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A B S T R A C T  
 

Today’s semi-autonomous vehicles are gradually moving towards full autonomy. This transition requires 

developing effective control algorithms for handing complex autonomous tasks. Driving as a group of 
vehicles, referred to as a convoy, on automated highways is a highly important and challenging task that 

autonomous driving systems must deal with. This paper considers the control problem of a vehicle 

convoy modeled with linear dynamics. The convoy formation requirement is presented in terms of a 
quadratic performance index to minimize. The convoy formation control is formulated as a receding 

horizon linear-quadratic (LQ) optimal control problem. The receding horizon control law is innovatively 

defined via the solution to the algebraic Riccati equation. The solution matrix and therefore the receding 
horizon control law are obtained in the closed-form. A control architecture consisting of four algorithms 

is proposed to handle formation size/shape switching. The closed-form control law is at the core of these 

algorithms. Simulation results are provided to justify the models, solutions, and proposed algorithms. 

doi: 10.5829/ije.2020.33.11b.07 
 

 
1. INTRODUCTION1 
 
Soon, public roads will host the massive deployment of 

autonomous vehicles. An autonomous convoy is a group 

of networked autonomous vehicles maintaining a 

formation (Figure 1). The formation control is defined as 

designing control inputs for the vehicles so that they form 

and maintain a pre-defined geometric shape. The line (or 

linear) formation, so-called platooning, concerns only 

longitudinal coordinated control of networked 

autonomous vehicles [1]. Convoy formation control 

requires both longitudinal and lateral coordination of 

vehicles [2]. Convoy control algorithms are essential for 

vehicle  maneuvers  such  as  lane  change  and  

overtaking on automated highways. Intelligent Traffic 

Management Systems [3] can also use these algorithms 

for city traffic.  

Many algorithms from multi-agent systems are used 

in autonomous vehicle convoy formation control. 

Classical approaches which include leader-follower [4], 

virtual-structure [5] and behavior-based [6, 7] comprise a 
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significant amount of research effort in multi-agent 

systems formation control. 

While the leader-follower approach is a popular design 

for the formation control,  there are limitations. The loss 

of the leader or the leader being perturbed by some 

disturbances causes the entire group formation to fail [8]. 

On the contrary, the formation control can be leaderless, 

where all agents have the same role within the team.  

In this study, we intend to derive an optimality-based 

formation  control  strategy  for a  leaderless  autonomous 

 

 

 
Figure 1. A convoy in a diamond formation 
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convoy. The optimality-based approach has received 

attention in robotic car literature (see, e.g., [9, 10]). 

Particularly the LQ modeling of formation control is 

highly interesting due to the analytic tractability of LQ 

problems. In this approach, the formation objective, 

which is to drive multiple agents to achieve a prescribed 

constraint on their states, is implemented by using a 

quadratic performance index through the use of graph 

theory [11]. The multi-agent system dynamics is modeled 

as a controllable linear system.  

Depending on the available information structure, 

open-loop [12], state-feedback [13] and receding horizon 

[14] control structures can be investigated for formation 

control. The receding horizon or model predictive 

controller uses the open-loop control signals to 

implement an online algorithm that predicts the system’s 

output based on current states and system models. It has 

become the most popular feedback strategy in industrial 

applications. 

In the operation field, when obstacles or boundaries 

are detected along the formation's path, the formation is 

able to squeeze through obstacles by switching to suited 

patterns that are chosen among a collection of 

formations. In some other cases, a safe formation control 

strategy scales the formation shape (by a size switching 

strategy). By adjusting the scale, the formation can grow 

and shrink as necessary to accommodate and avoid 

obstacles in it’s surrounding area. An illustrative example 

is given in [15], where a group of agents is to traverse a 

narrow passage while maintaining a desired triangular 

shape. 

