCM, the controller keeps the switching 

frequency in a projected range. The applied converter is 

a synchronous boost converter using WBG devices. This 

method can guarantee circuit performance in BCM by 

zero-crossing detection of the inductor current and by 

changing switching frequency. In addition, with a slight 

change in control structure, it's possible to achieve a fully 

ZVS in all cases. This converter control is carried out in 

analog form without using microprocessors which, 

compared with digital one, has less noise, cost and 

processing challenges in high frequency applications. 

The basic performance of the proposed control 

method is discussed in Section 2; presents the BCM 

operation both under valley and extended ZVS. The 

equations that define the converter operation under these 

modes are presented in Section 3. The proposed self-

regulating control method for ZVS extension operation is 

proposed in Section 4. Simulation results are examined in 

Section 5 to ensure the accuracy of the proposed control 

algorithm method. 
 
 

2. PROPOSED BOUNDRARY CONDUCTION MODE 
CONTROL IN A BOOST CONVERTER MODEL 
 

The proposed BCM control method is studied in this 

section. In order to show the desirable performance of 

this technique, it is applied to a synchronous boost 

converter in which the diode is replaced by a power 

electronic switch leading to conduction loss reduction 

and system efficiency increase [37]. 

It should be noted that the proposed control method is 

also applicable to the conventional boost converter. On 

the contrary, the realization of fully ZVS occurs only 

when the converter diode is replaced with a synchronous 

switch. In order to have an integrated control strategy, 

both BCM control and fully ZVS realization have been 

applied on the synchronous boost converter. 

Synchronous boost converter along with the proposed 

BCM control technique is shown in Figure 1.  

Firstly, the boost converter is designed in BCM. 

Then, applying the boundary condition, inductor size is 

obtained via Equation (1): 

𝐿BCM =
D (1-D)2𝑅

2fsw
                                    (1) 

where D is the main switch duty cycle, R is the load and 

fsw is the switching frequency. In this control method, the 

switching  frequency varies in a  pre-defined range.  This 

range, by which the circuit can continue to operate in 

BCM, must first be calculated. To this end, the  

relationship between the input voltage, output power and 

output voltage variations are shown in Equation (2). 

𝐿BCM
2I𝐿ave

(𝑉𝑖−
𝑉𝑖
2

𝑉out
)
=LBCM

2Pout

𝑉𝑖
2(1-

𝑉𝑖
𝑉out

)
=

1

𝑓sw
     (2) 

 

 

 
Figure 1. The boost converter and the proposed control 

block diagram 

 

 

According to Equation (2), if load current increases at the 

presence of the constant input and output voltages, the 

converter performance mode will change from BCM to 

CCM. The frequency variation range in which the circuit 

can be maintained in BCM is dependent on the input 

voltage, output voltage and power variations.  

Figure 2 shows the frequency variations versus the 

input voltage and output power according to Equation 

(2). As can be seen from the figure, by a proper control 

of the switching frequency, converter can always be kept 

in BCM despite of the load and input voltage variations. 

As the output current increases, the converter 

performance changes from BCM to CCM. 

As shown in Figure 3, the inductor current has the 

same mean value in both BCM and CCM operation 

modes. If the convertor is shifted to CCM, the control 

strategy can return it to BCM by reducing the frequency. 

 

 

 
Figure 2. Frequency variation range versus input voltage 

and output power 
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In the proposed method, after inductor current 

sampling, an offset with a value close to zero is compared 

with this current. Comparator output is shown as Vcomp in 

Equation (3). According to this equation, if inductor 

current is lower than offset value, the comparator output 

would be +5V. 

𝑉comp = {
+5            I𝐿<offset
0              I𝐿>offset                 

  (3) 

where Vcomp is a square wave. By applying this waveform 

to control on average block, Vcomp average signal (Vcontrol) 

is computed according to Equation (4). Then, according 

to Equation (5), Vcontrol is applied to regulate Icontrol. This 

current charges Cf and plays a crucial role in determining 

switching frequency of the converter.  