In this paper, the convoy formation control is 

addressed as a receding horizon LQ optimal control 

problem. Under this framework, the matrix Riccati 

equation must be solved. Obtaining a solution to this 

equation is not generally straightforward. This type of 

matrix equation has been discussed in detail in [16]. 

Innovatively, the receding horizon control law is 

constructed via the algebraic Riccati equation, which 

leads to obtaining the control law in the closed-form. 

Besides, a control scheme is developed to deal with the 

formation size/shape switching under the receding 

horizon LQ framework. This scheme consists of four 

control  modes  in  which  each  control  mode  is  run 

under an algorithm constructed via the closed-form 

control law.  

The remainder of this paper is organized as follows. 

The system models and LQ optimal control formulation 

of the formation control problem are introduced in 

Section 2. The receding horizon control design is 

presented in Section 3. The control scheme and 

corresponding algorithms for formation size/shape 

switching are developed in Section 4. The simulation 

results are shown in Section 5. The conclusion is given in 

Section 6. 

 

2. CONVOY FORMATION STATEMENT 

 
Vehicle dynamics is highly nonlinear. Hierarchical 

control architectures at their top-level consider a 

simplified dynamics model of the system and shift the 

nonlinearity to their lower levels. An appropriate simple 

dynamical model for a vehicle is the double integrator 

model. It simplifies vehicle dynamics as a point mass 

governed by Newton’s laws [17]. 

Consider a convoy of 𝑚 networked vehicles, each of 

which is described by a double integrator dynamics. Let 

𝒒𝑖 , 𝒗𝑖 , 𝒖𝑖 ∈ ℝ2 be the coordinates, velocity and control 

input vectors for vehicle 𝑖 (𝑖 = 1,… ,𝑚), 

respectively. Define 𝒛 = [𝒒1
𝑇 , … , 𝒒𝑚

𝑇 , 1, 𝒗1
𝑇 , … , 𝒗𝑚

𝑇]𝑇 

and 𝒖 = [𝒖1
𝑇 , … , 𝒖𝑚

𝑇]𝑇. Vectors 𝒛 ∈ ℝ4𝑚+1 and 𝒖 ∈
ℝ2𝑚 are system state and control input vectors, 

respectively. The system dynamics can be expressed as 

𝒛̇ = 𝑨𝒛 + 𝑩𝒖  (1) 

where 𝑨 = [
𝟎 𝑰𝟐𝒎

𝟎 𝟎
], 𝑩 = [𝟎𝟐𝒎, 𝟎𝟐𝒎×𝟏, 𝑰𝟐𝒎]𝑻, and 𝑰 is 

the identity matrix of appropriate dimension. 

Networked systems such as a convoy of vehicles 

exchange information via a communication network. The 

information flow over the communication network can 

be modeled with graph theory. A directed graph 𝒢 =
(𝒱, ℰ) consists of a set of vertices 𝒱 = {1,2, … ,𝑚} and a 

set of edges ℰ ⊆ {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝒱} containing ordered pairs 

of distinct vertices. For the formation control, the set of 

vertices 𝒱 corresponds to the vehicles and then the set of 

edges ℰ represents the interconnections. Each edge 

(𝑖, 𝑗) ∈ ℰ is assigned with a weight 𝜇𝑖𝑗 > 0. 

Assumption 1. Formation graph 𝒢 is connected, i.e., for 

every pair of vertices i j ∈ 𝒱, from i to j for all j =
1 , , ,  m, j ≠ i, there exists a path of (undirected) edges 

from ℰ. 

The graph Laplacian 𝑳 ∈ ℝ𝑚 is defined as 

𝑳 = 𝑫𝑾𝑫𝑇  (2) 

where 𝑫 ∈ ℝ𝑚×|ℰ| is the incidence matrix and 𝑾 =

𝑑𝑖𝑎𝑔(𝜇𝑖𝑗) ∈ ℝ|ℰ| is a diagonal weight matrix. 𝑫's 𝑢𝑣th 

element is 1 if the node 𝑢 is the head of the edge 𝑣, -1 if 

the node 𝑢 is the tail, and 0, otherwise.  

The Kronecker product ⨂ can be used to extend the 

dimension. The 2-dimensional graph Laplacian 𝓛 ∈ ℝ2𝑚 

is defined as 

𝓛 = 𝑳⨂𝑰2  (3) 

Based on the properties of the Kronecker product, 𝓛 can 

be rearranged as 

𝓛 = 𝑫𝑾𝑫𝑇 ⊗ 𝑰2 = (𝑫 ⊗ 𝑰2)(𝑾 ⊗ 𝑰2)(𝑫 ⊗
𝑰2)

𝑇 = 𝓓𝓦𝓓𝑇  
(4) 

where 𝓓 = 𝑫 ⊗ 𝑰2 and 𝓦 = 𝑾 ⊗ 𝑰2.  
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The graph Laplacian is symmetric, positive 

semidefinite and holds the sum-of-squares property [18]: 

𝒛𝑻𝓛𝒛 = ∑ 𝜇𝑖𝑗‖𝒒𝑖 − 𝒒𝑗‖
𝟐

(𝑖,𝑗)∈ℰ   (5) 

where ‖. ‖ is the Euclidean norm in ℝ2.  

The formation requirement according to the 

information graph can be expressed as 

∑ 𝜇𝑖𝑗 (‖𝒒𝑖 − 𝒒𝑗 − 𝒅𝑖𝑗‖
2
+ ‖𝒗𝑖 − 𝒗𝑗‖

2
)(𝑖,𝑗)𝜖ℰ → 0  (6) 

where 𝒅𝑖𝑗 ∈ ℝ𝑛 is the desired distance vector between 

two neighbor vehicles 𝑖 and 𝑗. Using the property of sum-

of-squares, (6) can be transformed into the following 

matrix form 

∑ 𝜔𝑖𝑗 (‖𝒒𝑖 − 𝒒𝑗‖
2
− 2(𝒒𝑖 − 𝒒𝑗)

𝑇
𝒅𝑖𝑗 +(𝑖,𝑗)𝜖ℰ

‖𝒅𝑖𝑗‖
2
+ ‖𝒗𝑖 − 𝒗𝑗‖

2
) = 𝒒𝑇𝓛𝒒 − 2𝒒𝑇𝓓𝓦𝒅 +

𝒅𝑇𝓦𝒅 + 𝒗𝑇𝓛𝒗 = 𝒛𝑇𝑸𝒛  

(7) 

where 𝑸 = [
𝓛 −𝓓𝓦𝒅 𝟎

−(𝓓𝓦𝒅)𝑻 𝒅𝑻𝓦𝒅 𝟎
𝟎 𝟎 𝓛

], 𝒅 = 𝑐𝑜𝑙(𝒅𝑖𝑗) and 

𝑐𝑜𝑙(. ) stands for "column vector". As 𝒛𝑇𝑸𝒛 ≥ 0, matrix 

𝑸 is positive semidefinite. 

A performance index for the convoy formation 

control is defined as 

𝐽 = 𝒛(𝑡𝑓)
𝑇
𝑸𝑓𝒛(𝑡𝑓) + ∫ (𝒛𝑇𝑸𝒛 + 𝒖𝑇𝑹𝒖)𝑑𝑡

𝑡𝑓

0
  (8) 

where 𝑸𝒇 = [

𝓛𝒇 −𝓓𝓦𝒇𝒅 𝟎

−(𝓓𝓦𝒇𝒅)
𝑻

𝒅𝑻𝓦𝒇𝒅 𝟎

𝟎 𝟎 𝓛𝒇

], 𝓛𝑓 =

𝓓𝓦𝑓𝓓
𝑇, 𝓦𝑓 = 𝑾𝑓 ⊗ 𝑰𝑛, 𝑾𝑓 = 𝑑𝑖𝑎𝑔(𝜔𝑖𝑗) ∈ ℝ|ℰ|, 

𝜔𝑖𝑗 > 0, 𝑡𝑓 is the fixed finite horizon length and 𝑹 ∈

ℝ2𝑚 is diagonal positive definite (𝑹 > 𝟎). Matrices 𝑾 

and 𝑹 represent the penalties on the formation-velocity 

errors and control effort during the entire formation 

control process, respectively. Matrix 𝑾𝑓 represents the 

penalty on the terminal formation-velocity errors. 