𝑉control=Vcc −
𝑘𝑝 ∫ 𝑉compdt𝑇

𝑇
             (4) 

𝐼control =
𝑉cc-VEB-Vcontrol

𝑅control
            (5) 

If Icontrol is zero, there would be no charging source for Cf 

, and production of the switching frequency required for 

circuit performance would be disrupted. In this case, an 

auxiliary current source should be used to generate Imin 

for Cf charging and minimum required frequency. In 

general, required current for Cf charging is calculated 

according to Equation (6). 

𝐼𝑓=Icontrol+Imin          (6) 

𝐼min =
𝑉cc-VEB

𝑅min
            (7) 

To discharge the capacitor, its voltage should be 

compared with Vc reference value. When the capacitor 

voltage reaches to Vc, the comparator output connected 

to the control switch gate is set to logic state 1. Therefore, 

the intended switch is turned on and the capacitor will be 

short-circuited. Hence, the capacitor begins to discharge. 

By continuous charging and discharging of the capacitor, 

a pulse is produced at the comparator output, the 

frequency of which is according to Equation (8). 

𝑓sw =
𝐼𝑓

𝐶𝑓𝑉𝑐
                               (8) 

Therefore, by applying the proposed control method, 

switching frequency could be regulated for circuit 

performance in BCM. Peak current mode method is used  
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Figure 3. Inductor current in BCM and CCM modes with 

same mean value 

to stabilize the output voltage in this converter. The 

output pulse generated by the capacitor charging and 

discharging (which determines switching frequency of 

the converter), is inserted into a RS flip-flop set port. On 

the other hand, reset pulse of the intended flip-flop is 

applied by PI controller responsible for setting the output 

voltage error to zero. The flip-flop output and its 

complement, generate commands for S1 and S2 switches, 

respectively. In this paper, by a slight change in control 

structure, the condition is provided for circuit 

performance in fully ZVS, as discussed in the following. 

 

 

3. OPERATION ANALYSIS OF BOOST CONVERTER 
 

Inductor current in a switching interval of synchronous 

boost converter working in BCM is shown in Figure 4 

[38]. 

It should be noted that given the input and output 

ranges and converter control method, each of these three 

states in Figure 4 could occur in this converter. If 

complete control is not applied to the converter operating 

in BCM, depending on the input and output ratio, modes 

(a) and (b) can be possible; such that in the case of 

Vin<Vout /2, (a) and for Vin>Vout /2, (b) is possible. 

Likewise, by appropriate control, fully ZVS can be 

achieved according to (c). Each switching interval 

includes two major times (TON and TOFF) and two 

resonant times in all three above-mentioned states. 

However, all three states are similar in the first two 

subintervals and different in third and fourth subintervals. 

In the following, the first two subintervals are examined 

first, then three states are explained, separately. 

Primary current of the inductor (IL) and primary 

voltage of the capacitor of the main switch (S1) at the 

beginning of each circuit switching interval is assumed 

as Equation (9): 

𝐼𝐿(𝑡0)=0        ,      VDS1(𝑡0)=0            (9) 

Each switching interval of this converter is divided into 

four subintervals, each of which is discussed below. 

Subinterval 1 [t0<t<t1]:  S1 is turned on during this 

interval and inductor current increases linearly with the 

slope of 
𝑑𝑖

𝑑𝑡
=

𝑉𝑖𝑛

𝐿
. This subinterval is called turn-on time 

(TON), the length of which is determined by control loop 

of the output voltage regulation. S1 is turned off at t1.  