The convoy formation control objective is to design 

the control input vector 𝒖 to minimize the performance 

index 𝐽 for the underlying system dynamics (1). The 

formation control problem under the framework of LQ 

optimal control formulation converts to the symmetric 

Riccati differential equation problem, which is stated in 

the following theorem. The proof can be found in [19]. 

Theorem 1. For the formation control defined as the LQ 

optimal control problem (1) and (8), the open-loop 

solution is given by 

𝒖 = −𝑹−1𝑩𝑇𝑷𝒛  (9) 

where 𝑷 is the solution to the Riccati differential 

equation; 

𝑷̇ + 𝑷𝑨 + 𝑨𝑇𝑷 − 𝑷𝑺𝑷 + 𝑸 = 𝟎,     𝑷(𝑡𝑓) = 𝑸𝑓 (10) 

and 𝑆 = 𝐵𝑅−1𝐵𝑇.  

Matrix 𝑷 is symmetric positive semidefinite. In 

general, (10) must be solved numerically by using the 

terminal value and backward iteration. 

 

 

3. RECEDING HORIZON CONTROL 
 

Fixed horizon control problems suffer from the main 

drawback that unexpected changes in the system that may 

happen at a future time cannot be included in the model. 

This issue is addressed by the idea of receding horizon 

control [20]. Let 0 < 𝛿 < 𝑡𝑓 denote the sampling period. 

In the receding horizon control, the current control law 𝒖 

is obtained by solving the open-loop optimal control 

problem (1) and (8) at each sampling instant 𝑡 for the 

interval [𝑡, 𝑡 + 𝑡𝑓]. Then, 𝒖 and the corresponding system 

trajectory 𝒛 is used until the next sampling time 𝑡 + 𝛿 

arrives. In this method, at each time instant 𝑡 the current 

state vector 𝒛 is considered as the initial state. The open-

loop control signal 𝒖 minimizes the following receding 

horizon performance index 

𝐽 = 𝒛(𝑡 + 𝑡𝑓)
𝑇
𝑸𝑓𝒛(𝑡 + 𝑡𝑓) + ∫ (𝒛𝑇𝑸𝒛 +

𝑡+𝑡𝑓

𝑡

𝒖𝑇𝑹𝒖)𝑑𝜏  
(11) 

Following [14], the receding horizon control for the 

formation control problem is defined as 

𝒖̅ = −𝑹−1𝑩𝑇𝑷(0)𝒛  (12) 

The closed-loop system is  

𝒛̇ = 𝑨𝑐𝑙(0)𝒛  (13) 

where 𝑨𝑐𝑙(0) = 𝑨 − 𝑺𝑷(0) is the closed-loop system 

matrix. 

As it is seen from (12) calculation of the signal 𝒖̅ 

needs the solution matrix 𝑷(0) of the Riccati differential 

Equation (10). In a particular case in which 𝑡𝑓 → ∞, 𝑷 

approaches a finite constant 𝓟 where it satisfies the 

algebraic Riccati equation (ARE) 

𝓟𝑨 + 𝑨𝑇𝓟 − 𝓟𝑺𝓟 + 𝑸 = 𝟎  (14) 

In the system dynamics (1) if (𝑨, 𝑩) is stabilizable then 

𝓟 is a stabilizing solution to (10). Moreover, 𝑷 

approaches to 𝓟 as 𝑡 → −∞. Therefore, in this paper, we 

propose the idea that solution 𝓟 to the ARE (14) can be 

used in (12) instead of 𝑷(0). Consequently, the receding 

horizon control for the formation control problem in (1) 

and (11) is redefined as 

𝒖̅ = −𝑹−1𝑩𝑇𝓟𝒛  (15) 

In the next theorem, the closed-form solution of the 

algebraic Riccati Equation (14) is presented. Before, the 

following definition is introduced. 

Definition 1. Let the real symmetric matrix 𝐌 be positive 

semidefinite. The square root of 𝐌 is denoted by 𝐌
1

2 and 
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satisfies 𝐌 = 𝐌
1

2𝐌
1

2. Any symmetric, positive 

semidefinite matrix has a unique symmetric, semidefinite 

square root [21].  

Theorem 2. The unique symmetric solution to the 

algebraic  Riccati  Equation  (14)  is  in  the  following 

form:  

𝓟 = [
𝑴𝑹−1𝑵 −𝑴𝑵−1𝓓𝓦𝒅 𝑵

∗ ∗ ∗
𝑵 −𝑹𝑵−1𝓓𝓦𝒅 𝑴

]  (16) 

where 𝑴 = (2𝑵𝑹 + 𝑵2)
1

2, 𝑵 = (𝓛𝑹)
1

2 and ∗ are the 

elements/blocks to be not concerned. 

Proof. By ignoring the (artificially made) middle row of 

𝑨 we see that (𝑨, 𝑩) is stabilizable. As 𝑹 is positive 

definite, and 𝑸 is symmetric positive semidefinite, there 

exists a unique symmetric solution to (14). 

Assume that 𝓟 has the following form: 

𝓟 = [

𝓟11 𝓟12 𝓟13

𝓟12
𝑇 𝒫22 𝓟23

𝓟13 𝓟23
𝑇 𝓟33

]  (17) 

Substituting 𝑨, 𝑺 and 𝑸 into (14) yields 

𝓟13𝑹
−1𝓟13 − 𝓛 = 𝟎  (18) 

2𝓟13 − 𝓟33𝑹
−1𝓟33 + 𝓛 = 𝟎  (19) 

𝓟11 − 𝓟33𝑹
−1𝓟13 = 𝟎  (20) 

𝓟23𝑹
−1𝓟13 + (𝓓𝓦𝒅)𝑇 = 𝟎  (21) 

𝓟12 − 𝓟33𝑹
−1𝓟23

𝑇 = 𝟎  (22) 

By solving these equations using the matrix square root 

definition we obtain (16). Finally, from (15) it can be 

seen that the calculation of 𝒖̅ is not dependent on the 

middle row elements/blocks of 𝓟.  

The closed-loop system matrix is redefined as 𝑨̅𝑐𝑙 =
𝑨 − 𝑺𝓟. The system is asymptotically stable on the 

condition that all the eigenvalues of 𝑨̅𝑐𝑙  have negative 

real parts. As 𝑨̅𝑐𝑙  is a function of penalty matrices 𝑾 and 

𝑹, the asymptotic stability can be achieved by selecting 

appropriate 𝑾 and 𝑹 matrices.  
Together with satisfying the asymptotic stability 

condition, matrices 𝑾 and 𝑹 should reflect the real-world 

requirements such as vehicle's energy consumption 

management. For example, if the vehicles have a 

sufficient amount of fuel in their tank or if they are near 

a gas station, a large 𝑾 and a small 𝑹 can be selected to 

emphasize the formation-velocity errors rather than the 

control effort. On the contrary, a small 𝑾 and a large 𝑹 

can be selected for situations in which the vehicles are on 

an energy-saving policy. The best trade-off between the 

system performance (e.g. convoy formation) and control 

effort (e.g. energy consumption) should be taken.  