 

 

 
Figure 4. Synchronous boost converter 
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The ultimate value of IL and VDS1 and length of this 

subinterval are as below: 

𝑇ON=t1-t0  ,   I𝐿(𝑡1)=I𝑝      ,    VDS1(𝑡1)=0  (10) 

Subinterval 2 [t1<t<t2]: During this subinterval, both S1 

and S2 are off, and a resonance occurs between the non-

linear capacitors of S1 and S2 (COSS1, COSS2) and the 

inductor; therefore, COSS1, COSS2 will be discharged. The 

length of this subinterval is short, and high inductor 

current is with the amount of IP. Hence, this subinterval 

can be neglected for the following calculations. 
The ultimate value of IL and VDS1 and length of this 

subinterval are as below: 

𝑇R1=t2-t1 , I𝐿(𝑡2)=Ipp»I𝑝 , VDS1(𝑡2)=Vout  (11) 

Subinterval 3 [t2<t<t3]: When COSS2 is fully discharged, 

diode of S2 switch begins to flow inductor current. In fact, 

after a short delay (TR1), S2 switch is turned on at zero 

voltage. At this interval, voltage applied to the inductor 

is negative, thus IL is reduced. Due to the fact that S1 is 

off at this interval, this is the off-time (Toff). 
The ultimate value of IL and VDS1 and length of this 

subinterval are as below: 

𝑇off=t3-t2 ,  I𝐿(𝑡3)=0  ,  VDS1(𝑡2)=Vout  (12) 

Subinterval 4 [t3<t<t4]: When IL reaches to zero, switch 

S1 is turned off and the equivalent circuit is like Figure 6; 

therefore, a resonance occurs between the capacitor and 

inductor and an oscillation with the frequency of 𝜔0 =
1

√(L.(𝐶OSS1+COSS2))
 begins, the behavior of which depends 

on the ratio of input and output voltage, i.e.  
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
. 

 

3. 1. Natural Switching Operation (𝑽𝒊𝒏 <
𝑽𝒐𝒖𝒕

𝟐
)        

When input voltage is less than Vout/2, according to 

Figure 5(a), VDS1 will be zero, and S1 is turned on at zero 

voltage and negative current. 
 

3. 2. Valley Switching Operation (𝑽𝒊𝒏 >
𝑽𝒐𝒖𝒕

𝟐
)       

When input voltage is greater than Vout/2, according to 

Figure 5(b), VDS1 will be zero at resonance interval of 

TR2, because inductor does not have enough energy to 

discharge capacitor and S2 turns on at a small voltage of 

Vvalley. In this case, switching loss is reduced, but fully 

ZVS does not occur. 

The ultimate value of IL and VDS1 and length of this 

subinterval are as below: 

𝑇off=t4-t3 ,  I𝐿(𝑡3)=0 ,  𝑉DS1(𝑡2)=2Vin-Vout =Vvalley  (13) 

To solve this issue and achieve ZVS, S2 should be stayed 

on for a longer period of time. As it can be observed in 

Figure 5(c), during TR2, inductor current should reach to 

an appropriate negative current so that COSS1 is fully 

discharged and S1 turned on both at zero voltage and 

current. 
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(b) Valley switching 
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(c) Extended ZVS 

Figure 5. Current and voltage waveforms: (a) BCM natural 

switching operating waveforms when Vin ≤ 0.5Vout, (b) 

BCM valley switching operating waveforms when Vin > 

0.5Vout, (c) Operation waveforms based on the proposed 

extended ZVS control. 
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4. PROPOSED ANALOG ZVS CONTROL STRATEGY 
 

In this section, the required current (Ie) to achieve fully 

ZVS is calculated. Since this current depends on COSS 

switch capacitor and this capacitor is non-linear, 

according to the datasheet [39], the equationship between 

COSS and VDS in [0-VOUT] is estimated as Equation (14): 

𝐶𝑂𝑆𝑆 = 𝑎𝑉𝐷𝑆
3 + 𝑏𝑉𝐷𝑆

2 + 𝑐𝑉𝐷𝑆 + 𝑑       (14) 

The coefficient of a, b, c, and d are calculated using cftool 

software. 

To achieve fully ZVS, IL should be reduced to Ie. 

After reaching to Ie according to Figure 5(c), S1 is turned 

off and COSS1 begins to charge and COSS2 begins to 

discharge. In this case, according to Figure 4, COSS1 and 

COSS2 are in parallel (𝐶 = 𝐶𝑜𝑠𝑠1||𝐶𝑜𝑠𝑠2), and the 

equivalent circuit is according to Figure 6. Capacitor C is 

assumed linear and its average value is estimated as 

Equation (15). 

{
𝑄𝑅 = ∫ 𝐶𝑜𝑠𝑠𝑑𝑣𝐷𝑆

𝑉𝑜𝑢𝑡
0

        

𝐶 = 𝐶𝑎𝑣𝑒 =
𝑄𝑅

𝑉𝑜𝑢𝑡
                        

          (15) 

According to Figure 7, inductor current will be as 

follows: 

{
 
 

 
 
𝐼𝐿(𝑡)=Acos𝜔0t + Bsin𝜔0t + CV𝑖𝑛
A=I𝑒-CV𝑖𝑛

B=√
𝐶

𝐿
(𝑉𝑖𝑛-V𝑜𝑢𝑡)                        

𝜔0 =
1

√LC

  (16) 

 

 

 
Figure 6. Equivalent resonant circuit 
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Figure 7. Detailed inductor current 

 

To calculate Ie current, Equation (17) is used in 

diagram of Figure 7: 

𝑄𝑅 = ∫ 𝐼𝐿dt
𝑡𝑚
𝑡𝑠

= ∫ 𝐼𝐿dt
𝑡2
𝑡1

   (17) 

In [𝑡𝑠 − 𝑡𝑚], QR is shown as Equation (18): 

𝑄𝑅 =
𝐴

𝜔0
sinω0𝑡𝑚 −

𝐵

𝜔0
cosω0𝑡𝑚+CVin𝑡𝑚 +

𝐵

𝜔0
  (18) 

And in [𝑡𝑚 − 𝑡𝑓]: 

𝑄𝑅 =
𝐴

𝜔0
(sinω0𝑡𝑓-sinω0𝑡𝑚) 

−
𝐵

𝜔0
(cosω0𝑡𝑓-cosω0𝑡𝑚) +CVin(𝑡𝑓-t𝑚)   

(19) 

Tm and tf values are calculated according to Equations 

(20) and (21): 

𝑡𝑚=L
𝐼em-I𝑒

𝑉in-Vout
     (20) 

𝑡𝑓=L
𝐼em-I𝑒

𝑉in-Vout
−
LIem

𝑉in
      (21) 

Using Equations (18)-(21) and Taylor extension, QR will 

be close to zero, Ie and Iem (Iem is the negative maximum 

of IL) will be according to Equations (22) and (23): 

{
  
 

  
 𝐼𝑒 = √𝑘1

2(1-2k2𝑉out)2-4(1-k1(𝑉out-Vin))(𝑘1𝑘2(𝑉𝑜𝑢𝑡+V𝑖𝑛))

𝑘1 =
𝑄

𝐿
(𝑉𝑖𝑛-V𝑜𝑢𝑡)

𝑘2 =
1

2Vin

 (22) 

𝐼em =
𝑘1+I𝑒

2

𝐼𝑒
                                               (23) 

Since 𝑇𝑠𝑤 = 𝑇𝑜𝑛 + 𝑇𝑜𝑓𝑓 + 𝑇𝑒 + 𝑇𝑅 , each subinterval is 

obtained according to Equation (24): 

𝑇on =
LI𝑚

𝑉𝑛
                                             

𝑇off =
LI𝑚

𝑉𝑜-V𝑛
                                             

𝑇𝑒 =
-LI𝑒

𝑉𝑜-V𝑛
                                              

𝑇𝑅=L
𝐼𝑒-Iem

𝑉𝑜-V𝑛
−
LIem

𝑉𝑛
 

(24) 

As stated in Section 2, the proposed closed-loop control 

system guarantees converter performance in BCM. 