 

4. SIZE/SHAPE SWITCHING 
 

The receding horizon based controller calculates controls 

that drive each vehicle to acquire the desired relative 

position with respect to it’s neighbor(s) in the graph 

topology. During the process of acquiring a desired 

formation shape, at every time instant, there could be a 

change in the environment/system that might require a 

new desired formation shape to be acquired. For 

example, due to newly detected obstacles or failed 

vehicle(s) in the group, the initial formation topology 

would be subject to change in size/shape.  

To handle size/shape switching a control architecture 

is presented in Figure 2. Based on the signal received 

from an external observer or a decision-maker vehicle 

equipped with appropriate sensors, a control mode is 

selected at each time instant. The control loop terminates 

when the formation control expectations are fulfilled. 

Initially, the vehicle convoy is supposed to acquire 

the desired formation under the receding horizon control 

scheme. The receding horizon approach to the formation 

control problem is implemented using Algorithm 1. Here, 

the control commands are generated by the closed-form 

law in (15). 

Algorithm 1. Receding Horizon Control 

At each time instant 𝑡: 

1: Measure the current state vector 𝒛 

2: Calculate 𝒖 and 𝒛 for [𝑡, 𝑡 + 𝑡𝑓] 

3: Apply 𝒖 = 𝒖̅ for the period [𝑡, 𝑡 + 𝛿] 

4: Update 𝑡 ← 𝑡 + 𝛿 

5: Repeat the steps 1 to 4 

Size switching is subject to change only at desired 

distances among neighboring vehicles. Within this 

control platform when a size switching signal is received 

the formation desired distances vector 𝒅 = 𝑐𝑜𝑙(𝒅𝑖𝑗) is 

multiplied by a scalar 𝛼 where 𝛼 is the formation shape 

scale factor.  In this case,  recalculation of the open-loop 
 

 

 
Figure 2. Proposed control structure 
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control 𝒖 for [𝑡, 𝑡 + 𝑡𝑓] needs fewer computation 

resources. This is because the control signal can be 

rewritten as 

𝒖 = −𝑹−1(𝑵𝒒−𝑹(𝑵−1)𝑇𝓓𝓦𝒅 + 𝑴𝒗)  (23) 

and as it is seen only the middle term is subject to being 

multiplied by scalar 𝛼. The proposed size switching 

procedure is presented in Algorithm 2. 

Algorithm 2. Size Switching 

At each time instant 𝑡: 

1: Measure the current state vector 𝒛(𝑡) 

2: Update 𝒅 as 𝛼𝒅 

3: Calculate 𝒖 and 𝒛 for [𝑡, 𝑡 + 𝑡𝑓] 

4: Apply 𝒖 = 𝒖̅ for the period [𝑡, 𝑡 + 𝛿] 

5: Update 𝑡 ← 𝑡 + 𝛿 

6: Repeat the steps 1 to 5 

In shape switching the vehicles might keep their 

neighbors but need to acquire different desired distances. 

In other words, formation graph 𝒢 does not change. In 

this case, similar to size switching only the middle term 

of the control signal is subject to the minor change of 

updating 𝒅. The proposed shape switching procedure is 

presented in Algorithm 3. 

Algorithm 3. Shape Switching (𝒢 has not changed) 

At each time instant 𝑡: 

1: Measure the current state vector 𝒛(𝑡) 

2: Update 𝒅  

3: Calculate 𝒖 and 𝒛 for [𝑡, 𝑡 + 𝑡𝑓] 

4: Apply 𝒖 = 𝒖̅ for the period [𝑡, 𝑡 + 𝛿] 

5: Update 𝑡 ← 𝑡 + 𝛿 

6: Repeat the steps 1 to 5 

Shape switching might be subject to change on 

interconnections. Some vehicles might lose some of their 

immediate neighbors in the graph topology and some 

might acquire new neighbors (i.e., 𝒢 changes). Here, the 

𝑫, 𝑾 and 𝒅 parameters of the control signal must be 

updated. The proposed shape switching procedure when 

𝒢 changes, is presented in Algorithm 4. 