Given the attained equations, fully ZVS can be obtained 

by a slight change in this control system. To this end, 

pulse commands going to S1 and S2 should be changed 

according to Figure 8. In addition, offset value computed 

by Ie should be replaced by Equation (22).  Therefore, 

control loop of inductor current, in this section, 

determines Ie instead of zero-crossing detection. When IL 

becomes equal with Ie, controlled pulse of the switching 

frequency goes to the R port of flip-flop2 and commands 

S2 to turn off. Then, this pulse is delayed as long as TR 

time span, calculated in Equation (24). COSS1 is fully 

discharged during this time, then S2 is commanded to be 

turned on. It should be noted that, as before, S1 turn-off  

Vin

L

C=Coss + Coss
1 2

VDS

+

-
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Figure 8. The simplified control diagram of the proposed 

system control strategy 

 

 

command is issued by control loop of voltage stabilizer. 

To reduce the loss more than ever, turn-on command of 

S2 is issued after reaching S1 current to zero. Given the 

above, it is clear that the proposed control method 

guarantees both ZVS and ZCS. 

 

 
5. SIMULATION RESULTS 
 
In order to validate the accuracy of the circuit 

performance, the proposed method is applied to a 

synchronous boost converter and implemented in the 

LTspice software. Also, the values of the circuit 

parameters are displayed in Table 1. 

Boost converter simulation is conducted by the 

proposed control technique in two switching frequency 

ranges. At first, the intended converter is simulated at 

100KHz to prove the accurate performance in BCM 

despite load changes; then, at 1MHz switching frequency 

to prove that control system can achieve fully ZVS.  

The steady state inductor current in BCM is shown in 

Figure 9(a). As can be seen from the figure, under 

nominal  frequency and rated load,  the proposed control 

 

 
TABLE 1. Simulation parameters 

Parameters/Devices Symbol Value/Number 

Inductor L 
17uH(fsw=100KHz) 

1.7uH(fsw=1MHz) 
 

Output Capacitor C 
17.2uF(fsw=100KHz) 

17.2uF(fsw=1MHz) 

Switch S GS66508T 

Input Voltage 𝑉𝑖𝑛 17V 

Output Voltage 𝑉𝑜𝑢𝑡 30V 

Load 𝑅𝐿𝑜𝑎𝑑 25𝛺 

Output Power 𝑃𝑜𝑢𝑡 36W 
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Figure 9. Simulation results: (a) Inductor current, (b) Output 

voltage 

 

 

algorithm maintains the inductor current in BCM. Figure 

9(b) shows the output voltage. As is depicted in the 

figure, by using the peak current mode control method, 

the output voltage of the circuit conforms well to its 

reference value. This voltage reaches to its ultimate value 

after 1.5ms. In this case, the load resistance and the 

switching frequency values are equal to 25 and 100 kHz 

respectively. 

Figure 10 shows the converter output voltage at the 

presence of increasing the load current up to 20%. As it 

can be seen in Figure 10, the output voltage reaches to its 

reference value after 0.5ms. Moreover, due to the 

increase in the load current, the converter mode has 

changed from BCM to CCM. However, the controller 

performs in such a manner that the inductor current 

returns to BCM shortly after the load changes. The load 

resistance and the switching frequency values are equal 

to 20 and 80KHz respectively. It means that the 

controller has decreased the switching frequency in order 

to yield the BCM condition. 

 

 

 
Figure 10. Output voltage at CCM and BCM regions 
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Figure 11 illustrates the output pulse from the 

comparator. According to this figure, inductor current 

returns from CCM to BCM after 0.5ms. As noted before, 

this pulse will then be entered to the averaged block.  

Figure 12 shows inductor current during load current 

variations. As is depicted in the figure, inductor current 

is primarily in CCM mode. In this case, controller begins 

to operate and reduces the switching frequency. 

Also, in Figure 13, by 20% reduction of load current, 

first inductor current flows from BCM to DCM; then in 

a  short  period  of  time  (about  0.4ms),    the  controller 
 

Figure 11. Vcomparator at differtent CCM and BCM regions 

 

 
Figure 12. Inductor current at differtent CCM and BCM region: (a) converter operation at diffrent CCM and BCM regions, (b) 

inital BCM conduction (R=25) and transient to CCM (R=20) (First area), (c) new BCM steady-state condition after performing  

the control scheme (Second area) 
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Figure 13. Inductor current at differtent DCM and BCM region: (a) converter operation at diffrent DCM and BCM regions, (b) 

inital BCM conduction (R=25) and transient to DCM (R=30) (First area), (c) new BCM steady-state condition after performing  

the control scheme (Second area) 
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increases switching frequency with an accurate detection 

of the converter performance, and converter is returned 

to BCM. The output voltage, in these variations, has 

reached to reference value in less than 0.6ms, shown in 

Figure 14. 