Algorithm 4. Shape Switching ((𝒢 has changed) 

At each time instant 𝑡: 

1: Measure the current state vector 𝒛(𝑡) 

2: Update 𝑫, 𝑾, 𝒅 

3: Calculate 𝒖 and 𝒛 for [𝑡, 𝑡 + 𝑡𝑓] 

4: Apply 𝒖 = 𝒖̅ for the period [𝑡, 𝑡 + 𝛿] 

5: Update 𝑡 ← 𝑡 + 𝛿 

6: Repeat the steps 1 to 5 

When designing the software interface of the control 

structure in Figure 2 (for example in Java), each different 

control mode can be addressed by using the abstract 

methods presented in Table 1. 

TABLE 1. Abstract methods for different control procedures 

Abstract method 
Control 

generated by 
Description 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙() Algorithm 1 Receding horizon control 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝛼) Algorithm 2 
Size switching, 𝒅 updates 

as 𝛼𝒅 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝒅) Algorithm 3 
Shape switching, 𝒢 has not 

changed, only 𝒅 updates 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑫,𝑾,𝒅) Algorithm 4 
Shape switching, 𝒢 has 

changed, 𝑫, 𝑾, 𝒅 update 

 

 

5. SIMULATIONS 
 

Simulations are carried out to analyze the proposed 

control architecture and algorithms. The experiments 

consist of five vehicles (𝑚 = 5). We consider a scenario 

in which at the time instants 𝑡 = 0𝑠 and 𝑡 = 7𝑠, the 

vehicles receive the signals 𝑐𝑜𝑛𝑡𝑟𝑜𝑙() and 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑫,𝑾,𝒅), respectively. The corresponding 

information graphs are given in Figure 3, and their 

incidence matrices are, respectively: 

𝑫 =

[
 
 
 
 
−1 −1
 1 0

0 0
−1 0

 0   0
 0   1
 0    0

    1 0
    0 −1
    0 1 ]

 
 
 
 

,  𝑫 =

[
 
 
 
 
0 −1
1 0

0 0
−1 0

 0   0
−1   1
 0    0

    1 0
    0 −1
    0 1 ]

 
 
 
 

. 

The weight matrices 𝑾 and 𝑹 are selected as the identity 

matrices. The desired offset vectors of the formation 

shape among the vehicles at 𝑡 = 0𝑠 are: 𝒅12 = 𝒅23 =
[−2,−4]𝑇 and 𝒅14 = 𝒅45 = [2,−4]𝑇.These vectors 

mean that to form the desired shape; vehicle 1 and 2, as 

well as vehicle 2 and 3, have to achieve to relative 

distance -2 and -4 in the 𝑥 and 𝑦 position, respectively; 

vehicle 1 and 4, as well as vehicle 4 and 5, have to 

achieve to relative distance 2 and -4 in the 𝑥 and 𝑦 

position, respectively. Moreover, all vehicles have to 

achieve zero relative velocities. 

At time instant 𝑡 = 7𝑠, the communication link 

between vehicles 1 and 2 must break down and a new link 

between vehicles 2 and 4 must be built. The new desired 

offset vectors are: 𝒅24 = [2,0]𝑇, 𝒅14 = [2,−4]𝑇, 𝒅23 =
𝒅45 = [0,−4]𝑇.  

 

 

 
Figure 3. Information graph at 𝑡 = 0𝑠 (left) and 𝑡 = 7𝑠 (right) 
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The initial positions of the vehicles are set to: 𝒒1 =
[1,0]𝑇, 𝒒2 = [4,0]𝑇, 𝒒3 = [7,0]𝑇, 𝒒4 = [−1,0]𝑇, 𝒒5 =
[−4,0]𝑇. The initial velocities are set to: 𝒒̇1 = [0,2]𝑇, 𝒒̇2 =
[0,3]𝑇, 𝒒̇3 = [0,1.5]𝑇, 𝒒̇4 = [0,1]𝑇, 𝒒̇5 = [0,2.5]𝑇. 

The finite horizon length is selected as 𝑡𝑓 = 7𝑠 and 

the sampling time for simulation/control is 0,1𝑠. The 

total running time of the control is 14s. The vehicles’ 

trajectories under signals 𝑐𝑜𝑛𝑡𝑟𝑜𝑙() and 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑫,𝑾,𝒅) are shown in Figure 4. The vehicles 

are shown at 𝑡 = 0𝑠, 𝑡 = 5𝑠, and 𝑡 = 12𝑠. The results 

show that the desired formations among the vehicles are 

achieved under both signals at the end of their time 

interval. Time histories of the relative positions and 

velocities and also the control input of the individual 

vehicles are shown in Figure 5. It can be seen that all the 

formation control objectives are achieved. 

 
Figure 4. Vehicles’ trajectories under 𝑐𝑜𝑛𝑡𝑟𝑜𝑙() followed 

by 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑫,𝑾,𝒅) in red and blue, respectively 

 

 

 
Figure 5. Time histories of the relative positions, velocities and control inputs under 𝑐𝑜𝑛𝑡𝑟𝑜𝑙() followed by 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑫,𝑾,𝒅) 

 

 
6. CONCLUSION 

 
In this paper, the convoy formation control problem was 

investigated under the receding horizon LQ optimal 

control framework. A closed-form solution was 

presented for the receding horizon LQ optimal formation 

control. The solution to the control law is a non-linear 

function of the graph Laplacian matrix and the formation 

desired distance vectors. A control architecture 

consisting of four control modes for formation size/shape 

switching problems was proposed. An algorithm based 

on the presented closed-form control law is developed for 

each control mode. The models, closed-form solution and 

proposed algorithms are approved by the simulations. 
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Persian Abstract 

 چکیده 

 ف یانجام وظا  یکنترل موثر برا  یهاتمیالگور  جادیانتقال مستلزم ا  نیکنند. ایکامل حرکت م  یبه سمت خودمختار  جیبه تدر  یهوشمند امروزو    خودکار  مهین  هینقل  لیوسا

 یهاستم یاست که س   ز یالش برانگمهم و چ  اریبس  یافه یخودکار وظ  یهاراهشود، در بزرگی ، که به آنها کاروان گفته مهینقل  ل یاز وسا  یبه عنوان گروه   یاست. رانندگ  دهیچیمختلط پ

کاروان از نظر شاخص    لیتشک   از یدر نظر گرفته شده است. ن  یخط   ییایمدل شده با پو  هینقل  لهیمقاله مشکل کنترل کاروان وس   نی . در اندیاز پس آن برآ  دیمستقل با  یرانندگ

فرموله شده است.    یسازافق عقب   یبرا    LQدرجه دوم   -یخط  نه یمسئله کنترل به  ک یکاروان به عنوان    ل یبرسد. کنترل تشک  اقل شود تا به حدی عملکرد درجه دوم ارائه م

بسته  رت به صو ینینشقانون کنترل افق در حال عقب  نیحل و بنابراراه  سیشده است. ماتر فی تعر یکاتیر یحل معادله جبرراه ق یاز طر  ی نینشقانون کنترل افق در حال عقب 

ها تمیالگور نیا یشده است. قانون کنترل فرم بسته در هسته اصل لیشکل اندازه / شکل تشک رییکنترل تغ  یبرا تمیمتشکل از چهار الگور یکنترل یمعمار  کی. دیآیبه دست م

 ارائه شده است. یشنهادیپ یهاتمیها و الگورحلها، راهمدل  هیتوج یبرا یسازه یشب جیاست. نتا
 