In the following, simulation results of the intended 

converter will be examined using the proposed control 

method to achieve fully ZVS in 1MHz switching 

frequency.  

Extended closed-loop control with VIN, VOUT, VDS1, 

and IL in 𝑉
out=30V,𝑉in=17V, fs=1MHz to achieve fully ZVS is 

shown in Figure 15.  

Pulse commands applied to S1 and S2 are shown in 

Figure 16. Turn-on command of S1 is issued in ZVS and 

ZCS. S1 state is “ON” during Ton. S2 turn-on command 

will be issued when S1 current reaches to zero. When IL 

is equal to Ie (calculated in Section 4), S2 will be turned 

off.  Also seen in the related figure, S1 turn-on command 

is delayed as much as TR time. VDS1 and VDS2 (Figure 17) 

proves the accurate performance of the proposed control 

method. 
 

 

 
Figure 14. Output voltage at differtent DCM and BCM 

regions 
 

 

 

 
Figure 15. ZVS operation waveforms with the proposed 

ZVS control:  Pout=36W, Vout=30V, Vin=17V, fs =1MHz 

 

 
Figure 16. Pulse commands applied to S1 and S2 

 

 

 
Figure 17. Zoomed in ZVS switching waveforms with 

improved ZVS time margin based on the proposed ZVS 

control 

 
 
6. CONCLUSION 
 
A new variable frequency ZVS control method for boost 

converter operating in BCM has been proposed in this 

paper. This technique is carried out in analog form 

without using microprocessor as analog controllers have 

less noise, less cost and processing problems in high 

frequency applications. The intended method keeps the 

converter in BCM in spite of load and input voltage 

variations by changing switching frequency in a certain 

specified range. In addition, with a slight change in 

control structure, it's possible to achieve a fully ZVS in 

both Vin<Vout/2 and Vin>Vout /2 cases. Simulation results 

obtained from applying the proposed method on a GaN-

based synchronous boost converter in two different 

switching frequency ranges (100KHz and 1MHz) verify 

the proposed strategy advantages. 
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Persian Abstract 

 چکیده 

کنند، پیشنهاد گردیده است. روش مذکور قادر است  برای مبدل بوستی که در مد هدایت مرزی کار می  متغیر از کلیدزنی در ولتاژ صفر ی فرکانس  کنترل  روش   یک   مقاله  این   در

ندن در این مد، با تضمین باقی ماعلیرغم تغییرات بار و ولتاژ ورودی، مبدل را از طریق تغییر فرکانس کلیدزنی در یک محدوده معین، همواره در مد هدایت مرزی نگاه دارد.  

پذیر است. علاوه بر آن، با تغییر مختصری در ساختار کنترلی، دستیابی به کلیدزنی در ولتاژ صفر به تشخیص لحظه گذر از صفر جریان سلف و تغییر فرکانس کلیدزنی امکان

های دیجیتال، دارای نویز کمتر، هزینه و  کنندهباشد که در مقایسه با کنترلیکنترل این مبدل به صورت آنالوگ و بدون استفاده از میکروپروسسور مگردد.  طور کامل محقق می

بر مبنای کلیدهای فرکانس    سنکرونسازی حاصل از اعمال روش پیشنهادی بر روی یک مبدل بوست  های پردازشی کمتری در کاربردهای فرکانس بالا است. نتایج شبیهچالش

  باشد.تاییدکننده مزایای استراتژی مذکور میمگاهرتز(  1کیلوهرتز و  100کانس کلیدزنی )در دو محدوده متفاوت از فر، GaNبالای  
 


